Electronic Supplementary Information

Photocatalytic Water Oxidation by Combination of BiVO₄-RGO and Molecular Cobalt Catalyst

Yong Wang,^a Fei Li,*^a Hua Li,^a Lichen Bai,^a and Licheng Sun^{a,b}

 ^aState Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian 116024 (China). Fax: (+86)-411-84986245; E-mail: lifei@dlut.edu.cn
^bDepartment of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm (Sweden).

Experimental Section

Materials

4-methoxypyridine, 4-tert-butylpyridine, 4-bromopyridine hydrochloride and 4-cyanopyridine were purchased from Energy Chemicals. Cobalt(II) complexes [Co(salophen)] (**2**, salophen = (N,N'-bis(salicylaldehyde)-1,2-phenylenediamine) and [Co(bpy)₂(OH₂)₂](ClO₄)₂ (**3**, bpy = 2,2'-bipyridine) were synthesized according to the reported methods.^{1,2} Bi(NO₃)₃ 5H₂O (99.0%) and pyridine (99.9%) were purchased from Aladdin Chemicals. Graphite powder and V₂O₅ (99.0%) were purchased from Sinopharm Chemicals. All other chemicals are commercially available.

General methods

SEM micrographs and EDX analysis were conducted with a Nova NanoSEM 450 instrument. X-ray diffraction was collected with a D/max-2400 diffractometer. UV-vis diffuse reflectance spectra measurement was performed on an Evolution 200 spectrophotometer (Thermo, USA). The photoluminescence (PL) emission spectra were measured on a fluorescence spectrometer (FluoroMax-4P, France) at an

excitation wavelength of 400 nm. ¹H NMR spectra were recorded at 298 K using a Bruker DRX-400 instrument operating at 400 MHz. UV-vis absorption measurement was taken with an Agilent 8453 spectrophotometer.

Preparation of BiVO₄-RGO composite

BiVO₄-RGO composite was prepared according to a method reported in literatre.³ In detail, Bi(NO₃)₃ 5H₂O (10 mmol), V₂O₅ (5 mmol) and graphene oxide (0.162g, GO was prepared based on the Hummer's method⁴) were mixed in 0.75 M HNO₃ solution (50 mL). The suspension was stirred for 2 days at room temperature and the obtained greenish BiVO₄-GO precursor was collected by filtration and dried at 110°C. 1mg/mL of BiVO₄-GO in solvent-grade ethanol was employed as a typical concentration, which was irradiated by visible light (λ >420 nm) using a 300 W xenon lamp installed a cut-off filter. The suspension was stirred constantly during irradiation and was bubbled with argon for 3 hours. Finally, the BiVO₄-RGO powders obtained by filtration and dried overnight was characterized by SEM, XRD and DRS (See Figures S2~4).

Synthesis of $Co_4O_4(O_2CMe)_4(py)_4$, (1-H).

Complex **1-H** was synthesized according to a literature procedure.⁵ $Co(NO_3)_2 6H_2O$ (2.90 g, 10 mmol) and $CH_3CO_2Na 3H_2O$ (2.70 g, 20 mmol) were stirred in methanol (30 mL) and heated to refluxing temperature, and pyridine (0.8 mL, 10 mmol) was added to the stirred reaction mixture. A portion of 30% H_2O_2 (5 mL) was added to the reaction mixture dropwise and stirred under refluxing condition for 4 hours. The cooled reaction mixture was concentrated in a rotary evaporator and then the aqueous layer was separated out by adding CH_2Cl_2 to it. The light-pink aqueous layer was discarded and the CH_2Cl_2 layer was dried over anhydrous Na_2SO_4 , and then filtered. After the solvent was removed on a rotary evaporator, the residue was purified by column chromatography on silica gel with dichloromethane-methanol (15:1, V:V) as eluent to obtain the dark green product. Yield: 724 mg (34%).

¹H NMR (400 MHz, D₂O): δ 8.13 (d, 8H), 7.63-7.66 (t, 4H), 7.14 (d, 8H), 2.01 (s, 12H). ESI-MS: $m/z = 852.67 \text{ [M]}^+$ (calcd: 851.93).

 $Co_4O_4(O_2CMe)_4(4-OMepy)_4$, (**1-OMe**), $Co_4O_4(O_2CMe)_4(4-t-Bupy)_4$, (**1-t-Bu**), $Co_4O_4(O_2CMe)_4(4-Brpy)_4$, (**1-Br**) and $Co_4O_4(O_2CMe)_4(4-CNpy)_4$, (**1-CN**) were also prepared following the reported methods⁵. The main procedure was similar with preparing complex **1-H** except using 4-methoxypyridine, 4-tert-butylpyridine, 4-bromopyridine hydrochloride and 4-cyanopyridine to replace pyridine, respectively.

Photocatalytic oxygen evolution

In a typical reaction, BiVO₄-RGO was dispersed in an aqueous solution containing cobalt complex **1-X** (0.25 mM) and AgNO₃ (15 mM) in a 50 mL Schlenk bottle without any pH adjustment. The solution was deaerated by bubbling argon for 30 min. This hybrid system was irradiated with a 300W xenon lamp equipped with a 420 nm cut-off filter at room temperature. The amount of evolved O_2 was sampled by syringe from the headspace of cuvette and analyzed by a Techcomp GC 7890T instrument equipped with a 5 Å molecular sieve column and a thermal conductivity detector with argon carrier gas. For the photocatalytic reactions operated at different pH values, nitric acid was added to the aqueous solution to adjust the pH values.

Figure S1. ¹H NMR spectrum of 1-H in D₂O

Figure S2. SEM image of BiVO₄-RGO composite.

Figure S3. Powder XRD pattern of BiVO₄-RGO composite.

Figure S4. UV-vis diffuse reflectance spectra of BiVO₄-RGO and BiVO₄.

Figure S5. PL spectra of BiVO₄-RGO and BiVO₄.

Figure S6. Time courses of the amount of evolved oxygen under visible light ($\lambda > 420 \text{ nm}$) irradiation of BiVO₄ (15 mg) (black) and a mixture of BiVO₄ (15 mg)/**1-H** (0.25 mM) (red), respectively, in aqueous AgNO₃ (15 mM) solutions; light source, 300 W Xe lamp equipped with a 420 nm cut-off filter.

Figure S7. Time courses of the amount of evolved oxygen under visible light ($\lambda > 420 \text{ nm}$) irradiation of BiVO₄-RGO (15 mg) (black) and BiVO₄ (15 mg) (red), respectively, in aqueous AgNO₃ (15 mM) solutions; light source, 300 W Xe lamp equipped with a 420 nm cut-off filter.

Figure S8 Time courses of oxygen evolution by BiVO₄-RGO (15 mg) in aqueous AgNO₃ (15 mM) solution under visible light ($\lambda > 420$ nm) irradiation in the presence of **1-H** (2.5 × 10⁻⁴ M) and different concentrations of Co(NO₃)₂, respectively. Red: 2.5 × 10⁻⁴ M **1-H**; blue: 2.5 × 10⁻⁴ M Co²⁺; green: 5 × 10⁻⁴ M Co²⁺; black: 10⁻³ M Co²⁺.

Figure S9. ¹H NMR spectra of **1-H** in D₂O containing BiVO₄-RGO and AgNO₃ under irradiation at t = 0, t = 15 min and t = 30 min. ¹H NMR spectra of free pyridine and acetate in D₂O are also shown.

Figure S10. UV-vis spectra of 1-H in water before and after photocatalytic water oxidation.

Figure S11. EDX spectra of BiVO₄-RGO composite after the photocatalytic reaction.

Figure S12. Time courses of oxygen evolution under visible light ($\lambda > 420$ nm) irradiation of mixtures of 1-X (2.5 × 10⁻⁴ M) and BiVO₄-RGO (15 mg) in the presence of AgNO₃ (15 mM)

Table S1. The O₂ evolution rate of different cobalt catalyst in the hybrid system.^a

^{*a*} Reaction conditions: 15 mg BiVO₄-RGO, 2.5×10^{-4} M cobalt complex, 10 mL H₂O, 300 W Xe lamp equipped with a 420 nm cut-off filter. ^{*b*} O₂ evolution rate = the total amount of O₂ evolved / the total time consumed.

References

E. Pizzolato, M. Natali, B. Posocco, A. M. López, I. Bazzan, M. D. Valentin, P. Galloni, V. Conte, M. Bonchio, F. Scandola and A. Sartorel, *Chem. Commun.*, 2013, 49, 9941.

2 C. F. Leung, S. M. Ng, C. C. Ko, W. L. Man, J. Wu, L. Chen and T. C. Lau, *Energy Environ. Sci.*, 2012, **5**, 7903.

- 3 Y. H. Ng, A. Iwase, A. Kudo and R. Amal, J. Phys. Chem. Lett., 2010, 1, 2607.
- 4 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- 5 R. Chakrabarty, S. J. Bora and B. K. Das, Inorg. Chem., 2007, 46, 9450.