SUPPORTING INFORMATION

Hypoelectronic Isomeric Diiridaboranes $[(Cp*Ir)_2B_6H_6]$: The "Rule-Breakers" (Cp* = η^5 -C₅Me₅)

Rosmita Borthakur, Bijan Mondal, Purbasha Nandi and Sundargopal Ghosh*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

Email: sghosh@iitm.ac.in

I Experimental Details

I.1 Synthesis

Scheme S1 Synthesis of compounds 1, 2 and 3

I.2 Spectroscopic details

Fig. S1	¹ H NMR spectrum of 1
Fig. S2	¹¹ B{ ¹ H} NMR spectrum of 1
Fig. S3	¹¹ B NMR spectrum of 1
Fig. S4	$^1\text{H}\{^{11}\text{B}\}\text{-}^{11}\text{B}\{^{1}\text{H}\}$ HSQC spectrum of $\textbf{1}$
Fig. S5	¹ H NMR spectrum of 2
Fig. S6	¹¹ B{ ¹ H} NMR spectrum of 2
Fig. S7	¹¹ B NMR spectrum of 2
Fig.S8	¹ H NMR spectrum of 3
Fig. S9	¹¹ B{ ¹ H} NMR spectrum of 3
Fig. S10	¹¹ B NMR spectrum of 3

I.3 X-ray analysis details

I.4 Computational details

II Supplementary data

Table S1	DFT calculated and experimental NMR chemical shifts δ (ppm) 1'-3'
Table S2.	DFT calculated energies of the HOMO and LUMO (eV), HOMO- LUMO gaps ($\Delta E = E_{LUMO} - E_{HOMO}$, eV), relative electronic energy (E_R , kcal/mol) and relative thermal energy (H_{R_s} kcal/mol) for 1' and 2'
Fig. S11	Selected molecular orbitals of 1' and 2' , where (a) shows the HOMO of 1' and (b) shows the LUMO of 2'
Fig. S12	Molecular orbital scheme resulting from Fenske-Hall calculation on 1'
Fig.S13	Molecular orbital scheme resulting from Fenske-Hall calculation on 2'
Fig.S14	Frontier molecular orbitals of 1' obtained from Fenske-Hall calculation

Fig.S15 Frontier molecular orbitals of **2'** obtained from Fenske-Hall calculation

I. Experimental details

I.1 Synthesis

General procedures and instrumentation. All the syntheses were carried out under argon atmosphere with standard Schlenk and glove box techniques. Solvents were dried by common methods and distilled under N₂ before use. $[Cp*IrCl_2]_2$ was prepared according to literature method¹while other chemicals (NaBH₄, BH₃.THF) were obtained commercially and used as received. The external reference for the ¹¹B NMR, $[Bu_4N(B_3H_8)]$ was synthesized according to literature method.² Thin layer chromatography was carried on aluminum supported silica gel TLC plates (MERCK TLC Plates) with layer thickness of 250-µm and L x W 20 cm x 20 cm. NMR spectra were recorded on 400 and 500 MHz Bruker FT-NMR spectrometers. The residual solvent protons were used as reference (δ , ppm, d₆-benzene, 7.16, CDCl₃, 7.26), while a sealed tube containing [Bu₄N(B₃H₈)] in d₆-benzene (δ_B , ppm, -30.07) was used as an external reference for the ¹¹B NMR. Electrospray mass (ESI-MS) spectra were recorded on a Qtof Micro YA263 HRMS instrument.

Synthesis of 1, 2 and 3: In a flame-dried Schlenk tube, $[Cp*IrCl_2]_2$ (0.2g, 0.25 mmol) was suspended in xylene (15 mL) and cooled to -78 °C. To it BH₃.THF (4.00 mL, 4.01 mmol) was added, the reaction mixture was slowly warmed to room temperature and allowed to stir for 30 min at room temperature and then kept on thermolysis for three days. The solvent was removed under vacuum and the residue was extracted into hexane and passed through Celite. The mother liquor was concentrated and the residue was subjected to chromatographic work up using silicagel TLC plates. Elution with a hexane/CH₂Cl₂ (70:30) mixture afforded yellow 1(0.053 g, 18%), red 2 (0.048 g, 24 %) and brown 3 (0.033, 32 %).

1: $R_f = 0.42$ (7:3 Hexane/CH₂Cl₂); HRMS (ESI) calcd for $C_{20}H_{37}Ir_2B_6^+$ [M+H]⁺ m/z 729.2712, found m/z 729.2723; ¹¹B NMR (160 MHz, CDCl₃, 22 °C): $\delta = 92.1$ (d, $J_{B-H} = 151$ Hz, 2B), 64.6 (d, $J_{B-H} = 148$ Hz, 2B), -23.1 (d, $J_{B-H} = 133$ Hz, 2B); ¹H NMR (400MHz, CDCl₃, 22 °C): $\delta = 12.31-10.77$ (m, 4H, BH*t*), 1.93(s, 30H, Cp*), -3.47 (q, 2H, BH*t*); ¹³C NMR (100 MHz, CDCl₃, 22 °C): $\delta = 98.9$ (s, C_5Me_5), 10.9 (s, C_5Me_5).

2: $R_f = 0.30$ (7:3 Hexane/CH₂Cl₂); HRMS (ESI) calcd for $C_{20}H_{36}Ir_2B_6^+$ [M+H]⁺ m/z 729.2712, found m/z 729.2719; ¹¹B NMR (160 MHz, CDCl₃, 22 °C): $\delta = 73.1$ (d, $J_{B-H} = 149$ Hz, 4B), 51.8

(d, J_{B-H} = 116 Hz, 2B); ¹H NMR (400MHz, CDCl₃, 22 °C): δ = 9.09-8.24(m, 6H, BH*t*), 1.97 ppm (s, 30H, Cp*); ¹³C NMR (100 MHz, CDCl₃, 22 °C): δ = 101.9 (s, C_5Me_5), 11.3 ppm (s, C_5Me_5). **3**: R_f = 0.48 (7:3 Hexane/CH₂Cl₂); HRMS (ESI) calcd for C₂₀H₃₇Ir₂B₇⁺ [M]⁺ m/z 740.2805, found m/z 740.6362; ¹¹B NMR (160 MHz, CDCl₃, 22 °C): δ = 102.6 (d, J_{B-H} = 159 Hz, 1B), 63.2 (d, J_{B-H} = 144 Hz, 4B), -4.9 (d, J_{B-H} = 131 Hz, 2B); ¹H NMR (400 MHz, CDCl₃, 22 °C): δ = 16.98 (d, 2H, BH*t*), 9.78-8.99 (m, 5H,BH*t*), 1.927 (s, 30H, Cp*); ¹³C NMR (100 MHz, CDCl₃, 22 °C): δ = 98.4 (s, C_5Me_5), 8.6 ppm (s, C_5Me_5).

Scheme S1. Synthesis of compounds 1, 2 and 3.

Fig. S1.¹H NMR spectrum of 1

Fig. S2. $^{11}B{^{1}H}$ NMR spectrum of 1

Fig. S3. ¹¹B NMR spectrum of 1

Fig.S4. ${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC spectrum of 1

Fig. S9.¹¹B $\{^{1}H\}$ NMR spectrum of 3

Fig. S10. ¹¹B NMR spectrum of 3

I.3 X-ray analysis details

The crystal data of **1** and **3** were collected and integrated using a Bruker Axs kappa apex2 CCD diffractometer with graphite monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation. The crystal data for **2** was collected and integrated using Super Nova (Mo) X-ray Source, with graphite monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation at 293 K. The structures were solved by heavy atom methods using SHELXS-97 or SIR92 and refined using SHELXL-97.³ CCDC 1429317(**1**), 1429319 (**2**), 1429318(**3**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for 1: $C_{20}H_{36}B_6Ir_2$, $M_r = 725.75$, Monoclinic, $P2_{1/n}$, a = 9.1413(2)Å, b = 19.4335(7)Å, c = 28.6894(9)Å, $\beta = 98.9110(10)^\circ$, $V = 5035.1(3)Å^3$, Z = 8, $\rho_{calcd} = 1.915 \text{ mg/m}^3$, $\mu = 10.565 \text{ mm}^{-1}$, F(000) = 2720, $R_1 = 0.0437$, $wR_2 = 0.0858$, 8865 independent reflections $[20 \le 49.99^\circ]$ and 524 parameters.

Crystal data for **2**: $C_{20}H_{36}B_6Ir_2$, $M_r = 725.75$, Monoclinic, $P2_1/c$, a = 16.4805(14) Å, b = 19.9995(11) Å, c = 16.6991(14) Å, $\beta = 117.242(11)^\circ$, $V = 4893.5(8)Å^3$, Z = 8, $\rho_{calcd} = 1.970 \text{mg/m}^3$, $\mu = 10.870 \text{mm}^{-1}$, F(000) = 2720, $R_1 = 0.0831$, $wR_2 = 0.2211$, 8552 independent reflections $[20 \le 49.98^\circ]$ and 525 parameters.

Crystal data for **3**: $C_{20}H_{37}B_7Ir_2$, $M_r = 737.56$, Triclinic, *P-1*, a = 9.1768(2) Å, b = 9.2116(2)Å, c = 16.3496(4) Å, $\alpha = 99.3790(10)^\circ$, $\beta = 101.7600(10)^\circ$, $\gamma = 102.7410(10)^\circ$, V = 1288.09(5)Å³, Z = 2, $\rho_{calcd} = 1.902$ mg/m³, $\mu = 10.325$ mm⁻¹, F(000) = 692, $R_1 = 0.0330$, $wR_2 = 0.0860$, 4514 independent reflections [20 \leq 50.00°] and 353 parameters.

I.4 Computational details

Geometry optimizations without symmetry constraints were carried out using Gaussin09⁴ software suite. The calculations were performed using density functional theory at the BP86⁵ level in conjunction with def2-TZVP⁶ basis sets. The 60 core electrons of iridium were replaced by the quasi-relativistic effective core potential def2-ECP⁷ for iridium. To save computing time all the calculations were carried out with the Cp analogue model compounds, instead of Cp^{*}. The model compounds were fully optimized in gaseous state (no solvent effect). Stationary

points were characterized as minima by calculating the Hessian matrix analytically at the same level. Thermodynamic corrections and Kohn-Sham orbitals have been taken from these calculations. The NMR chemical shifts were calculated using the hybrid Becke-Lee-Yang-Parr (B3LYP) functional,⁸ using the BP86/def2-TZVP optimized geometries. Computation of the NMR shielding tensors employed gauge-including atomic orbitals (GIAOs),⁹⁻¹¹ using the implementation of Schreckenbach, Wolff, Ziegler, and co-workers.¹²⁻¹⁶ The ¹¹B NMR chemical shifts were calculated relative to B₂H₆ (B3LYP B shielding constant 84.23 ppm) and converted to the usual [BF3.OEt₂] scale using the experimental δ (¹¹B) value of B₂H₆, 16.6 ppm¹⁷ TMS (SiMe₄) was used as internal standard for the ¹H NMR chemical shift calculations. Bonding analysis was carried out using the NBO¹⁸⁻¹⁹ routine within the Gaussian09 package at the same level of theory. Wiberg bond indexes (WBI)²⁰ and NBO second order perturbation energy values on some selected bonds are obtained on natural bond orbital (NBO) analysis. Molecular orbital analyses were performed with the aid of Jimp 2,²¹ which employs Fenske-Hall²² calculations and visualization using MOPLOT.²³ Fenske-Hall calculations were carried out on the DFT optimized geometries of 1' and 2' (Cp analog). The minimal AO basis set calculations were transformed into a fragment basis set for 2 CpIr and $[B_6H_6]$ fragments.

II. Supplementary Data

	1'		2'		3'	
¹¹ B NMR	Exp. ^a	Cal.	Exp.	Cal.	Exp.	Cal.
B1	92.0	114.2	73.2	77.5	102.4	121.4
B2	92.0	114.2	51.9ª	8.0	-4.9	6.2
В3	-23.0	-12.6	51.9ª	104.2	-4.9	6.2
B4	64.6	64.6	51.9ª	8.0	63.2ª	106.9
В5	64.6	64.6	51.9ª	104.2	63.2 ^a	28.4
B6	-23.0	-12.6	73.2	76.6	63.2ª	106.9
B7	-	-	-	-	63.2 ^a	28.4

Table S1. DFT calculated and experimental NMR chemical shifts δ (ppm) 1'- 3'.

¹ H NMR						
B <u>H</u> t	-3.26, 11.64, 10.76	-2.98, 10.86, 9.97	8.82	8.45	17.10, 9.79	16.28,9.21

^aFluxional behavior

Table S2. DFT calculated energies of the HOMO and LUMO (eV), HOMO-LUMO gaps ($\Delta E = E_{LUMO} - E_{HOMO}$, eV), relative electronic energy (E_R , kcal/mol) and relative thermal energy (H_{R_c} kcal/mol) for 1'and 2'.

Molecule	E _{HOMO} (eV)	E _{LUMO} (eV)	E _{HOMO} -E _{LUMO} (eV)	E _R (kcal/mol)	H _{R,} (kcal/mol)
1'	-5.68	-2.93	2.75	0	0
(1') ²⁻	3.99	5.51	1.52	20.50	21.86
2'	-5.69	-3.16	2.53	0	0
(2') ²⁻	4.01	5.40	1.39	16.0	16.95
[B ₈ H ₈]	-7.81	-5.43	2.38	29.75	29.81
[B ₈ H ₈] ²⁻	7.57	4.17	3.40	0	0

Fig. S11. Selected molecular orbitals of 1' and 2', where (a) shows the HOMO of 1' and (b) shows the LUMO of 2'

Fig S12.Molecular orbital scheme resulting from Fenske-Hall calculation on 1'

Fig.S13. Molecular orbital scheme resulting from Fenske-Hall calculation on 2'

Fig. S14. Frontiermolecular orbitalsof 1'obtained from Fenske-Hall calculation

Fig. S15. Frontier molecular orbitals of 2' obtained from Fenske-Hall calculation

Cartesian coordinates of the optimized molecules along with their total energies (in hartrees) including zero point vibrational correction.

[B₈H₈]²⁻,T. E. = -203.555051

5	-0.316270000	-0.873130000	-0.920305000
5	-1.341809000	-0.587964000	0.557897000
5	-1.341809000	0.587963000	-0.557898000
5	-0.316270000	0.873130000	0.920305000
5	0.316270000	0.920306000	-0.873129000
5	0.316270000	-0.920305000	0.873130000
5	1.341809000	-0.557898000	-0.587963000
5	1.341809000	0.557898000	0.587963000
1	-0.615167000	-1.690954000	-1.780971000
1	2.263418000	-1.108022000	-1.166320000
1	2.263416000	1.108022000	1.166321000
1	-0.615167000	1.690954000	1.780970000
1	0.615167000	1.780972000	-1.690952000
1	-2.263417000	1.166320000	-1.108022000
1	-2.263417000	-1.166320000	1.108022000
1	0.615167000	-1.780973000	1.690951000

[B₈H₈],T. E. = -203.530104

5	-1.169598000	0.414484000	0.353138000
5	-0.283355000	-0.689522000	1.381771000
5	0.251106000	0.976452000	1.203541000
5	1.159404000	-0.323780000	0.464125000
5	0.378070000	1.112642000	-0.532498000
5	-0.367876000	-1.203345000	-0.284765000
5	-0.821544000	0.121010000	-1.332457000
5	0.853793000	-0.407940000	-1.252854000
1	-2.312509000	0.782538000	0.340374000
1	-1.535032000	0.250419000	-2.274272000
1	1.589913000	-0.738727000	-2.125513000
1	2.301270000	-0.682552000	0.560536000
1	0.745778000	2.244007000	-0.695821000
1	0.472283000	1.797894000	2.033685000
1	-0.527163000	-1.309588000	2.366099000
1	-0.734537000	-2.343995000	-0.205091000

1', T. E. = -748.927982

77	-1.682631000	0.010221000	0.000045000
77	1.682609000	0.009777000	-0.000348000
6	3.376825000	-1.266269000	0.831576000
5	-0.000111000	-0.788742000	0.955066000
1	-0.001845000	-1.655287000	1.786802000
6	-3.731396000	0.096796000	-1.106364000
6	3.349563000	-1.432624000	-0.596247000
6	-3.376912000	-1.266680000	-0.830986000
6	3.730469000	0.097410000	1.107149000
6	3.914993000	0.768611000	-0.140055000
6	3.672121000	-0.169425000	-1.192607000
6	-3.915477000	0.767914000	0.140962000
6	-3.348637000	-1.433051000	0.596780000
5	-0.000139000	-0.788212000	-0.956024000
1	0.001188000	-1.654488000	-1.788036000
5	-0.003288000	1.008222000	-1.247678000
1	-0.005533000	1.143663000	-2.443478000
5	0.003414000	1.007678000	1.247839000
1	0.005716000	1.142772000	2.443667000
6	-3.671427000	-0.170007000	1.193347000
5	0.843964000	1.941433000	-0.003715000
1	1.480232000	2.955860000	-0.004034000
5	-0.843726000	1.941626000	0.004206000
1	-1.479694000	2.956245000	0.005054000

1	4.163539000	1.818163000	-0.268084000
1	3.725048000	0.036741000	-2.258184000
1	3.830964000	0.541906000	2.093693000
1	3.192825000	-2.040378000	1.571176000
1	3.129222000	-2.352445000	-1.130878000
1	-3.192885000	-2.040656000	-1.570720000
1	-3.127338000	-2.352722000	1.131280000
1	-3.723743000	0.036113000	2.258960000
1	-4.164488000	1.817340000	0.269162000
1	-3.832773000	0.541230000	-2.092849000

2', T. E. = -748.926744

77	1.375689000	0.115076000	-0.031864000
77	-1.377458000	0.115877000	0.031432000
6	2.254720000	-1.985192000	-0.449361000
6	2.379414000	-1.751851000	0.962274000
6	-3.483964000	-0.272167000	-0.750354000
6	3.049318000	-1.008659000	-1.131396000
6	3.218906000	-0.613301000	1.148204000
6	-2.686141000	-1.356448000	-1.244496000
5	0.093273000	0.659032000	1.529372000
5	-0.094520000	0.656483000	-1.534058000
5	-1.044797000	1.924904000	1.009237000
6	-2.180667000	-2.079916000	-0.122392000
6	3.627839000	-0.139080000	-0.148259000
6	-3.486976000	-0.339439000	0.685960000

5	1.045242000	1.921468000	-1.015518000
5	0.638789000	2.155489000	0.722832000
6	-2.672104000	-1.458557000	1.073014000
5	-0.639754000	2.153923000	-0.731564000
1	-2.481933000	-1.571346000	-2.289437000
1	-4.011939000	0.461065000	-1.353910000
1	-4.023110000	0.327618000	1.354859000
1	-2.473805000	-1.784941000	2.090083000
1	-1.532949000	-2.951489000	-0.162901000
1	1.899971000	-2.325314000	1.750548000
1	1.685914000	-2.781464000	-0.920538000
1	3.161967000	-0.918351000	-2.208540000
1	4.288507000	0.700566000	-0.343839000
1	3.494417000	-0.170876000	2.101636000
1	-1.817072000	2.610085000	1.615159000
1	-1.346550000	3.027966000	-1.159175000
1	1.819653000	2.600397000	-1.625723000
1	1.347301000	3.028497000	1.149737000
1	-0.158781000	0.316215000	-2.684453000
1	0.171429000	0.319138000	2.679127000

3', T. E. = -774.390359

77	1.777563000	-0.033122000	-0.010335000
77	-1.777551000	-0.033074000	0.010288000
6	3.312320000	1.573758000	-0.676979000
6	3.789582000	0.290738000	-1.115655000
6	4.057246000	-0.501942000	0.042365000

6	3.716399000	0.274908000	1.199179000
6	3.282533000	1.568827000	0.749702000
6	-3.716551000	0.274701000	-1.199039000
6	-4.057232000	-0.501989000	-0.042074000
6	-3.789410000	0.290830000	1.115809000
6	-3.312253000	1.573799000	0.676912000
6	-3.282678000	1.568678000	-0.749783000
5	0.079540000	-0.263912000	1.386536000
5	0.707876000	-1.806880000	0.754804000
5	0.981432000	-1.637018000	-1.046450000
5	-0.079472000	-0.264031000	-1.386525000
1	-0.118976000	0.135388000	-2.520130000
5	-0.707978000	-1.806870000	-0.754703000
5	-0.981505000	-1.636877000	1.046595000
5	0.000003000	1.016676000	-0.000187000
1	0.119001000	0.135647000	2.520077000
1	-1.589936000	-2.426399000	1.710364000
1	0.000029000	2.221175000	-0.000084000
1	1.285266000	-2.709720000	1.296159000
1	-1.285273000	-2.709734000	-1.296122000
1	1.589766000	-2.426719000	-1.710097000
1	-4.415634000	-1.527816000	-0.045101000
1	-3.808589000	-0.045439000	-2.233090000
1	-2.958086000	2.388500000	-1.384891000
1	-3.027234000	2.401815000	1.320158000
1	-3.928125000	-0.018134000	2.148210000
1	4.415788000	-1.527720000	0.045582000
1	3.928435000	-0.018333000	-2.148003000
1	3.808261000	-0.045096000	2.233289000
1	3.027310000	2.401670000	-1.320367000
1	2.957885000	2.388741000	1.384658000

References

- 1 U. Koelle and J. Kossakowski, Inorg. Synth., 1992, 29, 225.
- 2 G. E. Ryschkewitsch and K. C. Nainan, *Inorg. Synth.*, 1974, **15**, 113.
- 3 (a) G. M. Sheldrick, SHELXS-97, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997; (c) A. Altornare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Cryst.*, 1993, 26, 343.
- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- 5 (a) H. L. Schmider and A. D. Becke, *J. Chem. Phys.*, 1998, **108**, 9624; (b) J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- 6 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297.
- 7 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta.*, 1990, **77**, 123.
- 8 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*,1988, **37**, 785; (c) A. D. Becke, *J. Chem. Phys.*,1993, **98**, 5648.
- 9 F. J. London, J. Phys. Radium, 1937, 27, 397.
- 10 R. Ditchfield, Mol. Phys., 1974, 27, 789.
- 11 K. Wolinski, J. F. Hinton and P. Pulay, J. Am. Chem. Soc., 1990, **112**, 8251.
- 12 G. Schreckenbach and T. Ziegler, J. Phys. Chem., 1995, 99, 606.
- 13 G. Schreckenbach and T. Ziegler, Int. J. Quantum Chem., 1997, 61, 899.
- 14 G. Schreckenbach and T. Ziegler, Int. J. Quantum Chem., 1996, 60, 753.

- 15 S. K. Wolff and T. Ziegler, J. Chem. Phys., 1998, 109, 895.
- 16 S. K. Wolff, T. Ziegler, E. van Lenthe and E. J. Baerends, J. Chem. Phys., 1999, 110, 7689.
- 17 T. P. Onak, H. L.Landesman, R. E. Williams and I.Shapiro, J. Phys. Chem., 1959, 63, 1533.
- 18 F. Weinhold and C. R. Landis, *Valency and bonding: A natural bond orbital donoracceptor perspective*, Cambridge University Press: Cambridge; U.K, 2005.
- 19 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899.
- 20 K. Wiberg, Tetrahedron, 1968, 24, 1083.
- 21 J. M. B. Manson, C. E. Webster and M. B. Hall, Jimp 2 Version 0.089, 2006, Department of Chemistry, Texas A&M University, College Station, TX 77842, (http://www.chem.tamu.edu/jimp2/).
- 22 (a) R. F. Fenske, *Pure Appl. Chem.*, 1988, **27**, 61; (b) M. B. Hall and R. F. Fenske, *Inorg. Chem.*, 1972, **11**, 768.
- 23 Version 2.0, June 1993; Lichtenberger, D. L. Department of Chemistry, University of Arizona, Tuscon, AZ 85721.