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Experimental section

Materials: CoO nanowires were synthesized according to previous report. In a 

typical procedure, 0.29 g of Co(NO3)2·6H2O and 0.24 g of urea were dissolved in 15 mL 

of H2O and 15 mL of ethanol to form a pink solution. The mixed solution was then 

placed in a 100-mL Teflon lined stainless steel autoclave. The autoclave was sealed and 

heated at 90℃ for 8 hours and allowed to cool to room temperature. The obtained 

precipitates were filtered, washed with deionized water for several times, and then 

annealed at 250℃ for 2h in N2 flow. Then, soaking the as-prepared powder in 1 M 

NaBH4 for solution for 1 h, then collected by centrifugation, washed with deionized 

water and dried in a vacuum oven at 80℃ for 12 h. The ceramic LATSP film (2.5×2.5 

cm2，150μm in thickness) was purchased from Ohara Inc., Japan. Commercialized Pt-

foil electrodes were used as received.  

Electrochemical Measurements: OER catalytic electrode was prepared by mixing 

80 wt % CoO nanowires, 10 wt % conductive agent (acetylene black) and 10 wt % poly 

(tetrafluoroethylene) (PTFE) binder in an isopropanol solution to form a homogeneous 

slurry, which was then rolled into a film. The film was cut into a square area of 0.4 

cm×0.4 cm (0.16 cm2), and then pressed onto a stainless steel mesh that was employed as 

current collector to form the OER catalytic electrode. Commercialized platinum-foil 
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electrode was used as the HER catalytic electrode directly. The onset potential of OER on 

CoO-nanowire-based electrode in 1 M KOH and the onset potential of HER on Pt-foil 

electrode in 0.5 M H2SO4 was investigated by linear sweep voltammetric measurements 

with a typical three-electrode method, in which a Pt plate and saturated calomel electrode 

(SCE, 0.242 V vs. standard hydrogen electrode) were used as the counter and reference 

electrodes, respectively. The base-acid hybrid electrolytic cell was fabricated by using 

CoO-nanowire-based electrode and Pt-foil electrode as OER and HER catalytic 

electrodes, respectively (see Fig. 4). A basic solution (1M KOH + 0.5M Li2SO4) and an 

acidic solution (0.5M H2SO4) were anodic electrolyte and cathodic electrolyte, 

respectively. The anodic electrolyte and cathodic electrolyte were separated by a ceramic 

LATSP film. Electrochemical performance of the base-acid hybrid electrolytic cell was 

probed by two-electrode method [CoO-nanowire-based electrode was used as work 

electrode; Pt-foil electrode was used as counter/reference electrode]. All of 

electrochemical measurements were performed with a CHI 660D electrochemistry 

workstation. 
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Figure S1. Potentials of oxygen-evolving reaction (OER) and hydrogen-evolving 

reaction (HER) in aqueous electrolyte solutions with different pH values. Red-

real-line: theoretical potential for HER; Blue-real-line: theoretical potential for OER; 

Red-broken-line: potential for HER (theoretical potential + over potential); Blue-

broken-line: potential for OER (theoretical potential + over potential).

As shown in Fig. S1, water electrolysis requires an applied voltage of at least 1.23 V 

to provide the thermodynamic driving force. Owing to the practical overpotentials 

associated with the reaction kinetics, however, a substantially larger voltage (1.8 ~ 2.0 V) 

is inevitably needed. If we combine the HER in an acid (i. e. 4H+ → 2H2－4e-) and the 

OER in a base (i. e. 4OH- → O2 + 2H2O + 4e-), a low driving voltage (~ 0.8 V) for water 

electrolysis would be achieved (see Fig. S1). It should be key reason for us to develop the 

base-acid hybrid water electrolysis. 
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Figure S2. Photograph of LATSP ceramic film. The water-stable lithium super-

ionic conductor ceramic film (LATSP, Li1+x+yAlxTi2-xSiyP3-yO12) with thickness of 

0.15 millimeter is the product of Ohara Inc., Japan. Its conductivity is 10-4 S cm-1. 

LATSP is a kind of ceramic solid electrolyte for lithium-ion batteries, and has been 

widely investigated on the study about all solid state lithium-ion batteries1-3.
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Figure S3. XRD pattern of LATSP ceramic film.  As shown in Fig. S3, LATSP 

has a typical NASICON structure. The NASICON structure consists of PO4-

tetrahedra and MO6-octahedra (M=Ti) linked by shared oxygen atoms4-7. There 

are two types of position of Li-ion localization that can be distinguished: M1 

positions, surrounded by six oxygen atoms; and M2 positions, surrounded by 

eight oxygen atoms. Hence, a system of three dimensional channels arises, where 

Li-ion transport realized by alternating of positions M1 and M24,5. Accordingly, 

the ceramic LATSP film can permit the pass of Li-ion with high diffusion rate.
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Figure S4. X-ray diffraction (XRD) pattern of CoO nanowires. The diffraction 

peaks in the spectrum corresponding with (111), (200), (220), (311), and (222) 

crystal facets from cubic CoO suggest that it has a good crystalline structure.
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Figure S5. SEM image (a) and TEM image (b) of CoO nanowires. SEM image 

shows that the CoO nanowires have a uniform size with diameter of about 100 nm. 

TEM image suggests that each nanowire is composed of a lot of small nanoparticles 

with multiple mesopores.
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Figure S6. Tafel plots of the base-acid hybrid electrolytic cell. As shown in Figure 

S6, this hybrid electrolytic system yields a Tafel slope of 99.9 mV/decade, indicating 

that the reaction rate is low.
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Figure S7. Photograph of the flexible solar cell purchased from Wuxi warmspace 

Tec. co, Ltd. 
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Figure S8. Output voltage of solar cell at different conditions. (a) Noontime with 

abundant sunshine radiation. (b) Afternoon with deficient sunshine radiation.   
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