Supplementary Information

A Fluorescent Molecular Capsule with a Flexible Polyaromatic Shell for Detecting Monoterpene Compounds in Water

Akira Suzuki, Kei Kondo, Yoshihisa Sei, Munetaka Akita, and Michito Yoshizawa*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan; *E-mail: yoshizawa.m.ac@m.titech.ac.jp

Contents

- Materials and methods
- Synthetic route of *cis,cis*-1a
- Synthesis of 9-(2,4-dimethoxyphenyl)anthracene ($\mathbf{5}_{\mathbf{H}}$; ¹H & ¹³C-NMR spectra)
- Synthesis of 9-(5-bromo-2,4-dimethoxyphenyl)anthracene (5_{Br}; ¹H & ¹³C-NMR spectra)
- Synthesis of $\mathbf{5}_{Bpin}$ (¹H & ¹³C-NMR spectra)
- Synthesis of **1b** (MALDI-TOF MS spectrum)
- Synthesis of 1c (¹H, ¹³C-NMR, HH-COSY & HSQC spectra)
- Synthesis of *trans,trans*-1c (¹H, ¹³C-NMR, HH-COSY & HSQC spectra)
- Synthesis of *cis,cis*-1c (¹H, ¹³C-NMR, HH-COSY & HSQC spectra)
- Synthesis of *cis,cis*-**1a** (¹H, ¹³C-NMR, HH-COSY, HSQC & ESI-TOF MS spectra)
- Formation of capsule 2 (¹H NMR, ESI-TOF MS, UV-vis & Fluorescence spectra; AFM & DLS analyses)
- Preparation of **2**•(**3a**)₂ (¹H, DOSY, and NOESY NMR spectra & Fluorescence data)
- Preparation of **2**•(**3b**-c)₂ (¹H NMR spectra & Fluorescence data)
- Preparation of $2 \cdot (4e)_n$ (¹H and DOSY NMR spectra)
- Detection of natural fragrance compounds **4a-1** by capsule **2** (Fluorescence data)

Materials and methods

NMR: Bruker AVANCE-400 (400 MHz) & AVANCE-500 (500 MHz), MALDI-TOF MS: Shimadzu AXIMA-CFR Plus, ESI-TOF MS: Bruker micrOTOF II, AFM: Asylum Research Cypher S, Size Analysis (DLS): Wyatt Technology DynaPro NanoStar, FT IR: JASCO FT/IR-4200, UV-vis: JASCO V-670DS, Fluorescence: HITACHI F-7000, Absolute PL quantum yield: Hamamatsu Quantaurus-QY C11347-01, Elemental analysis: LECO CHNS-932 VTF-900.

Solvents and reagents: TCI Co., Ltd., WAKO Pure Chemical Industries Ltd., Kanto Chemical Co., Inc., Sigma-Aldrich Co., and Cambridge Isotope Laboratories, Inc.

References

- [1] N. Kishi, Z. Li, K. Yoza, M. Akita, M. Yoshizawa, J. Am. Chem. Soc. 2011, 133, 11438–11441.
- [2] A. Suzuki, K. Kondo, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2013, 52, 8120–8123.

Scheme S1. Synthetic route of *cis,cis*-1a.

9-Bromoanthracene (14.221 g, 55.307 mmol) and dry THF (200 mL) were added to a 2-necked 500 mL glass flask filled with N₂. A hexane solution (2.6 M) of *n*-butyllithium (21.0 mL, 54.6 mmol) was then added dropwise to this flask at -80 °C under N₂. After the mixture was stirred at -80 °C for 2 h, a dry THF solution (100 mL) of ZnCl₂ (10.630 g, 78.001 mmol) was added to the solution. The resultant mixture was further stirred at -80 °C and then the solution was warmed to r.t. for 17 h to obtain 9-anthrylzinc chloride. 1-Bromo-2,4-dimethoxybenzene (8.129 g, 37.45 mmol), PdCl₂(PhCN)₂ (0.141 g, 0.370 mmol), and dry THF (50 mL) were added to a 100 mL glass flask and the flask was filled with N₂. A hexane solution (1.1 M) of tri-*tert*-butylphosphine (0.72 mL, 0.79 mmol) was added to this flask. After stirring at r.t. for 2 h, the mixture was added to the solution and then the precipitate was collected and washed with CHCl₃ and hexane to afford 9-(2,4-dimethoxy phenyl)anthracene (**5**_H; 10.338 g, 32.884 mmol, 87%) as a white solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 3.59 (s, 3H), 3.95 (s, 3H), 6.69-6.72 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.31-7.35 (m, 2H), 7.41-7.45 (m, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 8.02 (d, *J* = 8.4 Hz, 2H), 8.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 55.5 (CH₃), 55.7 (CH₃), 99.1 (CH), 104.7 (CH), 119.9 (C_q), 125.0 (CH), 125.1 (CH), 126.4 (CH), 126.9 (CH), 128.4 (CH), 130.8 (C_q), 131.6 (C_q), 133.2 (CH), 133.7 (C_q), 159.1 (C_q), 160.9 (C_q). FT-IR (KBr, cm⁻¹): 3050, 3014, 2933, 2836, 2360, 1610, 1508, 1306, 1209, 1157, 1121, 1043, 901, 829, 736. MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₂₂H₁₈O₂: 314.38, Found 314.08 [M]⁺. E.A.: Calcd. for C₂₂H₁₈O₂•0.45CHCl₃: C, 73.25; H, 5.05. Found: C, 73.20; H, 5.13.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃, r.t.) of $\mathbf{5}_{H}$.

Synthesis of 9-(5-bromo-2,4-dimethoxyphenyl)anthracene (5_{Br}) AS266

9-(2,4-Dimethoxyphenyl)anthracene ($\mathbf{5}_{H}$; 8.005 g, 25.46 mmol) and THF (100 mL) were added to a 200 mL glass flask. A THF solution (50 mL) of 1,3-dibromo-5,5-dimethylhydantoin (DBH; 3.626 g, 12.68 mmol) was added to the solution at 0 °C and the resultant mixture was stirred at r.t. for 1 d. H₂O was added into the mixture. The precipitate was collected and washed with H₂O and CH₃OH to afford 9-(5-bromo-2,4-dimethoxyphenyl)anthracene ($\mathbf{5}_{Br}$; 6.130 g, 15.59 mmol, 61%) as a white solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 3.61 (s, 3H), 4.06 (s, 3H), 6.73 (s, 1H), 7.34-7.38 (m, 2H), 7.43-7.46 (m, 3H), 7.61 (d, 2H, *J* = 8.8 Hz), 8.03 (d, 2H, *J* = 8.8 Hz), 8.48 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 56.2 (CH₃), 56.5 (CH₃), 97.3 (CH), 102.3 (C_q), 121.1 (C_q), 125.1 (CH), 125.5 (CH), 126.5 (CH), 126.9 (CH), 128.5 (CH), 130.7 (C_q), 131.5 (C_q), 132.0 (C_q), 136.3 (CH), 156.7 (C_q), 158.5 (C_q). FT-IR (KBr, cm⁻¹): 3055, 2999, 2962, 2940, 2842, 2359, 1598, 1504, 1350, 1292, 1208, 1033, 889, 738, 526. MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₂₂H₁₇O₂Br: 392.04, Found 391.82 [M]⁺. HR MS (ESI): Calcd. For C₂₂H₁₇BrO₂ 392.0406, Found 392.0405 [M]⁺.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃, r.t.) of 5_{Br}.

9-(5-Bromo-2,4-dimethoxyphenyl)anthracene ($\mathbf{5}_{Br}$; 6.004 g, 15.27 mmol) and dry THF (400 mL) were added to a 500 mL glass flask. A hexane solution (2.6 M) of *n*-butyllithium (5.9 mL, 15 mmol) was added dropwise to this flask at -78 °C under N₂. The reaction mixture was stirred at -78 °C for 2 h and then trimethoxyborane (2.4 mL, 21 mmol) was slowly added to the mixture at same temperature. When the reaction mixture was warmed to r.t. for 1 d, pinacol (3.623 g, 30.66 mmol) and acetic acid (7.0 mL, 0.12 mol) were added to the reaction mixture and then the resultant mixture was stirred for 13 h at r.t. After the evaporation of the solvents, the crude product was washed with water, methanol, and hexane to afford $\mathbf{5}_{Bpin}$ (4.961 g, 11.27 mmol, 74%) as a white solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 1.30 (s, 12H), 3.63 (s, 3H), 4.00 (s, 3H), 6.66 (s, 1H), 7.30-7.34 (m, 2H), 7.41-7.44 (m, 2H), 7.55 (s, 1H), 7.63 (d, *J* = 8.8 Hz, 2H), 8.02 (d, *J* = 8.4 Hz, 2H), 8.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, r.t.): δ 24.8 (CH₃), 55.7 (CH₃), 56.3 (CH₃), 83.2 (C_q), 95.4 (CH), 119.1 (C_q), 124.9 (CH), 125.0 (CH), 126.3 (CH), 127.1 (CH), 128.3 (CH), 130.9 (C_q), 131.5 (C_q), 133.8 (C_q), 141.0 (CH), 161.7 (C_q), 166.3 (C_q). FT-IR (KBr, cm⁻¹): 2978, 2359, 1602, 1574, 1397, 1352, 1335, 1306, 1255, 1207, 1146, 1132, 1032, 862, 740. MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₂₈H₂₉O₄B: 440.22, Found 439.98 [M]⁺. HR MS (ESI): Calcd. For C₂₈H₂₉BO₄Na 463.2056, Found 463.2058 [M+Na]⁺.

Synthesis of anthracene tetramer 1b

1,5-Di(10-bromoanthracen-9-yl)-2,4-dimethoxybenzene (0.735 g, 1.13 mmol), 5_{Bpin} (2.001 g, 4.543 mmol), K_3PO_4 (2.414 g, 11.37 mmol), and dry DMF (80 mL) were added to a 2-necked 200 mL glass flask filled with N₂. The DMF solution (40 mL) of Pd(PPh₃)₄ (0.276 g, 0.239 mmol) was added to the 200 mL flask and then the reaction mixture was stirred at 90 °C for 2 d. After water was added to the reaction mixture, the precipitate was collected by filtration. The residue was washed with CH₃OH, THF, and hexane to afford anthracene tetramer **1b** (0.701 g, 0.628 mmol, 55%) as a white solid. Product **1b** was characterized only by MALDI-TOF MS analysis due to the low solubility in various organic solvents.

MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₈₀H₅₈O₆: 1114.42, Found 1114.98 [M]⁺. FT-IR (KBr, cm⁻¹): 3058, 2937, 2838, 2360, 1604, 1504, 1463, 1350, 1267, 1205, 1160, 1097, 1033, 770, 736.

Figure S7. MALDI-TOF MS spectrum (dithranol) of 1b.

Anthracene tetramer **1b** (1.007 g, 0.9031 mmol) and dry CH_2Cl_2 (200 mL) were added to a 300 mL glass flask. A CH_2Cl_2 solution (1.0 M) of BBr₃ (28.0 mL, 28.0 mmol) was added dropwise to this flask under N₂. The reaction mixture was stirred at 45 °C for 2 d. The reaction was quenched with H₂O (ca. 50 mL). The product was extracted with CH_2Cl_2 and the resultant organic layer was dried over MgSO₄, filtered, and concentrated. The crude product was washed with acetone and hexane to afford an isomeric mixture of anthracene tetramer **1c** (0.821 g, 0.796 mmol, 88%) as a pale yellow solid. ¹H NMR spectrum of the products revealed that the presence of *cis,cis*-**1c**, *cis,trans*-**1c**, and *trans,trans*-**1c** is a 1:2:2 ratio.

¹H NMR (500 MHz, CDCl₃, r.t.): δ 4.67-5.01 (m, 6H), 6.97, 7.02 and 7.18 (s, 2H), 7.00,

7.04 and 7.05 (s, 1H), 7.12, 7.24, 7.27 and 7.33 (s, 2H), 7.13, 7.23 and 7.27 (s, 1H), 7.44-7.57 (m, 16H), 7.93-8.10 (m, 16H), 8.48, 8.53, 8.55 and 8.57 (s, 2H).

¹³C NMR (125 MHz, CDCl₃, r.t.): δ 103.0(C_q), 103.1(C_q), 103.2 (C_q), 116.7 (C_q × 2), 116.8 (C_q), 116.9 (C_q × 2), 117.0 (C_q × 2), 125.3 (CH), 125.5 (CH × 2), 126.0 (CH × 2), 126.5 (CH × 3), 126.6 (CH × 2), 126.7 (CH), 128.1 (CH), 128.2 (CH), 128.7 (CH), 128.8 (CH), 129.0 (C_q × 2), 129.1 (C_q), 130.8 (C_q), 131.0 (C_q × 2), 131.1 (C_q), 131.2 (C_q), 131.3 (C_q × 3), 131.6 (C_q × 3), 131.7 (C_q), 135.4 (C_q), 135.5 (C_q), 155.2 (C_q × 3), 155.3 (C_q × 3), 155.4 (C_q). FT-IR (KBr, cm⁻¹): 3060, 2360, 1622, 1502, 1441, 1356, 1267, 1222, 1166, 1083, 885, 848, 772, 738, 609. MALDI-TOF MS (dithranol): *m/z* Calcd. for C₇₄H₄₆O₆: 1030.33, Found 1030.21 [M]⁺. HR MS (ESI): Calcd. for C₇₄H₄₆O₆K 1069.2926, Found 1069.2926 [M+K]⁺.

Figure S8. ¹H NMR (500 MHz, CDCl₃, r.t.) spectrum of **1c** (isomeric mixture).

155 150 145 140 135 130 125 120 115 110 105 ppm

Figure S9. ¹³C NMR (125 MHz, CDCl₃, r.t.) spectrum of 1c (isomeric mixture).

Figure S10. ¹H-¹H COSY (500 MHz, CDCl₃, r.t.) spectrum of **1c** (isomeric mixture).

Figure S11a. HSQC (400 MHz, CDCl₃, r.t.) spectrum of 1c (isomeric mixture).

Figure S11b. HSQC (400 MHz, CDCl₃, r.t.) spectrum of 1c (isomeric mixture).

Anthracene tetramer **1b** (0.701 g, 0.628 mmol) and dry CH_2Cl_2 (30 mL) were added to a 200 mL glass flask. A CH_2Cl_2 solution (1.0 M) of BBr₃ (19.0 mL, 19.0 mmol) was added dropwise to this flask at 0 °C under N₂. The reaction mixture was stirred at 45 °C for 1 d. The reaction was quenched with H₂O (40 mL). The product was extracted with CH_2Cl_2 and the resultant organic layer was dried over MgSO₄, filtered, and concentrated. The crude product was washed with CH_3OH and hexane to afford a pure *trans-trans* isomer of anthracene tetramer **1c** (0.352 g, 0.341 mmol, 54%) as a pale yellow solid.

¹H NMR (400 MHz, DMSO- d_6 , r.t.): δ 6.88-6.95 (m, 6H), 7.50 (br, 16H), 7.96 (br, 12H), 8.10 (br, 4H), 8.58 (s, 2H), 9.32 (s, 2H), 9.37 (s, 2H), 9.43 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6 , r.t.): δ 103.1 (CH × 2), 115.4 (C_q), 115.7 (C_q), 115.8 (C_q), 124.8 (CH), 125.0 (CH), 125.2 (C_q), 125.7 (CH), 126.6 (C_q), 126.8 (CH), 128.2 (CH), 130.2 (C_q), 130.3 (C_q), 131.1 (C_q), 133.4 (C_q), 134.0 (C_q), 135.6 (CH × 2), 156.1 (C_q), 156.2 (C_q), 156.3 (C_q). MALDI-TOF MS (dithranol): *m*/*z* Calcd. for C₇₄H₄₆O₆: 1030.33, Found 1029.99 [M]⁺.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃, r.t.) of *trans,trans*-1c.

Figure 16a. HSQC spectrum (400 MHz, DMSO- d_6 , r.t.) of *trans,trans*-1c.

Synthesis of anthracene tetramer *cis*, *cis*-1c

An isomeric mixture of anthracene tetramer 1c (0.102 g, 98.5 μ mol), NaOH (0.298 g, 7.45 mmol), and degassed H₂O (15 mL) were added to a 2-necked 50 mL glass flask filled with N₂. The resultant mixture was stirred at 70 °C for 1 d. ¹H NMR analysis of the aliquot revealed that the thermodynamic equilibrium ratio of *cis,cis*-1c, *cis,trans*-1c, and *trans,trans*-1c is 1:0:0. The aqueous solution was neutralized with HClaq. (ca. 2 mL) and then the products were extracted by CHCl₃. The resultant organic layer was dried over MgSO₄, filtered, and concentrated. The crude product was washed with hexane to afford a pure *cis,cis* isomer of anthracene tetramer 1c (89 mg, 86 µmol, 87%) as a gray solid.

¹H NMR (400 MHz, CDCl₃, r.t.): δ 4.75 (s, 2H), 4.92 (s, 2H), 4.96 (s, 2H), 7.01 (s, 2H), 7.05 (s, 1H), 7.11 (s, 2H), 7.13 (s, 1H), 7.42-7.53 (m, 16H), 7.92-8.05 (m, 16H), 8.48 (s, 2H). ¹³C NMR (125 MHz, CDCl₃, r.t.): δ 103.2(CH), 103.4(CH), 116.9 (C_q), 117.1 (C_q × 2), 125.6 (CH), 126.1 (CH), 126.6 (CH × 2), 126.7 (CH), 126.8 (C_q), 128.2 (CH), 128.8 (CH), 129.1 (C_q), 131.1 (C_q), 131.3 (C_q), 131.4 (C_q × 2), 131.7 (C_q), 135.6 (CH), 135.7 (CH), 155.3 (C_q), 155.4 (C_q), 155.5 (C_q).

Figure S18. ¹³C NMR (125 MHz, CDCl₃, r.t.) spectrum of *cis,cis*-1c.

Figure S19. 1 H- 1 H COSY spectrum (400 MHz, CDCl₃, r.t.) of *cis,cis*-1c.

Figure S20. HSQC spectrum (400 MHz, CDCl₃, r.t.) of *cis,cis*-1c.

Identification code	AS257	
Empirical formula	C78 H40 O11	
Formula weight	1153.10	
Temperature	90 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 17.323(3) Å	$\alpha = 90^{\circ}$
	b = 22.428(4) Å	$\beta = 95.051(3)^{\circ}$
	c = 15.591(3) Å	$\gamma = 90^{\circ}$
Volume	6033.8(17) Å ³	
Z	4	
Density (calculated)	1.269 Mg/m^3	
Absorption coefficient	0.085 mm ⁻¹	
F(000)	2384	
Crystal size	0.35 x 0.14 x 0.09 mm ³	
Theta range for data collection	1.489 to 20.469°.	
Index ranges	-17 < h < 16, -22 < k < 19, -15 < l < 15	
Reflections collected	18523	
Independent reflections	5991 [R(int) = 0.0926]	
Completeness to theta = 25.03°	99.6 %	
Absorption correction	Empirical	
Max. and min. transmission	0.971 and 0.992	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5991 / 1371 / 802	
Goodness-of-fit on F2	0.945	
Final R indices [I>2sigma(I)]	$R_1 = 0.0806, wR_2 = 0.2219$	
R indices (all data)	$R_1 = 0.1437, wR_2 = 0.2691$	
Largest diff. peak and hole	0.613 and $-0.649 \text{ e.}\text{\AA}^{-3}$	

 Table S1. Crystal data and structure refinement for *cis,cis*-1c.

The supplementary crystallographic data (CCDC 985689) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.

Figure S21. ORTEP drawing of *cis,cis*-1c.

Figure S22. CPK representation of the crystal structure of *cis,cis*-1c.

Figure S23. ¹H NMR spectra (400 MHz, r.t.) of **1c** (isomeric mixture) in (a) $CDCl_3$ and (b) NaOD/D₂O after heating at 70 °C for 1 d.

Synthesis of anthracene tetramer *cis,cis*-1a

AS257

An isomeric mixture of **1c** (0.151 g, 0.146 mmol), NaOH (0.318 g, 7.95 mmol), and H₂O (15 mL) were added to a 2-necked 50 mL glass flask filled with N₂. The resultant mixture was stirred at 70 °C for 21 h. A THF solution (20 mL) of 1,3-propanesultone (0.554 g, 4.53 mmol) was added to the reaction mixture and then the solution was further stirred at 70 °C for 2 d. After the evaporation of the resultant solution, the crude product was dissolved in water (1.0 mL). When 1-propanol (10 mL) was added to the aqueous solution, yellow precipitate was generated. The precipitate was collected by centrifugation and dried under vacuum and then pure *cis,cis*-**1a** (0.232 g, 0.122 mmol, 84%) was obtained as a yellow solid.^[1]

¹H NMR (400 MHz, CD₃OD, r.t.): δ 1.83-1.87 (m, 4H), 2.01-2.06 (m, 8H), 2.28-2.31 (m, 4H), 2.61-2.66 (m, 8H), 4.18 (t, 4H, *J* = 6.0 Hz), 4.26-4.31 (m, 8H), 6.93 (s, 2H), 6.96 (s, 1H), 7.22 (s, 2H), 7.28 (s, 1H), 7.34-7.44 (m, 16H), 7.81-7.96 (m, 16H), 8.37 (s, 2H). ¹³C NMR (125 MHz, CD₃OD, r.t.): δ 25.9 (CH₂), 26.0 (CH₂), 26.1 (CH₂), 49.1-49.7 (CH₂ × 3), 68.4 (CH₂), 68.5 (CH₂), 68.6 (CH₂), 99.8 (CH × 2), 120.6 (C_q), 121.0 (C_q), 121.2 (C_q), 126.0 (CH × 4), 126.3 (C_q), 127.3 (CH), 127.7 (CH), 128.0 (CH), 128.1 (CH), 129.4 (CH), 131.8 (C_q × 2), 132.0 (C_q), 132.9 (C_q), 134.5 (C_q), 134.6 (C_q × 2), 137.5 (CH × 2), 159.4 (C_q), 159.5 (C_q). ¹H DOSY NMR (400 MHz, CD₃OD, 1.0 mM, 300 K): *D* = 6.17 x 10⁻¹⁰ m² s⁻¹. FT-IR (KBr, cm⁻¹): 3087, 2974, 2947, 2887, 2359, 1631, 1503, 1470, 1441, 1350, 1193, 1046, 737, 608, 528. ESI-TOF MS (CH₃OH): *m/z* 450.7 [M–4Na⁺]⁴⁻, 608.7 [M–3Na⁺]³⁻, 924.5 [M–2Na⁺]²⁻.

Figure S27b. HSQC spectrum (400 MHz, CD₃OD, r.t.) of *cis,cis*-1a.

Figure S28. ESI-TOF MS spectrum (CH₃OH) of *cis,cis*-1a.

Compound cis,cis-1a (19.1 mg, 10.1 µmol) was dissolved in water (1.0 mL) and then the solution was stirred at r.t. for 1 min. The formation of molecular capsule 2 was confirmed by NMR, ESI-TOF MS, DLS, and AFM analyses.

Figure S29. ESI-TOF MS spectrum (H₂O) of capsule 2.

Figure S30. ¹H NMR spectra (400 MHz, r.t., TMS as an external standard) of *cis,cis*-**1a** (1 mM) in (a) CD_3OD , (b) $CD_3OD/D_2O = 4:6$ (v/v), and (c) D_2O .

Figure S31. (a) AFM image of capsule **2** on mica and (b) the height profile of selected features of **2**. (c) Size and number (*N*) distribution of the AFM image of **2**.

Figure S32. Particle size distribution of capsule 2 by DLS analysis (H₂O, r.t., 1.0-10.0 mM based on *cis,cis*-1a).

Figure S33. (a) UV-vis spectra and (b) fluorescence spectra ($\lambda_{ex} = 370 \text{ nm}, \text{ r.t.}$) of *cis,cis*-1a in CH₃OH and capsule 2 in H₂O (1.0 mM based on *cis,cis*-1a). Absolute fluorescence quantum yields are given in brackets.

An excess amount of 1-acetyladamantane (**3a**; 1.3 mg, 7.0 μ mol) was added to a H₂O solution (0.7 mL) of capsule **2** (1.3 mg, 0.70 μ mol based on *cis,cis*-**1a**) in a test tube. The suspended mixture was stirred at r.t. for 1 h. The resultant solution was centrifuged and filtered by a membrane filter (0.20 μ m) to give a solution of **2**•(**3a**)₂. The formation of **2**•(**3a**)₂ was confirmed by ¹H NMR, DOSY NMR, and fluorescence analyses.

Figure S34a. ¹H NMR spectra (400 MHz, D_2O , r.t.) of (a) **2**•(**3a**)₂ and (b) 1-acetyladamantane (**3a**). The gray circles and squares indicate the aromatic moieties and hydrophilic chains of **2**, respectively.

Figure S34b. DOSY NMR spectrum (400 MHz, D_2O , r.t.) of **2**•(**3a**)₂. The gray circles and squares indicate the aromatic moieties and hydrophilic chains of **2**, respectively.

Figure S34c. NOESY NMR spectrum (400 MHz, D_2O , r.t.) of $2 \cdot (3a)_2$. The gray circles and squares indicate the aromatic moieties and hydrophilic chains of 2, respectively.

Figure S35. (a) Fluorescence spectra (H₂O, r.t., $\lambda_{ex} = 370$ nm) and (b) Job's plot for **3a** with *cis,cis*-**1a**.

An excess amount of methyl 1-adamantane carboxylate (**3b**; 1.4 mg, 6.9 μ mol) was added to a H₂O solution (0.7 mL) of capsule **2** (1.3 mg, 0.70 μ mol based on *cis,cis*-**1a**) in a test tube. The suspended mixture was stirred at r.t. for 1 h. The resultant solution was centrifuged and filtered by a membrane filter (0.20 μ m) to give a solution of **2**•(**3b**)₂. The fluorescence properties of **2**•(**3b**)₂ were analyzed by optical spectrometers. The host-guest composition of **2**•(**3b**)₂ was confirmed by the ¹H NMR spectrum in DMSO-*d*₆ after vacuum freeze-drying.

Figure S36. ¹H NMR spectra (400 MHz, DMSO- d_6 , r.t.) of **2**•(**3b**)₂.

An excess amount of methyl 1-diamantanol (3c; 1.5 mg, 7.1 µmol) was added to a H₂O solution (0.7 mL) of capsule 2 (1.3 mg, 0.70 µmol based on *cis,cis*-1a) in a test tube. The suspended mixture was stirred at r.t. for 1 h. The resultant solution was centrifuged and filtered by a membrane filter (0.20 µm) to give a solution of $2 \cdot (3c)_2$. The fluorescence properties of $2 \cdot (3c)_2$ were analyzed by optical spectrometers. The host-guest composition of $2 \cdot (3c)_2$ was confirmed by the ¹H NMR spectrum in DMSO- d_6 after vacuum freeze-drying.

Figure S37. ¹H NMR spectra (400 MHz, DMSO- d_6 , r.t.) of $2 \cdot (3c)_2$.

Figure S38. (a) Quantum yield (Φ_F) and (b) CIE chromaticity (x and y values) of **2**•(**3a**-c)₂ (H₂O, 1.0 mM based on **1a**, r.t., $\lambda_{ex} = 370$ nm).

Figure S39. Cavity volumes (blue mesh) of (a) 2 and (b) $2 \cdot (3a)_2$ based on the optimized structure.

Detection of natural fragrance compounds 4a-l by capsule 2

AS561, 562, 563, 564, 566, 567, 569

An excess amount of (–)-menthone (4a; 1.1 mg, 7.3 µmol) was added to a H₂O solution (0.7 mL) of capsule 2 (1.3 mg, 0.70 µmol based on *cis,cis*-1a) in a test tube. The suspended mixture was stirred at r.t. for 1 h. The resultant solution was centrifuged and filtered by a membrane filter (0.20 µm) to give a solution of $2 \cdot (4a)_n$. The fluorescent properties of the host-guest complex were analyzed by optical spectrometers. Host-guest composites $2 \cdot (4b-1)_n$ were also prepared and analyzed by the same procedures. The experiments were conducted at least three times for each sample and the average values of Φ_F , x, and y were used. The error bars denote the standard deviation.

Figure S40a. ¹H NMR spectra (400 MHz, D_2O , r.t.) of (a) **2**•(**4e**)_{*n*} and (b) (+)-campbor (**4e**). The gray circles and squares indicate the aromatic moieties and hydrophilic chains of **2**, respectively.

Figure S40b. DOSY NMR spectrum (400 MHz, D_2O , r.t.) of **2**•(**4e**)_{*n*}. The gray circles and squares indicate the aromatic moieties and hydrophilic chains of **2**, respectively.

Figure S41. Fluorescence spectra (H₂O, 1.0 mM based on 1a, r.t., $\lambda_{ex} = 370$ nm) of the host-guest complexes $2 \cdot (4a-l)_n$.

Figure S42. Quantum yields (Φ_F) of 2•(4a-l)_n (H₂O, 1.0 mM based on 1a, r.t., $\lambda_{ex} = 370$ nm).

Figure S43. CIE chromaticity (x and y values) of $2 \cdot (4a-l)_n$ (H₂O, 1.0 mM based on 1a, r.t., $\lambda_{ex} = 370$ nm).