Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

S 1

Stabilization of a Two-Coordinate, Acyclic Diaminosilylene (ADASi):

Completion of the Series of Isolable Diaminotetrylenes, :E(NR₂)₂ (E = Group 14

Element)

Terrance J. Hadlington,^a Joseph A. B. Abdalla,^b Rémi Tirfoin,^b Simon Aldridge,^{*,b} Cameron

Jones*,a

^a School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.

^bInorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

Electronic Supplementary Information (21 pages)

Contents	1. Experimental	S2
	2. X-Ray Crystallography	S8
	3. Computational studies	S13
	4. References	S21

1. Experimental

General considerations.

All manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of high purity dinitrogen. Diethyl ether was distilled over Na/K alloy (25:75), while THF, hexane, toluene and benzene were distilled over molten potassium. ¹H, ¹³C{¹H}, ²⁹Si{¹H} and ¹¹B{¹H} NMR spectra were recorded on either Bruker DPX300, Bruker AvanceIII 400 or Varian Inova 500 spectrometers and were referenced to the resonances of the solvent used, external SiMe₄, or external BF₃.OEt₂. Mass spectra were collected using an Agilent Technologies 5975D inert MSD with a solid state probe. FTIR spectra were collected for solid samples on an Agilent Cary 630 attenuated total reflectance (ATR) spectrometer. Microanalyses were carried out at the Science Centre, London Metropolitan University. Melting points were determined in sealed glass capillaries under dinitrogen, and are uncorrected. (DAB)BBr,¹ SiCl₂(IPr)² and benzyl potassium³ were prepared by literature procedures. All other reagents were used as received.

(DAB)BNH₂. Route (a): THF (100 mL) was added to a mixture of (DAB)BBr (20.0 g, 43.0 mmol) and LiNH₂ (1.2 g, 51.6 mmol) at ambient temperature. The mixture was then heated at 55 °C for 18 h, after which time all volatiles were removed *in vacuo*. The solid residue was extracted into hot hexane (100 mL), and the resulting suspension filtered through a Celite pad in the air. The filtrate was stored at -30 °C for 16 h to yield a large crop of the title compound as a colourless crystalline solid (12.0 g, 70 %). Evaporation of the mother liquor to dryness, followed by washing of the residue with cold hexane (10 mL), yielded a further 2.5 g of solid product, that was essentially pure, as determined by a ¹H NMR spectroscopic analysis (combined yield 14.5 g, 84%).

Route (b): A solution of (DAB)BBr (10 g, 21.5 mmol) in hexane (75 mL) at ambient temperature was rapidly stirred under a flow of dry NH₃, which immediately led to the formation of a white precipitate of NH₄Br. After 20 min the reaction vessel was sealed, and the mixture stirred for a further 4 h. The suspension was subsequently warmed to ~ 60 °C and filtered. Removal of all volatiles from the filtrate *in vacuo* led to the isolation of essentially pure (DAB)BNH₂ as a colorless solid (6.5 g, 75 %). M.p. 76-80 °C; ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = 1.19$ (br s, 2H, BN*H*₂), 1.25 (d, ³J_{HH} = 7.6 Hz, 12H, CH(CH₃)₂), 1.27 (d, ³J_{HH} = 7.6 Hz, 12H, CH(CH₃)₂), 3.37 (sept, ³J_{HH} = 7.6 Hz, 4H, C*H*(CH₃)₂), 5.94 (s, 2H, NC*H*), 7.17-7.21 (m, 6H, Ar-*H*); ¹³C {¹H} NMR (C₆D₆, 75.5 MHz, 298 K), $\delta = 24.3$ (CH(*C*H₃)₂), 24.4 (CH(*C*H₃)₂), 28.6 (*C*H(CH₃)₂), 116.9 (N*C*H), 123.9, 127.6, 138.7, 147.6 (Ar-*C*); ¹¹B {¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 22.9$; IR, v/cm⁻¹ (ATR): 3410 (m, NH₂), 2959 (s), 1592 (m), 1360 (m), 1276 (m), 1177 (m), 1118 (s), 1056 (m), 934 (w),

804 (s), 732 (m); MS/EI *m/z* (%): 404.2 (MH⁺, 100); acc. mass calcd. for C₂₆H₃₉BN₃ (MH⁺): 404.3237; found: 404.3240.

TBoNH. To a solution of (DAB)BNH₂ (10.0 g, 24.9 mmol) in diethyl ether (100 mL) at -80 °C was added LiBu^{*n*} (16.3 mL, 1.6 M in hexane, 26.1 mmol) over the course of 5 min. The reaction mixture was subsequently warmed to room temperature and stirred for 1 h. The reaction mixture was then cooled to 0 °C and quenched with SiMe₃Cl (3.32 mL, 26.1 mmol). The resultant suspension was filtered, and all volatiles removed from the filtrate *in vacuo* to yield TBoNH as an oil. This was shown to have a purity of > 97% by ¹H NMR spectroscopy. The oil was used without further purification (10.9 g, 92%); ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = -0.29$ (s, 9H, Si(CH₃)₃), 1.23 (d, ³J_{HH} = 7.6 Hz, 12H, CH(CH₃)₂), 1.34 (d, ³J_{HH} = 7.6 Hz, 12H, CH(CH₃)₂), 3.42 (sept, ³J_{HH} = 7.6 Hz, 4H, CH(CH₃)₂), 6.01 (s, 2H, NCH), 7.15-7.31 (m, 6H, Ar-*H*); ¹³C {¹H} NMR (C₆D₆, 75.5 MHz, 298 K), $\delta = 1.8$ (Si(CH₃)₃), 23.8 (CH(CH₃)₂), 25.2 (CH(CH₃)₂), 28.6 (CH(CH₃)₂), 117.8 (NCH), 124.0, 127.8, 139.4, 147.4 (Ar-C); ¹¹B {¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 2.8$; IR, v/cm⁻¹ (ATR): 3354 (br w, NH), 3067 (w), 3028 (w), 1249 (m), 1112 (w), 1070 (m), 900 (m), 834 (s), 803 (s), 696 (m); MS/EI *m/z* (%): 475.5 (MH⁺, 100).

Li[TBoN]. To a solution of TBoNH (5.0 g, 10.5 mmol) in hexane (50 mL) at room temperature was added LiBu^{*n*} (6.9 ml, 1.6 M in hexane, 11.0 mmol) over 10 min. The reaction mixture was then stirred for 3 days, over which time a white precipitate deposited. The suspension was subsequently concentrated to ~ 25 mL, and stored at -30 °C overnight to afford further white precipitate, which was isolated by filtration, and dried *in vacuo*, yielding the title compound as a white powder. This was used for further reactions without purification (3.0 g, 59 %). ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = -0.36$ (s, 9H, Si(CH₃)₃), 1.25 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.35 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 3.72 (sept, ³J_{HH} = 7.0 Hz, 4H, CH(CH₃)₂), 6.04 (s, 2H, NCH), 7.16-7.19 (m, 6H, Ar-H).

K[TBoN]. To a suspension of benzyl potassium (1.5 g, 11.6 mmol) in toluene (10 mL) at -40 °C, was added a solution of TBoNH (5.0 g, 10.5 mmol) in toluene (40 mL) over 5 min. The reaction mixture was warmed to ambient temperature and stirred for 2 h, whereupon the majority of the suspended benzyl potassium had been consumed. The reaction mixture was allowed to settle, filtered, and all volatiles removed from the filtrate *in vacuo*. The resultant residue was washed with hexane (2 x 10 mL), and the residue dried *in vacuo*, giving the title compound as a free-flowing pale brown powder. This was used for further reactions without purification (4.7 g, 87 %). ¹H NMR (C₆D₆, 400 MHz, 298 K), δ = -0.23 (s, 9H, Si(CH₃)₃), 1.30 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.38

(d, ${}^{3}J_{HH} = 7.0$ Hz, 12H, CH(CH₃)₂), 3.83 (sept, ${}^{3}J_{HH} = 7.0$ Hz, 4H, CH(CH₃)₂), 6.12 (s, 2H, NCH), 7.08-7.13 (m, 6H, Ar-H).

:Si(TBoN)₂ 1. To a rapidly stirred solution of SiCl₂(IPr) (1.0 g, 2.06 mmol) in benzene (10 mL) at ambient temperature was added a solution of Li[TBoN] (1.0 g, 2.08 mmol) in benzene (10 mL) over 10 sec. After 5 min of stirring, all voltiles were removed from the pale yellow reaction solution in vacuo, and the residue extracted into warm hexane, and filtered. The filtrate was then either stirred under and atmosphere of CO₂, or a solution of SiBr₄ (1.04 mL, 2 M in hexane, 2.08 mmol) was added to it. In both cases, the resultant suspension rapidly stirred for 2 h, whereupon further copious white precipitate formed. The reaction mixture was again filtered, and all volatiles removed from the filtrate in vacuo. The residue was redissolved in diethyl ether (5 mL), then the solution concentrated to ~2 mL, and stored at -30 °C for 18 h. After this time large pale yellow crystals of 1 had formed (520 mg, 51 %). M.p.: 152-160 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = -0.12$ (s, 18H, Si(CH₃)₃), 1.14 (br., 24H, CH(CH₃)₂), 1.28 (br, 24H, CH(CH₃)₂), 3.47 (br. sept, ${}^{3}J_{HH} = 7.0$ Hz, 8H, CH(CH₃)₂), 6.02 (s, 4H, NCH), 7.05-7.25 (br. m, 12H, Ar-H); ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K), $\delta = 6.7$ (Si(CH₃)₃), 23.5 (br., CH(CH₃)₂), 26.9 (br., CH(CH₃)₂), 28.5 (br., CH(CH₃)₂), 29.6 (br., CH(CH₃)₂), 120.8 (NCH), 124.2, 124.6, 141.1, 146.4 (Ar-C); ¹¹B{¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 23.7$; ²⁹Si{¹H} NMR (C₆D₆, 80 MHz, 298 K), $\delta = 3.1$ (*Si*(CH₃)₃), 204.6 (N*Si*N); UV/vis (hexane, λ_{max} , nm [ϵ , Lcm⁻¹mol⁻¹]: 385 [1750], 300 [2500]); IR, v/cm⁻¹ (ATR): 3064 (w), 1584 (w), 1377 (s), 1323 (m), 1297 (m), 1266 (s), 1118 (m), 1067 (m), 955 (m), 803 (s), 696 (s); MS/EI m/z (%): 977.1 (M⁺, 2), 475.5 (TBoNH⁺, 100); anal. calcd. for C₅₈H₉₀B₂N₆Si₃: C, 71.28 %; H, 9.28 %; N, 8.60 %; found: C, 71.15 %; H, 9.17 %; N, 8.50 %.

:Sn(TBoN)₂ **2.** A solution of K[TBoN] (1.50 g, 2.9 mmol) in THF (25 mL) was added to a solution of SnBr₂ (0.40 g, 1.45 mmol) in THF (10 mL) at -80 °C over 5 min. The reaction mixture was warmed to ambient temperature over 2 h, yielding a deep red/orange solution. All volatiles were subsequently removed *in vacuo*. Extraction of the residue into warm hexane (25 mL), filtration of the extract, and removal of volatiles from the filtrate *in vacuo* led to the isolation of essentially pure **2** as a free-flowing orange powder (1.22 g, 79 %). X-ray quality crystals of **2** were grown from a concentrated hexane solution stored at 4 °C for 2 days. M.p.: 104-110 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = 0.11$ (s, 18H, Si(CH₃)₃), 1.16 (d, ³J_{HH} = 7.0 Hz, 24H, CH(CH₃)₂), 1.29 (br. d, ³J_{HH} = 7.0 Hz, 24H, CH(CH₃)₂), 3.43 (br. sept, ³J_{HH} = 7.0 Hz, 8H, CH(CH₃)₂), 5.94 (s, 4H, NCH), 7.06-7.18 (m, 12H, Ar-H), ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K), $\delta = 5.6$ (Si(CH₃)₃), 23.4 (br., CH(CH₃)₂), 26.4 (br., CH(CH₃)₂), 28.6 (br., CH(CH₃)₂), 119.8 (br., NCH), 124.0, 124.4, 141.7, 146.8 (Ar-*C*); ¹¹B{¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 23.2$; ²⁹Si NMR (C₆D₆, 80 MHz, 298

K), $\delta = 4.2$; IR, v/cm⁻¹ (ATR): 3063 (w), 1583 (w), 1305 (s), 1241 (s), 1178 (m), 1116 (s), 1065 (s), 971 (m), 934 (w), 890 (s), 661 (s); MS/EI *m/z* (%): 593.4 (M⁺-TBoN, 0.5), 475.5 (TBoNH⁺, 100); N.B. Elemental analyses repeatedly returned low carbon percentages, possibly due to the formation of involatile SiC compounds, as has been previously reported for compounds containing silyl amide ligands.⁴ In addition, no signal was observed in the ¹¹⁹Sn NMR spectrum of the compound.

:Pb(TBoN)₂ **3.** This compound was prepared in an analogous fashion to **2**, but using K[TBoN] (0.3 g, 0.59 mmol) and PbBr₂ (108 mg, 0.30 mmol). The crude reaction mixture, following removal of volatiles *in vacuo*, was extracted into warm hexane (20 mL), and the extract filtered. Storage of the filtrate at 4 °C for 16 h led to the formation of large red/orange crystalline blocks of **3** (130 mg, 38 %). M.p.: 104-110 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = 0.05$ (s, 18H, Si(*CH*₃)₃), 1.17 (d, ³J_{HH} = 7.0 Hz, 24H, CH(*CH*₃)₂), 1.31 (br. d, ³J_{HH} = 7.0 Hz, 24H, CH(*CH*₃)₂), 3.39 (br., 4H, *CH*(CH₃)₂), 3.68 (br, 4H, *CH*(CH₃)₂), 5.94 (s, 4H, NC*H*), 7.06-7.18 (m, 12H, Ar-*H*), ¹³C {¹H} NMR (C₆D₆, 75.5 MHz, 298 K), $\delta = 4.8$ (Si(*CH*₃)₃), 22.7 (br., CH(*CH*₃)₂), 24.4 (br., CH(*CH*₃)₂), 25.6 (br., CH(*CH*₃)₂), 27.6 (br., CH(*CH*₃)₂), 28.9 (br., *CH*(CH₃)₂), 119.5 (br., NCH), 124.1, 124.6, 141.8, 147.1, (Ar-*C*); ¹¹B {¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 23.3$; ²⁹Si NMR (C₆D₆, 80 MHz, 298 K), $\delta = -6.9$; IR, v/cm⁻¹ (ATR): 3063 (w), 1583 (w), 1305 (s), 1241 (s), 1178 (m), 1116 (s), 1065 (s), 971 (m), 934 (w), 696 (m), 661 (s); MS/EI *m/z* (%): 681.6 (M⁺-TBoN, 5), 475.5 (TBoNH, 100); anal. calcd. for C₅₈H₉₀B₂N₆Si₂Pb: C, 60.24 %; H, 7.85 %; N, 7.27 %; found: C, 60.18 %; H, 7.73 %; N, 7.38 %. N.B. No signal was observed in the ²⁰⁷Pb NMR spectrum of the compound.

:Ge(TBoN)Cl 4. A solution Li[TBoN] (2.0g, 3.6 mmol) in THF (30 mL) was added to a solution of GeCl₂(dioxane) (0.92 g, 3.97 mmol) in THF (5 mL) at -80 °C over 5 mins. The reaction mixture was warmed to ambient temperature over the course of 4 h, and all volatiles subsequently removed *in vacuo*. The oily residue was extracted into hexane (20 mL), filtered, and the filtrate concentrated *in vacuo* to ~ 7 mL. Storage at -30 °C for 18 h resulted in the formation of large colourless blocks of **4** (1.2 g, 57 %). M.p.: 104-110 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = 0.16$ (s, 9H, Si(CH₃)₃), 1.11 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.28 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 3.29 (sept, ³J_{HH} = 7.0 Hz, 4H, C*H*(CH₃)₂), 6.18 (s, 2H, NC*H*), 7.07-7.18 (m, 6H, Ar-*H*), ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K), $\delta = 4.0$ (Si(CH₃)₃), 22.9 (CH(CH₃)₂), 26.5 (CH(CH₃)₂), 29.3 (CH(CH₃)₂), 119.6 (NCH), 124.0, 124.4, 137.9, 145.5 (Ar-C); ¹¹B{¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 24.4$; ²⁹Si NMR (C₆D₆, 80 MHz, 298 K), $\delta = 0.2$; IR, v/cm⁻¹ (ATR): 3066 (w), 1570 (w), 1301 (m), 1245 (s), 1116 (m), 799 (s), 781 (m), 679 (s); MS/EI *m/z* (%): 580.5 (M⁺-2H, 1), 403.4 ((DAB)BNH₂⁺, 100); N.B. Elemental analyses repeatedly returned low carbon percentages, possibly due to the

formation of involatile SiC compounds, as has been previously reported for compounds containing silyl amide ligands.⁴

Si(OH)(TBoN)(κ²-*N***,***O***-TBoN^{-H}O) 5.** A solution of **1** (150 mg, 0.15 mmol) in toluene (5 mL) was stirred under an atmosphere of dry O₂ for 20 min, and all volatiles subsequently removed *in vacuo*. The residue was extracted into hexane (5 mL), the extract filtered, and all volatiles removed from the filtrate *in vacuo*. The residue was redissolved in diethyl ether (5 mL), the solution concentrated to ~1 mL, then stored at ambient temperature for 3 days. During this time, colourless crystals of **5** deposited (60 mg, 39 %). M.p.: 166-175 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), δ = -0.15 (br. s, 9H, Si(*CH*₃)₃), 0.04 (s, 9H, Si(*CH*₃)₃), 1.21-1.65 (m, 48H, CH(*CH*₃)₂), 2.22 (s, 1H, SiO*H*), 3.31-3.82 (m, 7H, C*H*(CH₃)₂), 6.13 (m, 2H, NC*H*), 6.30 (m, 2H, NC*H*), 7.12-7.52 (m, 12H, Ar-*H*); ¹¹B{¹H} NMR (C₆D₆, 128 MHz, 298 K), δ = 23.2 (v. br.); ²⁹Si NMR (C₆D₆, 80 MHz, 298 K), δ = -72.4 (*Si*OH), 0.9, 2.3 (*Si*(CH₃)₃); IR, v/cm⁻¹ (ATR): 3200 (v. br., SiO–H), 3061 (w), 1624 (m), 1588 (w), 1382 (m), 1326 (m), 1258 (s), 1072 (s), 1043 (s), 967 (m), 922 (m), 695 (m); MS/EI *m/z* (%): 1009.1 (M⁺, 0.5), 475.6 (TBoNH⁺, 10). N.B. Elemental analyses repeatedly returned low carbon percentages, possibly due to the formation of involatile SiC compounds, as has been previously reported for compounds containing silyl amide ligands.⁴ In addition, it proved difficult to assign the numerous, often broad and/or overlapping signals, in the ¹³C{¹H} NMR spectrum of the compound.

Si(H)(TBoN)(NH₂)₂ 7. Route (a): A solution of 1 (150 mg, 0.15 mmol) in toluene (5 mL) was stirred under an atmosphere of dry NH₃ for 20 min, before all volatiles were removed *in vacuo*. The residue was extracted into hexane (5 mL), the extract filtered, and all volatiles removed from the filtrate *in vacuo*, giving an oily residue. The ¹H NMR spectrum of this residue (see Figure S1) showed it to contain 7 and TBoNH, in an approximately 1:1 ratio.

Route (b): A solution of Si(H)(TBoN)Cl₂ **8** (300 mg, 0.54 mmol) in hexane (15 mL) was stirred under an atmosphere of NH₃ for 3 days, after which time a white precipitate had deposited. The suspension was filtered, the residue washed with hexane (10 mL), and the extracts combined. Concentration of the combined extracts to ~5 mL *in vacuo*, and subsequent storage at 4 °C for 4 days led to the formation of large colourless plates of 7 (180 mg, 63 %). M.p.: 64-70 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), δ = -0.05 (br. s, 4H, NH₂), -0.05 (s, 9H, Si(CH₃)₃), 1.16 (d, ³J_{HH} = 7.0 Hz, 6H, CH(CH₃)₂), 1.19 (d, ³J_{HH} = 7.0 Hz, 6H, CH(CH₃)₂), 1.36 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 3.39 (sept, ³J_{HH} = 7.0 Hz, 2H, CH(CH₃)₂), 3.58 (sept, ³J_{HH} = 7.0 Hz, 2H, CH(CH₃)₂), 4.72 (s, 1H, SiH, ¹J_{SiH} = 232 Hz), 6.18 (s, 2H, NCH), 7.14-7.20 (m, 6H, Ar-H), ¹³C{¹H} NMR (C₆D₆, 75.5 MHz, 298 K), δ = 3.3 (Si(CH₃)₃), 22.8 (CH(CH₃)₂), 23.2 (CH(CH₃)₂), 26.3 (CH(CH₃)₂), 28.9 (CH(CH₃)₂), 118.8 (NCH), 123.8, 124.0, 127.5, 139.6,

146.3, 147.4 (Ar-*C*); ¹¹B{¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 23.9$; ²⁹Si NMR (C₆D₆, 80 MHz, 298 K), $\delta = -35.7$ (d, ¹J_{SiH} = 232 Hz. *Si*H), 2.4 (*Si*(CH₃)₃); IR, v/cm⁻¹ (ATR): 3473 and 3396 (m, NH₂), 3064 (w), 2167 (m, SiH), 1540 (m), 1380 (s), 1295 (m), 1247 (s), 1180 (w), 1119 (m), 835 (s), 803 (s), 691 (s); MS/EI *m/z* (%): 535.6 (M⁺, 46); anal. calcd. for C₂₉H₅₀BN₅Si₂: C, 65.02 %; H, 9.41 %; N, 13.07 %; found: C, 64.84 %; H, 9.27 %; N, 12.89 %.

Figure S1. ¹H NMR spectra of the crude mixture arising from the reaction of **1** with excess NH₃, yielding an approximately 1:1 mixture of **7** and TBoNH *(above)*, and pure **7** synthesised by the addition of NH₃ to Si(H)(TBoN)Cl₂ *(below)*; $\Delta = \text{TMSBoNH}$, $o = \text{Si}(H)(\text{TBoN})(\text{NH}_2)_2$.

Si(H)(TBoN)Cl₂ 8. To a solution of SiHCl₃ (0.21 mL, 2.18 mmol) in diethyl ether (10 mL) at 0 °C was added a solution of Li[TBoN] (1.0 g, 1.81 mmol) in diethyl ether (5 mL) over 5 min. The reaction mixture was warmed to ambient temperature and stirred for 1 h, whereupon volatiles were removed in vacuo. The residue was extracted into hexane (10 mL), the extract filtered, and volatiles removed from the filtrate in vacuo to afford a colorless micro crystalline powder, which was essentially pure 8 (820 mg, 79 %). X-ray quality crystals of the compound were grown from a concentrated hexane solution, held at -30 °C for 18 h. M.p.: 71-79 °C (melt); ¹H NMR (C₆D₆, 400 MHz, 298 K), $\delta = -0.09$ (s, 9H, Si(CH₃)₃), 1.11 (d, ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.33 (br., ³J_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 3.15 (br. sept, ${}^{3}J_{HH} = 7.0$ Hz, 2H, CH(CH₃)₂), 3.43 (br. sept, ${}^{3}J_{HH} = 7.0$ Hz, 2H, CH(CH₃)₂), 5.65 (s, 1H, SiH), 6.10 (s, 2H, NCH), 7.12-7.23 (m, 6H, Ar-H), ¹³C{¹H} NMR $(C_6D_6, 75.5 \text{ MHz}, 298 \text{ K}), \delta = 2.5 (Si(CH_3)_3), 23.0, 23.6 (CH(CH_3)_2), 26.4, 26.5 (CH(CH_3)_2), 28.4, 26.5 (CH(CH_3)_2), 28.4)$ 29.3 (CH(CH₃)₂), 119.5 (NCH), 124.1, 124.4, 138.4, 146.0, 146.7 (Ar-C); ¹¹B{¹H} NMR (C₆D₆, 128 MHz, 298 K), $\delta = 23.0$; ²⁹Si NMR (C₆D₆, 80 MHz, 298 K), $\delta = -21.5$ (d, ¹J_{SiH} = 232 Hz, S*i*H), 9.2 (Si(CH₃)₃); IR, v/cm⁻¹ (ATR): 3065 (w), 2260 (m, SiH), 1512 (w), 1326 (s), 1290 (m), 1252 (s), 1168 (m), 1119 (s), 891 (s), 830 (s), 758 (s), 698 (s), 657 (s); MS/EI *m/z* (%): 573.5 (M⁺, 50 %); anal. calcd. for C₂₉H₄₆BCl₂N₃Si₂: C, 60.62 %; H, 8.07 %; N, 7.31 %; found: C, 60.63 %; H, 8.16 %; N, 7.16 %.

2. X-Ray Crystallography

Crystals of 1-5, 7 and 8 suitable for X-ray structural determination were mounted in silicone oil. Crystallographic measurements were made using either an Oxford Supernova or Gemini Ultra diffractometer employing a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) or Cu K α radiation (1.54180 Å); or the MX1 beamline of the Australian Synchrotron ($\lambda = 0.71080$ Å). The software package Blu-Ice⁵ was used for synchrotron data acquisition, while the program XDS⁶ was employed for synchrotron data reduction. All structures were solved by direct methods and refined on F² by full matrix least squares (SHELX97⁷) using all unique data. Hydrogen atoms are included in calculated positions (riding model), except the hydroxyl hydrogen of **5**, and the hydride atoms of **7** and **8**, the positional and atomic displacement parameters of which were refined isotropically. The absolute structure parameter for **8** was refined to 0.13(0.12). Crystal data, details of data collections and refinements for all structures can be found in their CIF files and are summarized in Table S1.

Tabla S1	Crystal structure and	l rafinament data	for 1 5 7 and 8
Table SI.	Crystal structure and	i rennement data	101 1-5 , / and o

	$1 \cdot (Et_2O)_{0.5}$	2	3	4 (hexane) $_{0.5}$	5	7	8
empirical formula	$C_{60}H_{95}B_2N_6O_{0.5}Si_3$	$C_{58}H_{90}B_2N_6Si_2Sn$	$C_{58}H_{90}B_2N_6Si_2Pb$	C ₃₂ H ₅₂ ClGeN ₃ Si	$C_{58}H_{90}B_2N_6O_2Si_3$	$C_{29}H_{50}BN_5Si_2$	$C_{29}H_{46}BCl_2N_3Si_2$
formula weight	1014.31	1067.85	1156.35	625.71	1009.25	535.73	574.58
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	orthorhombic
space group	$P2_{1}/n$	C2/c	C2/c	C2/c	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$
a (Å)	13.1200(2)	26.444(5)	26.6148(7)	23.6484(2)	13.1700(2)	10.0089(5)	10.1620(6)
b (Å)	22.7890(2)	12.059(2)	12.0185(4)	10.2456(1)	20.1290(3)	16.8248(7)	16.8562(8)
c (Å)	21.2000(3)	18.181(4)	18.1788(5)	30.4820(2)	22.9510(4)	19.7026(10)	19.2329(13)
α (°)	90	90	90	90	90	90	90
β (°)	103.7060(10)	98.06(3)	97.896(1)	108.410(1)	104.647(2)	104.172(2)	90
γ (°)	90	90	90	90	90	90	90
V (Å ³)	6158.13(14)	5740(2)	5759.7(3)	7007.56(10)	5886.56(16)	3216.9(3)	3294.5(3)
Z	4	4	4	8	4	4	4
T (K)	150(2)	100(2)	123(2)	150(2)	150(2)	150(2)	123(2)
$\rho_{calcd} \left(g \cdot cm^3\right)$	1.094	1.236	1.334	1.186	1.139	1.106	1.158
$\mu (mm^{-1})$	1.016	0.528	3.012	2.383	1.081	0.135	0.292
F(000)	2212	2272	2400	2664	2192	1168	1232
reflns collected	12885	23997	49975	39385	35449	24857	55301
unique reflns	12885	6469	6035	7319	12249	5861	7508
R _{int}	0.0286	0.0321	0.0955	0.0231	0.0299	0.0585	0.0815
R1 [I > $2\sigma(I)$]	0.0382	0.0336	0.0365	0.0266	0.0448	0.0691	0.0672
wR2 (all data)	0.1075	0.0876	0.0661	0.0688	0.1259	0.1903	0.2101
largest peak and	0.39, -0.30	0.51, -0.99	1.11, -1.18	0.40, -0.41	1.02, -0.67	1.29, -1.05	0.52, -0.97
hole (e·Å ⁻³)							
CCDC no.	1429705	1429706	1429707	1429708	1429709	1429710	1429711

Figure S2. ORTEP diagram of **2** (20% thermal ellipsoids; hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): Sn(1)-N(1) 2.1587(14), Si(1)-N(1) 1.7333(15), N(1)-B(1) 1.445(2), N(1)'-Sn(1)-N(1) 106.13(8), B(1)-N(1)-Si(1) 127.66(12).

Figure S3. ORTEP diagram of **3** (20% thermal ellipsoids; hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): Pb(1)-N(1) 2.281(3), Si(1)-N(1) 1.724(3), N(1)-B(1) 1.430(4), N(1)'-Pb(1)-N(1) 105.75(14), B(1)-N(1)-Si(1) 130.0(2).

Figure S4. ORTEP diagram of **4** (20% thermal ellipsoids; hydrogen atoms omitted). Selected bond lengths (Å) and angles (°): Ge(1)-N(1) 1.8510(11), Ge(1)-Cl(1) 2.3577(3), Si(1)-N(1) 1.7602(11), N(1)-B(1) 1.4634(16), N(1)-Ge(1)-Cl(1) 99.52(3), B(1)-N(1)-Si(1) 120.36(8).

Figure S5. Molecular structures of **5** (20% ellipsoids; hydrogen atoms, except hydride and hydroxyl hydrogens, omitted). Relevant bond lengths (Å) and angles (°): Si(1)-O(1) 1.6203(12), Si(1)-O(2) 1.6384(12), Si(1)-N(1) 1.7282(12), Si(1)-N(4) 1.7292(12), O(1)-Si(1)-O(2) 106.59(7), N(1)-Si(1)-N(4) 117.93(6).

Figure S6. Molecular structures of 7 (20% ellipsoids; hydrogen atoms, except hydride and amino hydrogens, omitted). Relevant bond lengths (Å) and angles (°): Si(1)-N(5) 1.703(3), Si(1)-N(4) 1.711(3), Si(1)-N(3) 1.787(3), Si(1)-H(1) 1.28(4), N(5)-Si(1)-N(4) 105.07(17), N(3)-Si(1)-H(1) 109.1(16), B(1)-N(3)-Si(2) 126.9(2).

Figure S7. ORTEP diagram of **8** (20% thermal ellipsoids; hydrogen atoms, except the hydride H(1), omitted). Selected bond lengths (Å) and angles (°): Cl(1)-Si(1) 1.9639(19), Si(1)-N(1) 1.710(3), Si(1)-Cl(2) 2.054(2), Si(1)-H(1) 1.37(4), N(1)-B(1) 1.463(6), N(1)-Si(2) 1.776(3), Cl(1)-Si(1)-Cl(2) 105.50(8), Cl(1)-Si(1)-H(1) 107.3(17), B(1)-N(1)-Si(2) 123.0(3).

3. Computational Studies

DFT calculations were carried out using the Amsterdam Density Functional (ADF 2013) software package.^{8,9} Calculations were performed using the Volko-Wilk-Nusair local density approximation with exchange from Becke¹⁰ and correlation functions from Perdew (BP).¹¹ Slater-type orbitals¹² were used for the triple zeta basis set with an additional set of polarization functions (TZP). The large frozen core basis set approximation was applied with no molecular symmetry. General numerical integration was 6.

Figure S8. (a) Representations of the HOMO-2 of **1'** (singlet state), (b) HOMO of **1'** (triplet state), and HOMO-1 of **1'** (triplet state).

Table S2. Coordinates and computational details for the calculated molecule, 1'.

Compound 1' (singlet state)

ATON	48		
1 Si	-2.524517350000	8.582558538000	5.421461531000
2 N	-1.377882220000	8.377197177000	4.041560469000
3 Si	-1.730012769000	8.016889327000	2.308484059000
4 C	-0.342629647300	6.964936396000	1.547647713000
5 C	-3.363043296000	7.080589643000	2.088647275000
6 C	-1.982406352000	9.553422421000	1.236183404000
7 B	-0.058438597310	8 914336657000	4 463487885000
8 N	0 788467675600	9 987743636000	3 909763835000
90	0.609474100900	10 981925430000	2 884876765000
10 C	1 402397803000	10.934934850000	1 717870462000
10 C	2 / 300600/2000	9 859611648000	1 /01571878000
11 U	2.437007742000	8 085563343000	8 387065236000
12 II 13 H	6 2023/135/000	7 367100611000	3 500635636000
13 H 14 C	1 222740147000	11 0/1102500000	0.752506117200
14 C	1.255/4014/000	11.941195590000	0.755590117200
150	0.52910/855/00	12.982888770000	0.949040447700
10 C	-0.411240596000	13.040623380000	2.130/318/4000
1/C	-0.2/9164554000	12.054/30/80000	3.11/434085000
18 C	-1.043616/99000	12.163421380000	4.410686304000
19 H	-7.725276039000	8.251/11/45000	3.555191381000
20 H	-5.1/238124/000	12.235924/80000	1.28554/162000
21 C	1.950502324000	10.098600960000	4.693652592000
22 C	1.910090767000	9.201151886000	5.705512498000
23 N	0.724522354300	8.455659653000	5.621038116000
24 C	0.516/2/022400	7.420617618000	6.600232440000
25 C	0.8689/055//00	6.093031280000	6.2/48/228/000
26 C	1.425840368000	5.754235410000	4.915301585000
27 H	-5.145985640000	3.756216300000	4.439835956000
28 H	-2.181386/98000	3.934503639000	4.326663002000
29 C	0.732981650500	5.102082327000	7.257313962000
30 C	0.28/80494/000	5.4194/1392000	8.540546691000
310	-0.0083/2596/99	6./4345658/000	8.861653180000
32 C	0.110385671600	7.767881891000	7.909399498000
33 C	-0.16091154/800	9.199890678000	8.298577923000
34 H	-7.504354931000	10.2/0522540000	6.164035914000
35 H	-2./600/9200000	5.0532111/3000	/.656165600000
36 N	-3.826408519000	7.338199230000	5.546504274000
3/ 81	-3.69645355/000	5.54/450623000	5.388653041000
38 C	-5.19262/141000	4.85/959998000	4.441986610000
39 C	-3.559312608000	4.622287978000	7.033033423000
40 C	-2.0943/2831000	5.0138//226000	4.536452941000
41 B	-5.03392114/000	/.9/2429219000	6.131333299000
42 N	-5./405596/5000	9.136097799000	5.5/6/060/6000
43 C	-6.83//50812000	9.446640745000	6.394289062000
44 C	-6.891612288000	8.5/2844089000	7.426067213000
45 N	-5.824512442000	/.6605/6966000	/.3368/145/000
46 C	-5.65228598/000	6.769502869000	8.4536986/9000
4/C	-6.566552908000	5./11131542000	8.6481/4269000
48 C	-/.69/939680000	5.443921686000	/.683828541000
49 H	-5.362148228000	11.802125/40000	6.610398581000
50 H	1.59162/812000	4.0/3//6882000	4.820041503000
510	-0.409245694000	4.8895/802/000	9.//4840554000
52 C	-3.384931399000	5.115850805000	10.093131020000
55 C	-4.5098381/6000	0.1830///20000	10.302433460000
54 C	-4.032925539000	/.052201388000	9.394131233000
55 C	-3./14022169000	8.2134/8289000	9.233803049000
50 H	5.425020821000	10.1/8231850000	1.803834323000
3/H	-0.946/15/91500	9.0341/2931000	1.009802183000
38 C	-5.523453978000	9.949294546000	4.408/80302000

59 C	-6.013444638000	9.503217567000	3.1623490630	00
60 C	-5.862989380000	10.336748120000	2.0450843920	000
61 C	-5.279081672000	11.597600160000	2.1633108270	000
62 C	-4.844743701000	12.044836840000	3.4105227090	000
63 C	-4.962565450000	11.239929410000	4.5537825240	000
64 C	-4.524251497000	11.763428150000	5.8990227520	000
65 H	-7.598916287000	8.531001436000	8.2466640890	000
66 H	2 548534967000	9 645573072000	0 4202582652	00
67 C	-6 752002399000	8 193522572000	3 0434008990	00
68 H	-4 106276735000	12 773258520000	5 802469242	000
60 H	2 384929388000	6 267201785000	4 7474870300	00
70 H	-0 566132942100	6 797603411000	0.4806020935	00
70 H 71 H	0.637150056100	7 461646851000	1 60/36688/0	00
71 II 72 U	0.05/159950100	5.077657496000	2 0251168020	00
72 11	-0.231831330000	7 206414010000	2.0231108930	
75 H 74 U	-3.0093091/9000	7.200414910000	1.03/83083/0	
74 H 75 H	-4.155055791000	/.500/05509000	2.7177201120	00
/5 H	-3.303089378000	0.005091190000	2.2915588120	
/6 H	-2.314932619000	9.211/24/22000	0.2411069989	00
// H	-2.779263656000	10.190103840000	1.6515/1045	000
/8 H	-1.085269641000	10.1/0221210000	1.09/1/5158	000
/9 H	2.186542333000	8.930836/41000	2.0161533590	00
80 H	0./34429144900	9.82/008234000	8.1763129500	00
81 H	-0.484025675300	9.260513507000	9.3452709690	000
82 H	-7.102895855000	4.059129735000	9.9238339470	000
83 H	-5.275036583000	4.463373657000	11.561822980	000
84 H	-3.721928702000	6.379410078000	11.232750060	000
85 H	-6.934038786000	7.943131927000	1.9908595110	000
86 H	1.826925191000	11.899708500000	-0.162492907:	500
87 H	0.211288421500	13.756444210000	0.1896040750	000
88 H	-1.097019252000	13.872601380000	2.303997276	000
89 H	-1.814257918000	11.382330690000	4.495795162	000
90 H	-7.417479521000	5.692115239000	6.6528440660	000
91 H	-1.534953435000	13.141790680000	4.486328152	000
92 H	-0.376661855600	12.041134880000	5.276054145	000
93 H	-4.409025161000	13.040804400000	3.510685743	000
94 H	-3.758771771000	11.104910820000	6.340275921	000
95 H	-6.227708797000	9.993477339000	1.0749202440	000
96 H	2.713248366000	10.835265840000	4.4678706780	000
97 H	2.643030126000	9.019179811000	6.4839003910	00
98 H	0.750155614600	6.075438997000	4.1128641690	00
99 H	-6.143085594000	5.143196692000	4.9187196030	000
100 H	-5.221634767000	5.195999861000	3.396248562	000
101 H	-3.270131653000	3.583597472000	6.796736395	000
102 H	-1.259914624000	5.143514261000	5.238792102	2000
103 H	-1.837368891000	5.520362578000	3.604496580	000
104 H	-4.480165743000	4.588222357000	7.628364614	000
105 H	0.992882660500	4 071011203000	7 008904980	000
106 H	0.185764203000	4 637454634000	9 293926714	000
100 H	-0 330449399900	6 999724462000	9 872920604	000
107 II 108 H	-8 58/99/938/00	6.050662924000	7 02/7/3//1	000
100 H	-7 998/7/939000	4 389011947000	7 725638/13	000
109 II 110 H	2 11727/07000	8 364531061000	10 14482452	000
110 II 111 H	-3.11/3/40/9000	0 135282601000	0.038636735	2000
	-4.2020901/4000	9.155282001000	9.038030733	000
END				
GLIDO	NDS		I	72410
				/ 5 4 1.0
1130	0			0 4 / 1 1.U 0 4 72 1 0
2121.	0			94/21.U
32/1.	0			104/01.0
4231.	0			11 5 /4 1.0
5501.	0			12 5 75 1.0
0331.	U			135/31.0

14 6 78 1.0	66 34 43 1.0
15 6 77 1.0	67 35 39 1.0
16 6 76 1.0	68 36 41 1.0
17 7 23 1.0	69 36 37 1.0
18781.0	70 37 39 1.0
19 8 21 1.0	71 37 40 1.0
20 8 9 1.0	72 37 38 1.0
21 9 10 1.5	73 38 100 1.0
22 9 17 1.5	74 38 99 1.0
23 10 14 1.5	75 39 104 1.0
24 10 11 1.0	76 39 101 1.0
25 11 79 1.0	77 40 103 1.0
26 11 66 1.0	78 40 102 1.0
27 11 56 1.0	79 41 42 1.0
28 12 55 1.0	80 41 45 1.0
29 13 67 1.0	81 42 43 1.0
30 14 86 1.0	82 42 58 1.0
31 14 15 1.5	83 43 44 2.0
32 15 87 1.0	84 44 65 1.0
33 15 16 1.5	85 44 45 1.0
34 16 88 1.0	86 45 46 1.0
35 16 17 1.5	87 46 47 1.5
36 17 18 1.0	88 46 54 1.5
37 18 91 1.0	89 47 51 1.5
38 18 89 1.0	90 47 48 1.0
39 18 92 1.0	91 48 90 1.0
40 19 67 1.0	92 48 109 1.0
41 20 61 1.0	93 48 108 1.0
42 21 96 1.0	94 49 64 1.0
43 21 22 2.0	95 51 82 1.0
44 22 97 1.0	96 51 52 1.5
45 22 23 1.0	97 52 83 1.0
46 23 24 1.0	98 52 53 1.5
47 24 25 1.5	99 53 84 1.0
48 24 32 1.5	100 53 54 1.5
49 25 29 1.5	101 54 55 1.0
50 25 26 1.0	102 55 110 1.0
51 26 98 1.0	103 55 111 1.0
52 26 50 1.0	104 58 59 1.5
53 26 69 1.0	105 58 63 1.5
54 27 38 1.0	106 59 60 1.5
55 28 40 1.0	10/ 59 6/ 1.0
56 29 105 1.0	108 60 95 1.0
5/ 29 30 1.5	109 60 61 1.5
58 30 106 1.0 50 20 21 1 5	110 61 62 1.5
0 21 107 1 0	111 62 93 1.0
00 51 10/ 1.0 61 21 22 1 5	112 02 03 1.3
62 22 22 1 0	113 03 04 1.0
62 23 81 1 0	114 04 08 1.0
64 33 57 1 0	115 04 94 1.0
65 33 80 1 0	FND
05 55 00 1.0	
BASIS	
tyne TZP	
core Large	

createoutput None END

XC GGA Becke Perdew END SAVE TAPE21 TAPE13

SCF iterations 100 END

FULLSCF INTEGRATION 6

NoBeckeGrid NOPRINT LOGFILE

eor

Compound 1' (triplet state) ATOMS

AIOP	v15		
1 Si	-2.546542435000	8.441827339000	5.297485460000
2 N	-1.229393683000	8.381450628000	4.081861656000
3 Si	-1.574961502000	8.524089477000	2.315231663000
4 C	-0.033705151740	8.029756682000	1.325416871000
5 C	-2.934020360000	7.291216056000	1.867987047000
6 C	-2.132555916000	10.239136240000	1.772103115000
7 B	0.093553734030	8.707742194000	4.653205095000
8 N	0.879533246900	9.942388627000	4.483311940000
9 C	0.582282639700	11.207604450000	3.870132316000
10 C	1.311810415000	11.632872490000	2.737779601000
11 C	2.433005826000	10.815371250000	2.137885624000
12 H	-2.942918174000	8.987977028000	7.795646994000
13 H	-5.926363797000	6.579721770000	3.229882140000
14 C	1.002800110000	12.878588520000	2.168349309000
15 C	0.018518709010	13.698652660000	2.714795609000
16 C	-0.656779185800	13.289403760000	3.864602134000
17 C	-0.380653110300	12.054810140000	4.467089765000
18 C	-1.076086691000	11.672727710000	5.745593846000
19 H	-7.569541403000	7.097357225000	3.601532638000
20 H	-6.103065291000	10.895250420000	0.090625369470
21 C	2.101081962000	9.798332090000	5.163728394000
22 C	2.144585109000	8.584167122000	5.761941112000
23 N	0.961764978800	7.876196264000	5.493256795000
24 C	0.808059118100	6.587592302000	6.115685377000
25 C	1.010969448000	5.415327014000	5.359865052000
26 C	1.289114086000	5.482584271000	3.880274788000
27 H	-5.302109297000	3.650019038000	5.726220733000
28 H	-2.306836683000	3.877296471000	4.728790015000
29 C	0.973616245300	4.177534456000	6.018634590000
30 C	0.761564409700	4.100094457000	7.394342844000
31 C	0.568993790900	5.268932414000	8.130364418000
32 C	0.583855240900	6.525970495000	7.509858801000
33 C	0.351449370400	7.776820730000	8.320332261000
34 H	-7.913806840000	10.019360230000	5.410706243000
35 H	-2.142616649000	5.652198199000	7.644894204000
36 N	-3.969148795000	7.364340855000	5.474933572000
37 Si	-3.773451716000	5.591089327000	5.753951830000

38 C	-5.439305307000	4.720263813000	5.496844329000
39 C	-3.101075989000	5.145844666000	7.456011126000
40 C	-2.589199878000	4.905721938000	4.452155873000
41 B	-5.194533017000	8.091765885000	5.865422627000
42 N	-6.060921420000	8.940983727000	5.041279527000
43 C	-7.137380821000	9.385968380000	5.825977751000
44 C	-7.027790617000	8.891426934000	7.081930584000
45 N	-5 864973980000	8 107475653000	7 177397062000
46 C	-5 499345488000	7 578505741000	8 462578579000
47 C	-6 282684954000	6 565512653000	9.058821638000
48 C	-7 530690164000	6.013584099000	8 408486747000
49 H	-6.021418923000	11 842100110000	5 341927705000
50 H	1 508545597000	11.042100110000	3 479521536000
51 C	-5 90321/3/9000	6.077066765000	10 319327340000
52 C	4 70504503000	6 591032224000	10.00007060000
52 C	4.793943930000	7 628421717000	10.330007000000
55 C	4.003433343000	7.028421717000 9.147100517000	0 157244220000
54 C	-4.400097339000	0.14/10951/000	9.13/344329000
55 C	-3.039100284000	9.512555001000	8.595185020000
50 H	5.411855041000	0.271222540000	2.4391/1423000
5/H	-0.463951841100	8.3/1333549000	7.877835581000
58 C	-5.980296555000	9.433305900000	3.691223642000
59 C	-6.366/2036/000	8.6043884/9000	2.618/549/9000
60 C	-6.393900379000	9.148660231000	1.326267902000
61 C	-6.06/48122/000	10.485127710000	1.100646775000
62 C	-5.6930007/6000	11.29505/990000	2.172427309000
63 C	-5.637867820000	10.788068840000	3.4/8348/09000
64 C	-5.207797272000	11.674706180000	4.620506922000
65 H	-7.684416487000	9.040469244000	7.931520019000
66 H	2.393663104000	10.846677870000	1.040482089000
67 C	-6.770171198000	7.170960735000	2.850389403000
68 H	-4.871692324000	12.650084980000	4.246792587000
69 H	2.140504254000	6.143362780000	3.663316955000
70 H	-0.253576710600	8.181607783000	0.255169994700
71 H	0.847483917800	8.637616892000	1.570673651000
72 H	0.229349692900	6.970914873000	1.462746491000
73 H	-3.294227955000	7.506843335000	0.849338828300
74 H	-3.793648114000	7.364212025000	2.548299775000
75 H	-2.560929780000	6.258031535000	1.888614722000
76 H	-2.421592679000	10.200306830000	0.708566369300
77 H	-3.016107650000	10.564097400000	2.341736985000
78 H	-1.344814007000	10.998017960000	1.886119641000
79 H	2.403121849000	9.770821313000	2.464725154000
80 H	1.240639025000	8.424305684000	8.343886002000
81 H	0.081611937180	7.523197633000	9.353206837000
82 H	-6.494725774000	5.280101770000	10.775444860000
83 H	-4.514864369000	6.197680108000	11.967764820000
84 H	-3.217563741000	8.062939658000	10.949957460000
85 H	-7.121176882000	6.709784603000	1.918782538000
86 H	1.551194343000	13.202829830000	1.281097537000
87 H	-0.209974693100	14.662004030000	2.257069434000
88 H	-1.402874482000	13.943419900000	4.320746012000
89 H	-1.870605955000	10.923266430000	5.563547922000
90 H	-7.572517535000	6.238824708000	7.337809862000
91 H	-1.550257337000	12.548655330000	6.206828074000
92 H	-0 375809071800	11 227899000000	6 465039541000
93 H	-5.425587386000	12.339687990000	2.000251373000
94 H	-4.380516180000	11.205119700000	5.176534696000
95 H	-6.693276529000	8.511146871000	0.491701508400
96 H	2,843986354000	10 587769190000	5 171767610000
97 H	2 939062992000	8 148825699000	6 358412778000
98 H	0 427575937900	5 889987430000	3 334953459000
99 H	-6 229653184000	5 100509281000	6 157789257000
// 11	0.22/0001010000	2.100207201000	0.101101201000

100 H 101 H 102 H 103 H 104 H 105 H 106 H 107 H 108 H 109 H 110 H 111 H END	-5.793644045000 -2.913396156000 -1.666571190000 -3.057770145000 -3.797294862000 1.131122296000 0.745390206000 0.392171311900 -8.431889422000 -7.593171150000 -3.040479875000 -4.312103600000	4.793897339000 4.059762441000 5.498477547000 4.877602478000 5.401622984000 3.266094566000 3.130116895000 5.213763590000 6.451223285000 4.925580649000 9.798368576000 10.056457630000	4.45843827: 7.493054624 4.38489594; 3.458832300 8.26801083; 5.438074604 7.892854701 9.20651287(8.86681016; 8.54671834; 9.37430696' 8.14678545	3000 4000 5000 8000 3000 4000 1000 3000 8000 7000 33000
$\begin{array}{c} {\rm GUIBON}\\ 1 1 36 1.,\\ 2 1 2 1.0\\ 3 2 7 1.0\\ 4 2 3 1.0\\ 4 2 3 1.0\\ 5 3 6 1.0\\ 5 3 6 1.0\\ 7 3 4 1.0\\ 9 4 72 1.1\\ 10 4 70 1\\ 11 5 74 1\\ 12 5 75 1\\ 13 5 73 1\\ 14 6 78 1\\ 15 6 77 1\\ 15 6 77 1\\ 16 6 76 1\\ 17 7 23 1\\ 18 7 8 1.2\\ 19 8 21 1\\ 20 8 9 1.2\\ 21 9 10 1\\ 22 9 17 1\\ 23 10 14\\ 24 10 11\\ 25 11 79\\ 26 11 66\\ 27 11 56\\ 28 12 55\\ 29 13 67\\ 30 14 86\\ 31 14 15\\ 32 15 87\\ 33 15 16\\ 34 16 88\\ 35 16 17\\ 36 17 18\\ 37 18 91\\ 38 18 89\\ 39 18 92\\ 40 19 67\\ 41 20 61\\ 42 21 96\\ 43 21 22\\ 44 22 97\\ 45 22 23\\ 46 23 24\\ 47 24 25\end{array}$	NDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			$\begin{array}{c} 48 & 24 & 32 & 1.5 \\ 49 & 25 & 29 & 1.5 \\ 50 & 25 & 26 & 1.0 \\ 51 & 26 & 98 & 1.0 \\ 52 & 26 & 50 & 1.0 \\ 53 & 26 & 69 & 1.0 \\ 54 & 27 & 38 & 1.0 \\ 55 & 28 & 40 & 1.0 \\ 56 & 29 & 105 & 1.0 \\ 57 & 29 & 30 & 1.5 \\ 58 & 30 & 106 & 1.0 \\ 59 & 30 & 31 & 1.5 \\ 60 & 31 & 107 & 1.0 \\ 61 & 31 & 32 & 1.5 \\ 62 & 32 & 33 & 1.0 \\ 63 & 33 & 81 & 1.0 \\ 64 & 33 & 57 & 1.0 \\ 65 & 33 & 80 & 1.0 \\ 66 & 34 & 43 & 1.0 \\ 67 & 35 & 39 & 1.0 \\ 63 & 36 & 41 & 1.0 \\ 69 & 36 & 37 & 1.0 \\ 70 & 37 & 39 & 1.0 \\ 71 & 37 & 40 & 1.0 \\ 72 & 37 & 38 & 1.0 \\ 73 & 38 & 100 & 1.0 \\ 74 & 38 & 99 & 1.0 \\ 75 & 39 & 104 & 1.0 \\ 75 & 39 & 104 & 1.0 \\ 76 & 39 & 101 & 1.0 \\ 77 & 40 & 103 & 1.0 \\ 78 & 40 & 102 & 1.0 \\ 79 & 41 & 42 & 1.0 \\ 80 & 41 & 45 & 1.0 \\ 81 & 42 & 43 & 1.0 \\ 82 & 42 & 58 & 1.0 \\ 83 & 43 & 44 & 2.0 \\ 84 & 44 & 65 & 1.0 \\ 85 & 44 & 45 & 1.0 \\ 86 & 45 & 46 & 1.0 \\ 87 & 46 & 47 & 1.5 \\ 88 & 46 & 54 & 1.5 \\ 89 & 47 & 51 & 1.5 \\ 90 & 47 & 48 & 1.0 \\ 91 & 48 & 90 & 1.0 \\ 92 & 48 & 109 & 1.0 \\ 93 & 48 & 108 & 1.0 \\ 94 & 49 & 64 & 1.0 \\ 95 & 51 & 82 & 1.0 \end{array}$

96 51 52 1.5
97 52 83 1.0
98 52 53 1.5
99 53 84 1.0
100 53 54 1.5
101 54 55 1.0
102 55 110 1.0
103 55 111 1.0
104 58 59 1.5
105 58 63 1.5
106 59 60 1.5
107 59 67 1.0
108 60 95 1.0
109 60 61 1.5
110 61 62 1.5
111 62 93 1.0
112 62 63 1.5
113 63 64 1.0
114 64 68 1.0
115 64 94 1.0
116 67 85 1.0
END

CHARGE 0.0 2.0

UNRESTRICTED

BASIS type TZP core Large createoutput None END

XC GGA Becke Perdew END

GEOMETRY optim Delocalized iterations 60 END

SAVE TAPE21 TAPE13

SCF iterations 100 END

FULLSCF INTEGRATION 6

NoBeckeGrid NOPRINT LOGFILE

4. References

- 1 Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem. Soc., 2008, 130, 16069.
- R.S. Ghadwal, H.W. Roesky, S. Merkel, J. Henn, D. Stalke, *Angew. Chem.*, 2009, 121, 5793.
- 3 M. Schlosser, J. Hartmann, Angew. Chem. Int. Ed. Engl., 1973, 12, 508.
- 4 C.A.P. Goodwin, A. Smith, F. Ortu, I.J. Vitorica-Yrzebal, D. P. Mills, D., *Dalton Trans.*, 2015, 44, advance article published online, DOI:10.1039/C5DT02535D.
- T.M. McPhillips, S. McPhillips, H.J. Chiu, A.E. Cohen, A.M. Deacon, P.J. Ellis, E. Garman,
 A. Gonzalez, N.K. Sauter, R.P. Phizackerley, S.M. Soltis, P. Kuhn, *J. Synchrotron Rad.*,
 2002, 9, 401.
- 6 W.J. Kabsch, Appl. Cryst., 1993, 26, 795.
- 7 G.M. Sheldrick, *SHELX-97*, University of Göttingen, 1997.
- G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C.F. Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, *J. of Comput. Chem.*, 2001, 22, 931.
- 9 C.F. Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, *Theor. Chem. Acc.*, 1998, **99**, 391.
- 10 A.D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- 11 J.P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- J.G. Snijders, P. Vernooijs, E. J. Baerends, *Atomic Data and Nuclear Data Tables*, 1982, 26, 483.