Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Sulfonamides-directed Gold-catalyzed [2+2+2]-Cycloadditions of Nitriles with Two Discrete Ynamides to Construct 2,4-Diaminopyridine cores

Yu-Ling Chen, Pankaj Sharma and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, 30043, ROC

E-mail: rsliu@mx.nthu.edu.tw

Contents:

(I) Representative Synthetic Procedures	-2
(II) Standard procedures for catalytic operations	-5
(III) Spectral data for key compounds	-6
(IV) X-ray crystallographic data	
(a) Compound 3a1	18
(b) Compound 5a	28
(V) ¹ H NMR and ¹³ C NMR Spectra	34

(I) Representative Synthetic Procedures:

(a) General procedure:

Unless otherwise noted, all the reactions for the preparation of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents. The catalytic reactions were performed under Nitrogen atmosphere. DCE, DCM and CH₃CN were distilled from CaH₂ under nitrogen. THF were distilled from Na metal under nitrogen. All other commercial reagents were used without further purification, unless otherwise indicated. Reactions were magnetically stirred and monitored by thin layer chromatography carried out on 0.25 mm E. Merck silica gel plate (60f- 254) using UV light as visualizing agents and alkaline KMnO₄ and heat as developing agents. ¹H NMR and ¹³C NMR spectra were recorded on a Varian 400 MHz, Bruker 400, Bruker 500 and 600 MHz Spectrometers using chloroform-*d* (CDCl₃), Dimethyl sulfoxide-*d* (DMSO) and Acetone- d^6 as the internal standards.

(b) Preparation of ynamide (1a).

Synthesis of 1-(2-bromoethynyl)triisopropylsilane (s2).

To a solution of triisopropylsilyl acetylene (**s1**) (500 mg, 2.74 mmol) in acetone (50 mL) was added NBS (536 mg, 3.01 mmol) and AgNO₃ (46.5 mg, 0.274 mmol) the resulting mixture was stirred under nitrogen for 3 h at room temperature. After removing excess acetone, the reaction was quenched with water, and the organic layer was extracted with pentane (30 mL×3), organic layer was dried over MgSO4, and concentrated under reduced pressure to obtain pure colorless oil of 1-(2-bromoethynyl)triisopropylsilane (**s2**) (637 mg, 89%).

Synthesis of *N*,4-dimethyl-*N*- ((triisopropylsilyl)ethynyl)benzenesulfonamide (s3).

To a dried flask was added *N*,4-dimethylbenzenesulfonamide (680 mg, 3.67 mmol), CuSO₄·5H₂O (76.4 mg, 0.306 mmol), 1,10-phenanthroline (110 mg, 0.612 mmol) and K₂CO₃ (846 mg, 6.12 mmol); this mixture was subsequently treated with anhydrous toluene (3 mL) and (bromoethynyl)triisopropylsilane (**s2**) (800 mg, 3.06 mmol). The reaction mixture was caped under a blanket of nitrogen, and heated in an oil bath at 70-80 °C for 12h. After complete conversion of starting material, the reaction mixture was cooled to room temperature, filtered through CeliteTM, and concentrated in vacuo. Purification of the crude residue using silica gel flash column chromatography gave the pure ynamide **s3** as pale yellow oil (996 mg, 89%).

Synthesis of *N*-ethynyl-*N*,4-dimethylbenzenesulfonamide (1a).

To a THF (20 mL) solution of *N*,4-dimethyl-*N*-((triisopropylsilyl) ethynyl) benzenesulfonamide **s3** (500 mg, 1.36 mmol) was added *n*-tetrabutyl ammonium fluoride (1.0 M in THF, 2.05 mL, 2.05 mmol) at 0 °C, and the resulting mixture was stirred at rt for 1h. Then reaction mixture was quenched with H₂O (10 ml) and extracted with ethyl acetate (3x 30 mL), Organic layer was dried over MgSO₄ and concentrated under reduced pressure. Crude material was purified on a silica gel using (ethyl acetate : hexane = 3:97) to afford compound **1a** (267 mg, 94%) as a yellow solid.^{s1}

The experimental procedure for the preparation of compounds **1b**, **1c**, **1f**, **1g** is similar to **1a**.

^{s1}Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz and E. L. Vera, *Org. Lett.*, 2004, **6**, 1151-1154.

(b) Preparation of ynamide (1h).

CuCl₂ (0.6 mmol), s4 (15 mmol) and Na₂CO₃ (6 mmol) were added to a 500 mL three-necked round-bottomed flask. The reaction flask was vacuumed for 15 minute. A solution of pyridine (6 mmol) in dry toluene (15 mL) was added. A balloon filled with oxygen was connected to the flask and the stirred mixture was heated at 70°C. After 15 min, a solution of Trimethylsilylacetylene (3 mmol) in dry toluene (15 mL) was added by droping funnel over 4 h. The mixture was allowed to stir at 70°C for another 4h and was then cooled to room temperature. The reaction mixture was filtered through a short plug of silica gel. The solution of crude was concentrated, and purified by flash chromatography (*n*-Hexane/ ethylacetate = 20:1) to give product s5 (85%).

 K_2CO_3 (3 equiv.) was added to a solution of the ynamide s5 (3 mmol) in MeOH (8 mL), the resulting solution was stirred for 2 h (depend on TLC analysis) at room temperature. The reaction mixture was filtered through a short plug of silica gel. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the corresponding product **1h** (76%).

The experimental procedure for the preparation of compounds 1d^{s2} is similar to 1h

^{s2}L. -Q. Yang, K.-B. Wang and C.-Y. Li, *Eur. J. Org. Chem.* 2013, 2775.

(c) N,4-dimethyl-N-(prop-1-yn-1-yl)benzenesulfonamide (1e).

Synthesized according to the reported literature procedure.^{s3}

^{s3} X. Y. Mak, A. L. Crombie and R. L. Danheiser, J. Org. Chem., 2011, 76, 1852.

(d) Preparation of ynamide 3-ethynyloxazolidin-2-one (4a)

The experimental procedure for the preparation of compounds 4a similar to 1a.

The experimental procedure for the preparation of compounds $4b^{s4}$ and 4c is similar to 4a.

^{s4}N. Riddell, K. Villeneuve and W. Tam, Org. Lett., 2005, 7, 3681.

(II) Standard procedure for gold(I) catalyzed [2+2+2]-cycloaddition reactions.

A two-necked flask was charged with chloro(triphenylphosphine)gold (I) (11.8 mg, 0.0239 mmol) and silver bis(trifluoromethanesulfonyl)imide (9.28 mg, 0.0239 mmol), and to this mixture was added dry DCE (1.0 mL). The resulting mixture was stirred at room temperature for 5 min. To this mixture was added a dry DCE solution (2 mL) of compound **1a** (100 mg, 0.478 mmol) and Benzonitrile (197 mg, 1.913 mmol). After stirring at 25 °C for 6.5 h, the reaction mixture was filtered over a short celite bed. The filtrate was concentrated under reduced pressure. The residue was eluted through a silica gel column to give the desired *N*,*N*'-(6-phenylpyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) **3a** (92 mg, 0.177 mmol, 88 %) as white solid.

(III) Spectral Data for Key Compounds:

N-ethynyl-*N*,4-dimethylbenzenesulfonamide (1a).

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.78 (d, *J* = 8 Hz, 2 H), 7.35 (d, *J* = 8 Hz, 2 H), 3.04 (s, 3 H), 2.66 (s, 1 H), 2.44 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.9, 133.1, 129.8, 127.8 77.5, 57.4, 38.8, 21.6.

N-butyl-*N*-ethynyl-4-methylbenzenesulfonamide (1b).

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.76 (d, *J* = 8 Hz, 2 H), 7.32 (d, *J* = 8 Hz, 2 H), 3.26 (t, *J* = 7.3 Hz, 2 H), 2.70 (s, 1 H), 2.41 (s, 3 H), 1.62 ~ 1.56 (m, 2 H), 1.34 ~ 1.27 (m, 2 H), 0.87 (t, *J* = 7.3 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.6, 134.5, 129.7, 127.5, 76.0, 58.9, 50.8, 29.6, 21.6, 19.3, 13.4.

N-ethynyl-*N*-isopropyl-4-methylbenzenesulfonamide (1c).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.79 (d, *J* = 8.4 Hz, 2 H), 7.32 (d, *J* = 7.8 Hz, 2 H), 4.14 ~ 4.08 (m, 1 H), 2.78 (s, 1 H), 2.43 (s, 3 H), 1.09 (d, *J* = 6 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 144.5, 135.9, 129.8, 127.4, 73.0, 61.0, 52.1, 21.6, 20.5.

N-ethynyl-N-isopropylmethanesulfonamide (1f).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 4.20 ~ 4.14 (m, 1 H), 3.07 (s, 3 H), 2.85 (s, 1 H), 1.29 (d, J = 6.6 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 72.5, 61.8, 52.0, 39.4, 20.9; HRMS calcd. for C₆H₁₁NO₂S: 161.0510; found: 161.0507.

N-butyl-*N*-ethynylmethanesulfonamide (1g).

Yelliw oil; ¹H NMR (600 MHz, CDCl₃): δ 3.41 (t, J = 7.2 Hz, 2 H), 3.05 (s, 3 H), 2.78 (s, 1 H), 1.71 ~ 1.66 (m, 2 H), 1.40 ~ 1.34 (m, 2 H), 0.92 (t, J = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 75.5, 59.5, 50.9, 38.0, 30.0, 19.3, 13.4.

N-ethynyl-N-phenylmethanesulfonamide (1h)

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.51 ~ 7.49 (m, 2 H), 7.44 ~ 7.40 (m, 2 H), 7.37 ~ 7.33 (m, 1 H), 3.10 (s, 3 H), 2.94 (d, J = 0.4 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 144.1, 129.5, 128.6, 125.6, 75.8, 59.7, 36.7.

N,N'-(6-phenylpyridine-2,4-diyl)bis(N,4-dimethylbenzenesulfonamide) (3a)

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.78 ~ 7.77 (m, 2 H), 7.66 (d, *J* = 1.5 Hz, 1 H), 7.54 (d, *J* = 8.5 Hz, 2 H), 7.45 (d, *J* = 8 Hz, 2 H), 7.39 ~ 7.37 (m, 3 H), 7. 27 ~ 7.25 (m, 3 H), 7.19 (d, *J* = 8.5 Hz, 2 H), 3.31 (s, 3 H), 3.28 (s, 3 H), 2.39 (s, 3 H), 2.37 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 155.9, 154.1, 151.0, 144.4, 143.9, 138.1, 134.3, 133.7, 129.8, 129.5, 129.4, 128.6, 127.5 (x 2), 126.8, 113.1, 111.3, 36.9, 35.6, 21.6, 21.5; ESI-MS calcd. for C₂₇H₂₇N₃O₄S₂: 521.1443; found: 521.1441.

N, N'-(6-phenylpyridine-2,4-diyl)bis(N-butyl-4-methylbenzenesulfonamide) (3b).

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.77 ~ 7.75 (m, 2 H), 7.67 (d, *J* = 1.5 Hz, 1 H), 7.49 (d, *J* = 8.5 Hz, 2 H), 7.44 (d, *J* = 8 Hz, 2 H), 7.39 ~ 7.38 (m, 3 H), 7.25 (d, *J* = 8 Hz, 2 H), 7.19 (d, *J* = 8 Hz, 2 H), 6.99 (d, *J* = 1.0 Hz, 1 H), 3.80 (t, *J* = 7 Hz, 2 H), 3.61 (t, *J* = 7 Hz, 2 H), 2.39 (s, 3 H), 2.36 (s, 3 H), 1.51 ~ 1.41 (m, 4 H), 1.38 ~ 1.24 (m, 4 H), 0.88 ~ 0.84 (m, 6 H); ¹³C NMR (125 MHz, CDCl₃): δ 156.3, 152.9, 149.3, 144.1, 143.5, 137.9, 135.5, 134.6, 129.7, 129.5, 129.4, 128.6, 127.5, 127.4, 126.8, 117.6, 116.7, 48.8, 47.8, 30.5, 29.9, 21.6, 21.5, 19.8, 19.6, 13.7, 13.5; ESI-MS calcd. for C₃₃H₃₉N₃O₄S₂: 605.2382; found: 605.2385.

N-butyl-N-(2, 6-diphenylpyrimidin-4-yl)-4-methylbenzenesulfonamide (3b')

White solid; ¹H NMR (500 MHz, CDCl₃): δ 8.45 ~ 8.43 (m, 2 H), 8.17 ~ 8.15 (m, 2 H), 7.93 (s, 1 H), 7.69 (d, J = 8.5 Hz, 2 H), 7.52 ~ 7.51 (m, 3 H), 7.47 ~ 7.46 (m, 3 H), 7.23 (d, J = 8.5 Hz, 2 H), 4.21 (t, J = 7.5 Hz, 2 H), 2.35 (s, 3 H), 1.82 ~ 1.76 (m, 2 H), 1.50 ~ 1.42 (m, 2 H), 0.96 (t, J = 7.5 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 164.8, 163.6, 159.8, 144.3, 137.6, 137.2, 136.2,

130.8 (x 2), 129.8, 128.9, 128.4, 128.2, 127.3, 127.1, 106.1, 47.2, 31.1, 21.5, 20.1, 13.8; ESI-MS calcd. for C₂₇H₂₇N₃O₂S: 457.1824; found: 457.1821.

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.84 ~ 7.82 (m, 2 H), 7.71 (d, *J* = 8 Hz, 2 H), 7.64 (d, *J* = 8 Hz, 2 H), 7.59 (d, *J* = 1.2 Hz, 1 H), 7.43 ~ 7.41 (m, 3 H), 7.28 ~ 7.22 (m, 4 H), 6.86 (d, *J* = 1.6 Hz, 1 H), 4.67 ~ 4.57 (m, 1 H), 4.48 ~ 4.38 (m, 1 H), 2.42 (s, 3 H), 2.41 (s, 3 H), 1.13 ~ 1.10 (m, 12 H); ¹³C NMR (150 MHz, CDCl₃): δ 157.1, 151.6, 146.3, 143.7, 143.2, 138.4, 137.8, 137.6, 129.8, 129.7, 129.3, 128.7, 127.9, 127.4, 126.9, 126.8, 122.9, 52.3, 52.1, 22.2, 21.9, 21.5 (one carbon merge with others); ESI-MS calcd. for C₃₁H₃₅N₃O₄S₂: 577.2069; found: 577.2071.

N-(2,6-diphenylpyrimidin-4-yl)-*N*-isopropyl-4-methylbenzenesulfonamide (3c')

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.45 ~ 8.44 (m, 2 H), 8.17 ~ 8.15 (m, 2 H), 7.79 (d, J = 8.4 Hz, 2 H), 7.74 (s, 1 H), 7.52 ~ 7.47 (m, 6 H), 7.27 ~ 7.26 (m, 2 H), 4.80 ~ 4.74 (m, 1 H), 2.39 (s, 3 H), 1.47 (d, J = 6.6 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 165.2, 163.9, 160.4, 143.9, 137.8, 137.6, 137.0, 131.0, 130.8, 129.7, 128.9, 128.5, 128.3, 127.6, 127.4, 111.0, 53.2, 21.9, 21.6; ESI-MS calcd. for C₂₆H₂₅N₃O₄S: 443.1667; found: 443.1667.

N-(4-methoxyphenyl)-*N*-(4-((4-methoxyphenyl)(methyl)amino)-6-phenylpyridin-2-yl)-4methylbenzenesulfonamide (3d)

Viscous oil; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 2 H), 7.63 ~ 7.62 (m, 2 H), 7.43 (d, *J* = 8.4 Hz, 2 H), 7.36 ~ 7.35 (m, 3 H), 7.23 ~ 7.14 (m, 6 H), 7.05 ~ 7.02 (m, 3 H), 6.92 (d, *J* = 8.4 Hz, 2 H), 6.85 (d, *J* = 8.8 Hz, 2 H), 6.63 (s, 1 H), 3.85 (s, 3 H), 3.82 (s, 3 H), 2.39 (s, 3 H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 159.7, 156.5, 155.6, 151.6, 144.4, 143.4, 138.6, 137.5, 136.3, 131.8, 131.6, 131.4, 131.1, 129.8, 129.1, 129.0, 128.7, 128.4, 127.8, 127.2, 114.9, 114.6, 109.4, 107.3, 55.5, 21.6, 21.6 (one carbon merge with others); EI-MS calcd. for C₃₉H₃₅N₃O₆S₂: 705.1967; found: 705.1964.

N,*N*'-(6-(4-methoxyphenyl)pyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3e).

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.73 (d, *J* = 9 Hz, 2 H), 7.58 (d, *J* = 1.8 Hz, 1 H), 7.54 (d, *J* = 8.4 Hz, 2 H), 7.46 (d, *J* = 8.4 Hz, 2 H), 7.25 (d, *J* = 7.8 Hz, 2 H), 7. 20 ~ 7.18 (m, 3 H), 6.89 (d, *J* = 8.4 Hz, 2 H), 3.82 (s, 3 H), 3.30 (s, 3 H), 3.26 (s, 3 H), 2.39 (s, 3 H), 2.36 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 160.8, 155.7, 154.0, 151.0, 144.3, 143.8, 134.5, 133.8, 130.8, 129.8, 129.5, 128.2, 127.5 (x 2), 114.0,112.3, 110.6, 55.4, 36.9, 35.5, 21.6, 21.5; ESI-MS calcd. for C₂₈H₂₉N₃O₅S₂: 551.1549; found: 551.1549.

N-(2,6-bis(4-methoxyphenyl)pyrimidin-4-yl)-N,4-dimethylbenzenesulfonamide (3e')

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.38 (d, *J* = 9 Hz, 2 H), 8.16 (d, *J* = 8.4 Hz, 2 H), 7.92 (s, 1 H), 7.67 (d, *J* = 8.4 Hz, 2 H), 7.23 ~ 7.22 (m, 2 H), 7.02 (d, *J* = 9 Hz, 2 H), 6.94 (d, *J* = 9 Hz, 2 H), 3.88 (s, 3 H), 3.85 (s, 3 H), 3.55 (s, 3 H), 2.34 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 164.2, 163.3, 161.9, 161.9, 160.4, 144.4, 135.4, 130.5, 129.9, 129.8, 128.9, 127.2, 114.2, 113.7, 103.8, 55.4, 55.4, 34.5, 21.5, one carbon merge with others; ESI-MS calcd. for C₂₆H₂₅N₃O₄S: 475.1566; found: 475.1567.

N, N'-(6-(p-tolyl) pyridine-2, 4-diyl)bis(N,4-dimethylbenzenesulfonamide) (3f)

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.67 (d, *J* = 8 Hz, 2 H), 7.62 (s, 1 H), 7.54 (d, *J* = 8 Hz, 2 H), 7.46 (d, *J* = 8 Hz, 2 H), 7.25 (d, *J* = 8.5 Hz, 3 H), 7. 20 ~ 7.17 (m, 4 H), 3.30 (s, 3 H), 3.27 (s, 3 H), 2.39 (s, 3 H), 2.36 (s, 6 H); ¹³C NMR (125 MHz, CDCl₃): δ 156.0, 154.0, 151.0, 144.4, 143.8, 139.5, 135.3, 134.3, 133.7, 129.8, 129.5, 129.3, 127.5 (x 2), 126.7, 112.8, 111.1, 36.9, 35.5, 21.6, 21.5, 21.3; ESI-MS calcd. for C₂₈H₂₉ClN₃O₄S₂: 535.1599; found: 535.1602.

N,*N*'-(6-(4-fluorophenyl)pyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3g)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7. 78 ~ 7.75 (m, 2 H), 7.63 (d, *J* = 1.8 Hz, 1 H), 7. 55 ~ 7.54 (m, 2 H), 7. 46 ~ 7.45 (m, 2 H), 7. 27 ~ 7.26 (m, 2 H), 7.24 (d, *J* = 1.8 Hz, 1 H), 7.20 ~ 7.19 (m, 2 H), 7. 07 ~ 7.04 (m, 2 H), 3.30 (s, 3 H), 3.27 (s, 3 H), 2.40 (s, 3 H), 2.37 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 163.7 (d, *J* = 247.5 Hz), 155.0, 154.2, 151.2, 144.5, 143.9, 134.6, 134.3, 133.9, 129.8, 129.5, 128.7 (d, *J* = 9 Hz), 127.5, 127.5, 115.6 (d, *J* = 22.5 Hz), 112.8, 111.0, 36.9, 35.5, 21.6, 21.5; ESI-MS calcd. for C₂₇H₂₆FN₃O₄S₂: 539.1349; found: 539.1350. *N*,*N*'-(6-(4-chlorophenyl)pyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3h)

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, *J* = 8.5 Hz, 2 H), 7.65 (d, *J* = 1 Hz, 1 H), 7.54 (d, *J* = 8.5 Hz, 2 H), 7.45 (d, *J* = 8 Hz, 2 H), 7.34 (d, *J* = 8.5 Hz, 2 H), 7. 27 ~ 7.25 (m, 3 H), 7.19 (d, *J* = 8.5 Hz, 2 H), 3.30 (s, 3 H), 3.27 (s, 3 H), 2.40 (s, 3 H), 2.37 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 154.2, 151.2, 144.5, 144.0, 136.5, 135.5, 134.3, 133.6, 129.9, 129.5, 128.8, 128.1, 127.5 (x 2), 113.0, 111.3, 36.8, 35.5, 21.6 (x 2); ESI-MS calcd. for C₂₇H₂₆ClN₃O₄S₂: 555.1053; found: 555.1055.

N,*N*'-(6-(4-bromophenyl)pyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3i)

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7. 64 ~ 7.62 (m, 3 H), 7.52 (d, *J* = 8 Hz, 2 H), 7.48 (d, *J* = 8.5 Hz, 2 H), 7.43 (d, *J* = 8.5 Hz, 2 H), 7. 26 ~ 7.22 (m, 3 H), 7.18 (d, *J* = 8 Hz, 2 H), 3.28 (s, 3 H), 3.25 (s, 3 H), 2.38 (s, 3 H), 2.35 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 154.2, 151.2, 144.5, 144.0, 137.0, 134.3, 133.6, 131.8, 129.9, 129.5, 128.4, 127.5, 127.5, 123.9, 112.9, 111.4, 36.8, 35.5, 21.6, 21.6; ESI-MS calcd. for C₂₇H₂₆BrN₃O₄S₂: 599.0548; found: 599.0547.

N,*N*'-(6-vinylpyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3j)

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, *J* = 8 Hz, 2 H), 7.45 (d, *J* = 8 Hz, 2 H), 7. 26 ~ 7.19 (m, 5 H), 7.15 (d, *J* = 1.5 Hz, 1 H), 6.60 ~ 6.55 (m, 1 H), 6.05 ~ 6.01 (m, 1 H), 5.36 (d, *J* = 11 Hz, 1 H), 3.24 (s, 3 H), 3.22 (s, 3 H), 2.39 (s, 3 H), 2.38 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃): δ 154.4, 154.0, 150.7, 144.4, 143.9, 135.8, 134.5, 133.7, 129.8, 129.5, 127.5 (x 2), 119.1, 114.4, 111.5, 36.8, 35.4, 21.6 (x 2); ESI-MS calcd. for C₂₃H₂₅BrN₃O₄S₂: 471.1286; found: 471.1287.

(E)-*N*,*N*'-(6-styrylpyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3k)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.54 (d, *J* = 8.4 Hz, 2 H), 7. 49 ~ 7.46 (m, 4 H), 7.38 ~ 7.33 (m, 3 H), 7.29 ~ 7.25 (m, 3 H), 7.23 ~ 7.19 (m, 4 H), 6.94 (d, *J* = 15.6 Hz, 1 H), 3.30 (s, 3 H), 3.24 (s, 3 H), 2.39 (s, 3 H), 2.37 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 154.5, 154.2, 150.8, 144.4, 143.8, 136.3, 134.7, 133.9, 133.7, 129.8, 129.5, 128.7, 128.6, 127.6, 127.5, 127.1 (x 2), 115.0, 111.1, 36.8, 35.5, 21.6, 21.5; HRMS calcd. for C₂₉H₂₉N₃O₄S₂: 547.1599; found: 547.1601.

N,*N*'-(6-(prop-1-en-2-yl)pyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3l)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 8.4 Hz, 2 H), 7.43 (d, *J* = 8.4 Hz, 2 H), 7.35 (d, *J* = 1.8 Hz, 1 H), 7.26 (d, *J* = 7.8 Hz, 2 H), 7.20 ~ 7.19 (m, 3 H), 5.71 (s, 1 H), 5.19 ~ 5.19 (m, 1 H), 3.22 (s, 6 H), 2.39 (s, 3 H), 2.37 (s, 3 H), 2.00 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 156.9, 153.4, 150.7, 144.3, 143.8, 142.2, 134.4, 133.8, 129.8, 129.4, 127.5, 116.3, 112.8, 111.6, 36.9, 35.4, 21.6, 21.5, 20.0; ESI-MS calcd. for C₂₄H₂₇N₃O₄S₂: 485.1443; found: 485.1443.

N,*N*'-(6-isopropylpyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3m)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 8.4 Hz, 2 H), 7.38 (d, *J* = 7.8 Hz, 2 H), 7. 26 ~ 7.24 (m, 2 H), 7. 18 ~ 7.16 (m, 2 H), 7.08 (d, *J* = 2.4 Hz, 1 H), 7.02 (d, *J* = 1.8 Hz, 1 H), 3.21 (s, 3 H), 3.19 (s, 3 H), 2.84 ~ 2.77 (m, 1 H), 2.38 (s, 3 H), 2.36 (s, 3 H), 1.06 (d, *J* = 7.2 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 166.5, 153.8, 150.5, 144.2, 143.6, 134.5, 134.0, 129.7, 129.3, 127.6, 127.5, 113.8, 111.1, 36.8, 36.0, 35.5, 22.1, 21.5 (x 2); ESI-MS calcd. for C₂₄H₂₉N₃O₄S₂: 487.1599; found: 487.1600.

N,*N*'-(6-isobutylpyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (3n)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 7.50 (d, J = 8.4 Hz, 2 H), 7.38 (d, J = 8.4 Hz, 2 H), 7.25 ~ 7.24 (m, 2 H), 7.17 (d, J = 8.4 Hz, 2 H), 7.10 (d, J = 1.8 Hz, 1 H), 6.99 (d, J = 1.8 Hz, 1 H), 3.21 (s, 3 H), 3.19 (s, 3 H), 2.41 (d, J = 7.2 Hz, 2 H), 2.38 (s, 3 H), 2.37 (s, 3 H), 1.85 ~ 1.78 (m, 1 H), 0.75 (d, J = 6.6 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 160.8, 153.8, 150.1, 144.3,

143.6, 134.4, 133.8, 129.7, 129.3, 127.5, 127.5, 116.2, 110.9, 47.0, 36.8, 35.5, 28.7, 22.2, 21.6, 21.5; ESI-MS calcd. for C₂₅H₃₁N₃O₄S₂: 501.1756; found: 501.1755.

N,*N*'-(3,5-dimethyl-6-phenylpyridine-2,4-diyl)bis(*N*,4-dimethylbenzenesulfonamide) (30)

Sticky solid; ¹H NMR (600 MHz, CDCl₃): δ 7.74 (d, *J* = 8.3 Hz, 2 H), 7.61 (d, *J* = 8.2 Hz, 2 H), 7.35 ~ 7.33 (m, 5 H), 7.25 ~ 7.23 (m, 4 H), 3.18 (s, 3 H), 3.05 (s, 3 H), 2.45 (s, 3 H), 2.42 (s, 3 H), 2.27 (s, 3 H), 2.10 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 156.5, 152.1, 149.9, 143.9, 143.4, 139.6, 137.2, 134.5, 132.5, 132.1, 129.9, 129.2, 129.2, 128.7, 128.1, 127.8, 127.4, 37.4, 36.7, 21.6, 21.5, 16.9, 14.4; ESI-MS calcd. for C₂₉H₃₂N₃O₄S₂ (M + H): 550.18342; found: 550.18355.

N-(2,6-diphenylpyrimidin-4-yl)-*N*-isopropylmethanesulfonamide (3p')

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.15 ~ 8.13 (m, 2 H), 7.83 ~ 7.81 (m, 2 H), 7.16 ~ 7.13 (m, 6 H), 6.87 (s, 1 H), 4.37 ~ 4.30 (m, 1 H), 2.90 (s, 3 H), 1.16 (d, *J* = 6.6 Hz, 6 H); ¹³C NMR (150 MHz, CDCl₃): δ 165.9, 164.3, 160.7, 137.4, 136.8, 131.1, 131.0, 129.0, 128.6, 128.4, 127.4, 110.7, 53.2, 42.1, 22.1; ESI-MS calcd. for C₂₀H₂₁N₃O₂S: 367.1354; found: 367.1355.

N-butyl-*N*-(2,6-diphenylpyrimidin-4-yl)methanesulfonamide (3q')

Yellow oil; ¹H NMR (600 MHz, CDCl₃): δ 8.53 ~ 8.52 (m, 2 H), 8.18 ~ 8.17 (m, 2 H), 7.65 (s, 1 H), 7.53 ~ 7.50 (m, 6 H), 4.16 (t, *J* = 7.5 Hz, 2 H), 3.25 (s, 3 H), 1.80 ~ 1.75 (m, 2 H), 1.49 ~ 1.42 (m, 2 H), 0.98 (t, *J* = 7.5 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 165.6, 163.9, 160.2, 137.5, 137.2, 130.9, 128.9, 128.5, 128.4, 127.4, 104.1, 47.0, 40.8, 31.0, 20.1, 13.7 (one carbon merge with others); ESI-MS calcd. for C₂₁H₂₃N₃O₂S: 381.1511; found: 381.1513.

N,*N*'-(6-phenylpyridine-2,4-diyl)bis(*N*-phenylmethanesulfonamide) (3r)

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.89 ~ 7.87 (m, 2 H), 7.46 ~ 7.37 (m, 11 H), 7.29 (d, J = 1.2 Hz, 1 H), 7.27 ~ 7.25 (m, 2 H), 6.40 (s, 1 H), 3.56 (s, 3 H), 3.13 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 157.1, 156.2, 151.6, 139.0, 138.4, 138.2, 130.2, 129.7, 1296, 129.6, 129.5, 128.8, 128.8, 127.1, 108.8, 107.6, 41.4, 39.8 (one carbon merge with others); ESI-MS calcd. for C₂₅H₂₃N₃O₄S₂: 493.1130; found: 493.1131.

N-(2,6-diphenylpyrimidin-4-yl)-*N*-phenylmethanesulfonamide (3r')

Yellow oil; ¹H NMR (600 MHz, CDCl₃): δ 8.56 ~ 8.54 (m, 2 H), 7.93 ~ 7.92 (m, 2 H), 7.54 ~

7.51 (m, 6 H), 7.44 ~ 7.41 (m, 5 H), 6.59 (s, 1 H), 3.71 (s, 3 H); 13 C NMR (150 MHz, CDCl₃): δ 165.3, 163.7, 162.5, 137.5, 137.2, 137.0, 131.0, 130.9, 130.2, 130.2, 129.8, 128.8, 128.6, 128.6, 127.2, 103.4, 42.5; ESI-MS calcd. for C₂₃H₁₉N₃O₂S: 401.1198; found: 401.1198.

3-ethynyloxazolidin-2-one (4a)

Semi solid; ¹H NMR (600 MHz, CDCl₃): δ 4.43 (t, J = 7.8 Hz, 2 H), 3.92 (t, J = 7.8 Hz, 2 H), 2.83 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 72.3, 63.1, 59.8, 46.4.

(E)-3,3'-(but-2-enoyl)bis(oxazolidin-2-one) (5a)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 6.60 (s, 1 H), 4.41 ~ 4.36 (m, 4 H), 4.06 (t, *J* = 7.8 Hz, 2 H), 3.94 (t, *J* = 7.8 Hz, 2 H), 2.77 (s, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 164.8, 155.3, 154.0, 153.8, 100.0, 61.7, 61.1, 45.6, 42.8, 16.0.

dimethyl but-3-en-1-yne-1,3-diylbis(phenylcarbamate) (5b)

Sticky solid; ¹H NMR (400 MHz, CDCl₃): δ 7.35 ~ 7.22 (m, 10 H), 5.45 (d, *J* = 8.4 Hz, 2 H), 3.81 (s, 3 H), 3.72 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 154.5, 154.4, 141.0, 138.9, 129.3, 128.9, 128.8, 127.0, 126.8, 124.3, 118.1, 82.6, 67.8, 54.3, 53.2 (one cabon merge with others).

(IV) X-ray crystallographic data

(a) compound 3a (CCDC 1437539).

Table 1. Crystal data and structure refinement for 1	31005lt_0m.	
Identification code	131005lt_0m	
Empirical formula	C27 H27 N3 O4 S2	
Formula weight	521.64	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.8347(3) Å	α= 77.323(2)°.
	b = 10.7763(4) Å	$\beta = 76.332(2)^{\circ}.$
	c = 13.3710(4) Å	$\gamma = 67.333(2)^{\circ}.$
Volume	1257.50(7) Å ³	
Z	2	
Density (calculated)	1.378 Mg/m ³	

Absorption coefficient	0.251 mm ⁻¹
F(000)	548
Crystal size	0.30 x 0.26 x 0.15 mm ³
Theta range for data collection	1.58 to 26.44°.
Index ranges	-12<=h<=12, -13<=k<=13, -16<=l<=16
Reflections collected	19210
Independent reflections	5143 [R(int) = 0.0389]
Completeness to theta = 26.44°	99.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.8843
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5143 / 0 / 329
Goodness-of-fit on F ²	1.203
Final R indices [I>2sigma(I)]	R1 = 0.0405, wR2 = 0.1182
R indices (all data)	R1 = 0.0540, wR2 = 0.1518
Largest diff. peak and hole	0.438 and -0.519 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 131005lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

х	у	Z	U(eq)
2207(1)	3160(1)	7012(1)	15(1)
5802(1)	6121(1)	7194(1)	19(1)
1963(2)	4566(1)	6951(1)	19(1)
1073(2)	2785(2)	6795(1)	21(1)
5998(2)	7407(2)	6898(1)	28(1)
4332(2)	6061(2)	7485(1)	23(1)
3730(2)	2496(2)	6178(1)	16(1)
6657(2)	5277(2)	6191(1)	16(1)
6268(2)	1503(2)	6286(1)	15(1)
3415(3)	541(4)	11344(2)	56(1)
3187(3)	1161(3)	10243(2)	38(1)
3452(3)	2343(3)	9793(2)	34(1)
3161(2)	2953(3)	8809(2)	25(1)
2589(2)	2358(2)	8259(2)	20(1)
	x 2207(1) 5802(1) 1963(2) 1073(2) 5998(2) 4332(2) 3730(2) 6657(2) 6268(2) 3415(3) 3187(3) 3187(3) 3452(3) 3161(2) 2589(2)	x y 2207(1) 3160(1) 5802(1) 6121(1) 1963(2) 4566(1) 1073(2) 2785(2) 5998(2) 7407(2) 4332(2) 6061(2) 3730(2) 2496(2) 6657(2) 5277(2) 6268(2) 1503(2) 3415(3) 541(4) 3187(3) 1161(3) 3452(3) 2343(3) 3161(2) 2953(3) 2589(2) 2358(2)	xyz $2207(1)$ $3160(1)$ $7012(1)$ $5802(1)$ $6121(1)$ $7194(1)$ $1963(2)$ $4566(1)$ $6951(1)$ $1073(2)$ $2785(2)$ $6795(1)$ $5998(2)$ $7407(2)$ $6898(1)$ $4332(2)$ $6061(2)$ $7485(1)$ $3730(2)$ $2496(2)$ $6178(1)$ $6657(2)$ $5277(2)$ $6191(1)$ $6268(2)$ $1503(2)$ $6286(1)$ $3415(3)$ $541(4)$ $11344(2)$ $3187(3)$ $1161(3)$ $10243(2)$ $3452(3)$ $2343(3)$ $9793(2)$ $3161(2)$ $2953(3)$ $8809(2)$ $2589(2)$ $2358(2)$ $8259(2)$

C(6)	5092(2)	2659(2)	6239(2)	15(1)
C(7)	5152(2)	3929(2)	6200(2)	15(1)
C(8)	6515(2)	3983(2)	6259(2)	15(1)
C(9)	6795(2)	5195(2)	8221(2)	19(1)
C(10)	6285(3)	4269(2)	8934(2)	26(1)
C(11)	7046(3)	3545(3)	9746(2)	31(1)
C(12)	8329(2)	3712(2)	9855(2)	26(1)
C(13)	9098(3)	2967(3)	10767(2)	39(1)
C(14)	7601(2)	1568(2)	6309(1)	14(1)
C(15)	7758(2)	2793(2)	6319(2)	16(1)
C(16)	8844(3)	4623(3)	9110(2)	28(1)
C(17)	8082(2)	5377(2)	8300(2)	25(1)
C(18)	8132(2)	5374(2)	5704(2)	20(1)
C(19)	8883(2)	265(2)	6336(2)	15(1)
C(20)	8748(2)	-895(2)	6136(2)	18(1)
C(21)	9944(2)	-2118(2)	6164(2)	20(1)
C(22)	11282(2)	-2211(2)	6388(2)	20(1)
C(23)	11428(2)	-1070(2)	6583(2)	24(1)
C(24)	10239(2)	158(2)	6564(2)	21(1)
C(25)	3915(3)	1203(2)	5864(2)	23(1)
C(26)	2321(3)	1164(2)	8682(2)	29(1)
C(27)	2625(3)	568(3)	9678(2)	40(1)

Table 3. Bond lengths [Å] and angles [°] for 131005lt_0m.

S(1)-O(1)	1.4265(15)
S(1)-O(2)	1.4290(15)
S(1)-N(1)	1.6535(17)
S(1)-C(5)	1.756(2)
S(2)-O(3)	1.4292(17)
S(2)-O(4)	1.4288(15)
S(2)-N(2)	1.6573(17)
S(2)-C(9)	1.765(2)
N(1)-C(6)	1.440(3)
N(1)-C(25)	1.475(3)
N(2)-C(8)	1.435(3)

N(2)-C(18)	1.477(3)
N(3)-C(6)	1.336(3)
N(3)-C(14)	1.347(3)
C(1)-C(2)	1.506(4)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(3)	1.378(4)
C(2)-C(27)	1.402(4)
C(3)-C(4)	1.378(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.396(3)
C(4)-H(4)	0.9500
C(5)-C(26)	1.383(3)
C(6)-C(7)	1.381(3)
C(7)-C(8)	1.386(3)
C(7)-H(7)	0.9500
C(8)-C(15)	1.392(3)
C(9)-C(10)	1.377(3)
C(9)-C(17)	1.385(3)
C(10)-C(11)	1.383(3)
C(10)-H(10)	0.9500
C(11)-C(12)	1.385(3)
C(11)-H(11)	0.9500
C(12)-C(16)	1.388(3)
C(12)-C(13)	1.498(3)
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(15)	1.390(3)
C(14)-C(19)	1.483(3)
C(15)-H(15)	0.9500
C(16)-C(17)	1.386(3)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-H(18A)	0.9800

C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-C(24)	1.394(3)
C(19)-C(20)	1.394(3)
C(20)-C(21)	1.388(3)
C(20)-H(20)	0.9500
C(21)-C(22)	1.379(3)
C(21)-H(21)	0.9500
C(22)-C(23)	1.376(3)
C(22)-H(22)	0.9500
C(23)-C(24)	1.388(3)
C(23)-H(23)	0.9500
C(24)-H(24)	0.9500
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(26)-C(27)	1.393(4)
C(26)-H(26)	0.9500
C(27)-H(27)	0.9500
O(1)-S(1)-O(2)	118.91(9)
O(1)-S(1)-N(1)	108.18(9)
O(2)-S(1)-N(1)	105.88(9)
O(1)-S(1)-C(5)	107.88(10)
O(2)-S(1)-C(5)	108.56(10)
N(1)-S(1)-C(5)	106.84(9)
O(3)-S(2)-O(4)	120.03(10)
O(3)-S(2)-N(2)	106.03(9)
O(4)-S(2)-N(2)	107.59(9)
O(3)-S(2)-C(9)	108.90(10)
O(4)-S(2)-C(9)	107.66(10)
N(2)-S(2)-C(9)	105.78(9)
C(6)-N(1)-C(25)	115.48(16)
C(6)-N(1)-S(1)	118.61(13)
C(25)-N(1)-S(1)	116.64(14)
C(8)-N(2)-C(18)	116.30(16)

C(8)-N(2)-S(2)	117.02(13)
C(18)-N(2)-S(2)	114.98(14)
C(6)-N(3)-C(14)	118.29(18)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(3)-C(2)-C(27)	118.8(2)
C(3)-C(2)-C(1)	121.3(3)
C(27)-C(2)-C(1)	119.8(3)
C(4)-C(3)-C(2)	121.3(3)
C(4)-C(3)-H(3)	119.3
C(2)-C(3)-H(3)	119.3
C(3)-C(4)-C(5)	119.2(2)
C(3)-C(4)-H(4)	120.4
C(5)-C(4)-H(4)	120.4
C(26)-C(5)-C(4)	121.2(2)
C(26)-C(5)-S(1)	120.28(18)
C(4)-C(5)-S(1)	118.51(18)
N(3)-C(6)-C(7)	124.26(19)
N(3)-C(6)-N(1)	114.36(18)
C(7)-C(6)-N(1)	121.30(18)
C(6)-C(7)-C(8)	117.07(19)
C(6)-C(7)-H(7)	121.5
C(8)-C(7)-H(7)	121.5
C(7)-C(8)-C(15)	119.90(19)
C(7)-C(8)-N(2)	119.58(18)
C(15)-C(8)-N(2)	120.40(18)
C(10)-C(9)-C(17)	120.4(2)
C(10)-C(9)-S(2)	119.05(17)
C(17)-C(9)-S(2)	120.55(17)
C(9)-C(10)-C(11)	119.6(2)
C(9)-C(10)-H(10)	120.2
C(11)-C(10)-H(10)	120.2

C(10)-C(11)-C(12)	121.5(2)
C(10)-C(11)-H(11)	119.2
C(12)-C(11)-H(11)	119.2
C(11)-C(12)-C(16)	117.8(2)
C(11)-C(12)-C(13)	120.7(2)
C(16)-C(12)-C(13)	121.5(2)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
N(3)-C(14)-C(15)	121.59(18)
N(3)-C(14)-C(19)	116.50(18)
C(15)-C(14)-C(19)	121.91(19)
C(14)-C(15)-C(8)	118.80(19)
C(14)-C(15)-H(15)	120.6
C(8)-C(15)-H(15)	120.6
C(17)-C(16)-C(12)	121.6(2)
C(17)-C(16)-H(16)	119.2
C(12)-C(16)-H(16)	119.2
C(9)-C(17)-C(16)	119.1(2)
C(9)-C(17)-H(17)	120.5
C(16)-C(17)-H(17)	120.5
N(2)-C(18)-H(18A)	109.5
N(2)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
N(2)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(24)-C(19)-C(20)	118.34(19)
C(24)-C(19)-C(14)	121.63(19)
C(20)-C(19)-C(14)	120.04(19)
C(21)-C(20)-C(19)	120.2(2)
C(21)-C(20)-H(20)	119.9
C(19)-C(20)-H(20)	119.9

C(22)-C(21)-C(20)	120.9(2)
C(22)-C(21)-H(21)	119.5
C(20)-C(21)-H(21)	119.5
C(23)-C(22)-C(21)	119.3(2)
C(23)-C(22)-H(22)	120.4
C(21)-C(22)-H(22)	120.4
C(22)-C(23)-C(24)	120.5(2)
C(22)-C(23)-H(23)	119.8
C(24)-C(23)-H(23)	119.8
C(23)-C(24)-C(19)	120.8(2)
C(23)-C(24)-H(24)	119.6
C(19)-C(24)-H(24)	119.6
N(1)-C(25)-H(25A)	109.5
N(1)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
N(1)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(5)-C(26)-C(27)	118.4(2)
C(5)-C(26)-H(26)	120.8
C(27)-C(26)-H(26)	120.8
C(26)-C(27)-C(2)	121.0(3)
C(26)-C(27)-H(27)	119.5
C(2)-C(27)-H(27)	119.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 131005lt_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	13(1)	14(1)	19(1)	-3(1)	-3(1)	-4(1)
S(2)	16(1)	16(1)	24(1)	-6(1)	-5(1)	-2(1)
O(1)	16(1)	14(1)	27(1)	-4(1)	-2(1)	-4(1)
O(2)	15(1)	22(1)	31(1)	-5(1)	-6(1)	-8(1)

O(3)	33(1)	15(1)	36(1)	-5(1)	-12(1)	-6(1)
O(4)	13(1)	26(1)	30(1)	-12(1)	-3(1)	-2(1)
N(1)	15(1)	16(1)	18(1)	-5(1)	-3(1)	-6(1)
N(2)	14(1)	16(1)	19(1)	-3(1)	-2(1)	-6(1)
N(3)	15(1)	16(1)	15(1)	-2(1)	-2(1)	-4(1)
C(1)	39(2)	75(2)	22(1)	3(1)	2(1)	5(2)
C(2)	21(1)	51(2)	20(1)	-6(1)	3(1)	7(1)
C(3)	19(1)	52(2)	21(1)	-11(1)	0(1)	-3(1)
C(4)	14(1)	34(1)	24(1)	-8(1)	-1(1)	-4(1)
C(5)	14(1)	23(1)	17(1)	-3(1)	0(1)	-2(1)
C(6)	15(1)	19(1)	13(1)	-5(1)	-2(1)	-6(1)
C(7)	14(1)	16(1)	14(1)	-3(1)	-1(1)	-2(1)
C(8)	17(1)	17(1)	11(1)	-3(1)	-1(1)	-7(1)
C(9)	18(1)	21(1)	18(1)	-8(1)	-4(1)	-4(1)
C(10)	22(1)	31(1)	28(1)	-2(1)	-4(1)	-14(1)
C(11)	30(1)	32(1)	28(1)	2(1)	-4(1)	-12(1)
C(12)	20(1)	31(1)	20(1)	-9(1)	-2(1)	1(1)
C(13)	30(1)	50(2)	27(1)	-4(1)	-7(1)	-2(1)
C(14)	14(1)	17(1)	12(1)	-2(1)	-1(1)	-5(1)
C(15)	13(1)	18(1)	16(1)	-2(1)	-1(1)	-6(1)
C(16)	18(1)	43(2)	26(1)	-12(1)	-4(1)	-9(1)
C(17)	23(1)	32(1)	22(1)	-6(1)	-2(1)	-12(1)
C(18)	16(1)	22(1)	22(1)	0(1)	-3(1)	-9(1)
C(19)	14(1)	14(1)	13(1)	-1(1)	0(1)	-4(1)
C(20)	17(1)	18(1)	20(1)	-5(1)	-2(1)	-6(1)
C(21)	23(1)	16(1)	22(1)	-5(1)	-3(1)	-7(1)
C(22)	19(1)	15(1)	23(1)	-2(1)	-2(1)	-2(1)
C(23)	16(1)	20(1)	33(1)	0(1)	-8(1)	-6(1)
C(24)	20(1)	13(1)	32(1)	-3(1)	-7(1)	-6(1)
C(25)	21(1)	19(1)	31(1)	-11(1)	-5(1)	-6(1)
C(26)	30(1)	23(1)	26(1)	-1(1)	2(1)	-6(1)
C(27)	34(2)	28(1)	33(1)	8(1)	8(1)	1(1)

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å^2x\ 10\ ^3) for 131005lt_0m.

H(1A) 426	2 695	11492	85
H(1B) 361	9 -437	11429	85
H(1C) 251	0 964	11826	85
H(3) 384	2 2745	10168	40
H(4) 334	8 3768	8508	30
H(7) 429	6 4730	6136	19
H(10) 541	6 4128	8867	32
H(11) 668	0 2918	10242	37
H(13A) 852	9 3393	11387	59
H(13B) 1010	8 3002	10625	59
H(13C) 916	0 2017	10886	59
H(15) 869	6 2818	6365	19
H(16) 974	0 4732	9156	34
H(17) 843	9 6011	7806	30
H(18A) 883	7 4915	6193	30
H(18B) 803	7 6332	5522	30
H(18C) 850	4939	5073	30
H(20) 783	4 -849	5981	22
H(21) 984	0 -2903	6027	24
H(22) 1209	4 -3053	6407	25
H(23) 1234	8 -1124	6732	28
H(24) 1035	1 936	6707	25
H(25A) 465	7 1051	5227	34
H(25B) 295	6 1244	5737	34
H(25C) 425	4 456	6420	34
H(26) 193	9 761	8301	35
H(27) 244	9 -252	9979	48

(b) compound 5a (CCDC 1446058)

Table 1. Crystal data and structure refinement for 150416LT_a.

Identification code	150416LT_a	
Empirical formula	C10 H12 N2 O5	
Formula weight	240.22	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n a 21	
Unit cell dimensions	$a = 13.782(4) \text{ Å}$ $\alpha = 9$	€0°.
	$b = 18.539(5) \text{ Å}$ $\beta = 9$	€0°.
	$c = 3.9890(12) \text{ Å}$ $\gamma = 9$	90°.
Volume	1019.2(5) Å ³	
Z	4	
Density (calculated)	1.566 Mg/m ³	
Absorption coefficient	0.127 mm ⁻¹	

F(000)	504
Crystal size	0.30 x 0.01 x 0.01 mm ³
Theta range for data collection	1.841 to 26.645°.
Index ranges	-17<=h<=17, -22<=k<=23, -4<=l<=3
Reflections collected	5305
Independent reflections	1680 [R(int) = 0.0412]
Completeness to theta = 25.242°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.7676
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1680 / 1 / 156
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0397, wR2 = 0.0837
R indices (all data)	R1 = 0.0503, wR2 = 0.0880
Absolute structure parameter	-1(2)
Extinction coefficient	n/a
Largest diff. peak and hole	0.179 and -0.186 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 150416LT_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

xyz $C(1)$ $6329(2)$ $1023(2)$ $316(8)$ $C(2)$ $4692(2)$ $1029(2)$ $1488(9)$ $C(3)$ $5106(2)$ $1747(1)$ $2647(9)$ $C(4)$ $6842(2)$ $2131(2)$ $3429(8)$ $C(5)$ $7894(2)$ $1931(2)$ $3069(10)$ $C(6)$ $6500(2)$ $2737(2)$ $4862(8)$ $C(7)$ $7086(2)$ $3316(2)$ $6295(9)$ $C(8)$ $7103(2)$ $4477(1)$ $9403(9)$ $C(9)$ $6275(2)$ $4964(2)$ $10544(9)$ $C(10)$ $5594(2)$ $3882(2)$ $8959(9)$ $N(1)$ $6156(2)$ $1631(1)$ $2265(7)$				
C(1) $6329(2)$ $1023(2)$ $316(8)$ $C(2)$ $4692(2)$ $1029(2)$ $1488(9)$ $C(3)$ $5106(2)$ $1747(1)$ $2647(9)$ $C(4)$ $6842(2)$ $2131(2)$ $3429(8)$ $C(5)$ $7894(2)$ $1931(2)$ $3069(10)$ $C(6)$ $6500(2)$ $2737(2)$ $4862(8)$ $C(7)$ $7086(2)$ $3316(2)$ $6295(9)$ $C(8)$ $7103(2)$ $4477(1)$ $9403(9)$ $C(9)$ $6275(2)$ $4964(2)$ $10544(9)$ $C(10)$ $5594(2)$ $3882(2)$ $8959(9)$ $N(1)$ $6156(2)$ $1631(1)$ $2265(7)$	X	у	Z	U(eq)
C(2) $4692(2)$ $1029(2)$ $1488(9)$ $C(3)$ $5106(2)$ $1747(1)$ $2647(9)$ $C(4)$ $6842(2)$ $2131(2)$ $3429(8)$ $C(5)$ $7894(2)$ $1931(2)$ $3069(10)$ $C(6)$ $6500(2)$ $2737(2)$ $4862(8)$ $C(7)$ $7086(2)$ $3316(2)$ $6295(9)$ $C(8)$ $7103(2)$ $4477(1)$ $9403(9)$ $C(9)$ $6275(2)$ $4964(2)$ $10544(9)$ $C(10)$ $5594(2)$ $3882(2)$ $8959(9)$ $N(1)$ $6156(2)$ $1631(1)$ $2265(7)$	 6329(2)	1023(2)	316(8)	18(1)
C(3) $5106(2)$ $1747(1)$ $2647(9)$ $C(4)$ $6842(2)$ $2131(2)$ $3429(8)$ $C(5)$ $7894(2)$ $1931(2)$ $3069(10)$ $C(6)$ $6500(2)$ $2737(2)$ $4862(8)$ $C(7)$ $7086(2)$ $3316(2)$ $6295(9)$ $C(8)$ $7103(2)$ $4477(1)$ $9403(9)$ $C(9)$ $6275(2)$ $4964(2)$ $10544(9)$ $C(10)$ $5594(2)$ $3882(2)$ $8959(9)$ $N(1)$ $6156(2)$ $1631(1)$ $2265(7)$	4692(2)	1029(2)	1488(9)	21(1)
C(4) $6842(2)$ $2131(2)$ $3429(8)$ $C(5)$ $7894(2)$ $1931(2)$ $3069(10)$ $C(6)$ $6500(2)$ $2737(2)$ $4862(8)$ $C(7)$ $7086(2)$ $3316(2)$ $6295(9)$ $C(8)$ $7103(2)$ $4477(1)$ $9403(9)$ $C(9)$ $6275(2)$ $4964(2)$ $10544(9)$ $C(10)$ $5594(2)$ $3882(2)$ $8959(9)$ $N(1)$ $6156(2)$ $1631(1)$ $2265(7)$	5106(2)	1747(1)	2647(9)	17(1)
C(5)7894(2)1931(2)3069(10)C(6)6500(2)2737(2)4862(8)C(7)7086(2)3316(2)6295(9)C(8)7103(2)4477(1)9403(9)C(9)6275(2)4964(2)10544(9)C(10)5594(2)3882(2)8959(9)N(1)6156(2)1631(1)2265(7)	6842(2)	2131(2)	3429(8)	16(1)
C(6)6500(2)2737(2)4862(8)C(7)7086(2)3316(2)6295(9)C(8)7103(2)4477(1)9403(9)C(9)6275(2)4964(2)10544(9)C(10)5594(2)3882(2)8959(9)N(1)6156(2)1631(1)2265(7)	7894(2)	1931(2)	3069(10)	23(1)
C(7)7086(2)3316(2)6295(9)C(8)7103(2)4477(1)9403(9)C(9)6275(2)4964(2)10544(9)C(10)5594(2)3882(2)8959(9)N(1)6156(2)1631(1)2265(7)	6500(2)	2737(2)	4862(8)	17(1)
C(8)7103(2)4477(1)9403(9)C(9)6275(2)4964(2)10544(9)C(10)5594(2)3882(2)8959(9)N(1)6156(2)1631(1)2265(7)	7086(2)	3316(2)	6295(9)	16(1)
C(9)6275(2)4964(2)10544(9)C(10)5594(2)3882(2)8959(9)N(1)6156(2)1631(1)2265(7)	7103(2)	4477(1)	9403(9)	18(1)
C(10)5594(2)3882(2)8959(9)N(1)6156(2)1631(1)2265(7)	6275(2)	4964(2)	10544(9)	19(1)
N(1) 6156(2) 1631(1) 2265(7)	5594(2)	3882(2)	8959(9)	16(1)
11(1) $0150(2)$ $1051(1)$ $2205(7)$	6156(2)	1631(1)	2265(7)	16(1)
N(2) 6564(2) 3871(1) 7917(7)	6564(2)	3871(1)	7917(7)	15(1)
O(1) 5480(1) 692(1) -364(6)	5480(1)	692(1)	-364(6)	22(1)

O(2)	7087(1)	800(1)	-742(7)	23(1)
O(3)	7971(1)	3386(1)	6168(7)	22(1)
O(4)	4964(1)	3445(1)	8473(6)	22(1)
O(5)	5437(1)	4487(1)	10761(7)	20(1)

Table 3. Bond lengths [Å] and angles [°] for $150416LT_a$.

C(1)-O(2)	1.201(3)
C(1)-O(1)	1.349(3)
C(1)-N(1)	1.389(4)
C(2)-O(1)	1.455(3)
C(2)-C(3)	1.521(4)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-N(1)	1.471(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(6)	1.345(4)
C(4)-N(1)	1.403(4)
C(4)-C(5)	1.504(4)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.460(4)
C(6)-H(6)	0.9500
C(7)-O(3)	1.228(3)
C(7)-N(2)	1.414(4)
C(8)-N(2)	1.471(4)
C(8)-C(9)	1.525(4)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-O(5)	1.458(3)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-O(4)	1.204(3)
C(10)-O(5)	1.350(4)

C(10)-N(2)	1.400(4)
O(2)-C(1)-O(1)	121.8(3)
O(2)-C(1)-N(1)	128.7(3)
O(1)-C(1)-N(1)	109.4(2)
O(1)-C(2)-C(3)	104.5(2)
O(1)-C(2)-H(2A)	110.9
C(3)-C(2)-H(2A)	110.9
O(1)-C(2)-H(2B)	110.9
C(3)-C(2)-H(2B)	110.9
H(2A)-C(2)-H(2B)	108.9
N(1)-C(3)-C(2)	102.1(2)
N(1)-C(3)-H(3A)	111.4
C(2)-C(3)-H(3A)	111.4
N(1)-C(3)-H(3B)	111.4
C(2)-C(3)-H(3B)	111.4
H(3A)-C(3)-H(3B)	109.2
C(6)-C(4)-N(1)	117.2(2)
C(6)-C(4)-C(5)	125.7(3)
N(1)-C(4)-C(5)	117.1(2)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(4)-C(6)-C(7)	125.9(2)
C(4)-C(6)-H(6)	117.0
C(7)-C(6)-H(6)	117.0
O(3)-C(7)-N(2)	116.5(3)
O(3)-C(7)-C(6)	127.7(3)
N(2)-C(7)-C(6)	115.7(2)
N(2)-C(8)-C(9)	101.2(2)
N(2)-C(8)-H(8A)	111.5
C(9)-C(8)-H(8A)	111.5
N(2)-C(8)-H(8B)	111.5

C(9)-C(8)-H(8B)	111.5
H(8A)-C(8)-H(8B)	109.3
O(5)-C(9)-C(8)	104.5(2)
O(5)-C(9)-H(9A)	110.8
C(8)-C(9)-H(9A)	110.8
O(5)-C(9)-H(9B)	110.8
C(8)-C(9)-H(9B)	110.8
H(9A)-C(9)-H(9B)	108.9
O(4)-C(10)-O(5)	122.0(3)
O(4)-C(10)-N(2)	129.2(3)
O(5)-C(10)-N(2)	108.8(2)
C(1)-N(1)-C(4)	127.2(2)
C(1)-N(1)-C(3)	110.3(2)
C(4)-N(1)-C(3)	122.1(2)
C(10)-N(2)-C(7)	129.2(2)
C(10)-N(2)-C(8)	110.6(2)
C(7)-N(2)-C(8)	118.9(2)
C(1)-O(1)-C(2)	110.5(2)
C(10)-O(5)-C(9)	110.2(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 150416LT_a. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	23(2)	18(1)	13(2)	5(1)	-2(1)	2(1)
C(2)	18(1)	21(1)	23(2)	0(2)	2(1)	0(1)
C(3)	15(1)	20(2)	15(2)	0(1)	-2(1)	-1(1)
C(4)	17(1)	19(1)	11(2)	7(1)	1(1)	-2(1)
C(5)	21(2)	24(2)	24(2)	-4(2)	-2(1)	1(1)
C(6)	14(1)	21(2)	15(2)	1(1)	1(1)	-1(1)
C(7)	20(1)	16(1)	11(2)	4(1)	0(1)	1(1)
C(8)	19(1)	18(1)	17(2)	-1(1)	-1(1)	-4(1)
C(9)	18(1)	19(1)	20(2)	-3(2)	-1(1)	-4(1)

C(10)	20(2)	18(1)	11(2)	4(1)	-2(1)	1(1)
N(1)	17(1)	16(1)	16(2)	0(1)	1(1)	1(1)
N(2)	14(1)	17(1)	15(2)	-1(1)	-1(1)	-2(1)
O(1)	22(1)	20(1)	24(1)	-5(1)	-1(1)	-1(1)
O(2)	23(1)	23(1)	23(1)	-3(1)	4(1)	4(1)
O(3)	16(1)	26(1)	23(1)	-1(1)	0(1)	-1(1)
O(4)	18(1)	23(1)	24(2)	-3(1)	2(1)	-4(1)
O(5)	18(1)	20(1)	21(1)	-3(1)	3(1)	-1(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 150416LT_a.

	Х	У	Z	U(eq)
H(2A)	4499	728	3429	25
H(2B)	4119	1103	29	25
H(3A)	4877	2149	1217	20
H(3B)	4932	1848	5009	20
H(5A)	8295	2284	4259	34
H(5B)	8070	1927	689	34
H(5C)	8002	1450	4024	34
H(6)	5816	2793	4948	20
H(8A)	7520	4719	7724	22
H(8B)	7507	4317	11318	22
H(9A)	6421	5183	12752	23
H(9B)	6160	5355	8898	23
H(9B)	0100	2222	8898	

- .

- .

. .

	 	 			 		 	l		 	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									1		
2000 CHANNEL f2 2010 Maltzl6 2010 JR 22 92.00 usec 120.00 dB 2 9.00 dB 2 9.00 dB 2 9.00 dB 2 9.00 dB 2 9.00 dB 2 9.00 dB										I	
CHANNEL f1 1 13C 4.80 usec 0 dB 1 59.5346470 MHz											
l_ 20130133			N. _N	Is							
Vent Data Parameters L YLC-1195 VO 2 CNO 1 - Acquisition Parameters											
						\forall					

· –

· –

. –

. .

. –

mulli

2.365

-1.550

..

	SAMPLE	SPECIAL					
date	May 12 2014	temp	not used				
solve	nt cdcl3	gain	not used				
file	/home/oper/vn~	spin	not used				
nreys	/data/LIOU/li-	hst	0.008				
ou	0512.001H.fid	EW90	12,600				
AC.	QUISITION	alfa	6,600				
8.94	9000.9	FLAGS					
a.t.	2.044	11	n				
mp	36788	in	n				
fb	not used	dp	Y				
los.	4	hs	nn				
5.5	2		PROCESSING				
dl	1.000	fn	32768				
mt.	32		DISPLAY				
ct	32	#p	-250.1				
TR	ANSMITTER	Mp	wp 5247.6				
tn	H1	rfl	4643.3				
sfrq	499.809	rfp	3618.6				
tof	999.5	TP	84.3				
tpwr	55	lp	2.7				
E.M.	6.300		FLOT				
D	ECOUPLER	MC.	250				
din	C13	#-C	0				
dof	0	V.S.	91				
din	nnn	th	1				

YLC-1041-2 expl Proton SAMPLE SPECIAL date May 12 2014 temp not used file /home/oper/vm- spin not used file /home/oper/vm- spin not used nrsys/data/LlOU/1- hst 0.008 ou0512.001M.fid pw90 12.600 ACQUISTION alfa 6.600

• •

- -

7 829 7 829 7 829 7 829 7 829 7 829 7 829 7 829 7 829 7 7 829 7 7 829 7 7 829 7 7 7 829 7 7 639 7 7 639 7 7 639 7 6 636 6 866 6 866 6 866 6 866 L1130

A 2.415

×1.130

--

- .

--

- -

- .

13.260

- -

~ -

A 3.303

- .

638 638 6632 6632 6621 6621 6621 6621 6621 472 472 419 419 2256 2256 185 185 185

-1.558

--

. .

- -

· _

. –

. .

. .

 $\bigwedge^{1.067}_{1.055}$

· -

. .

· -

. .

Current Data Parameters NAME PS-C-023-A EXPNO 2 PROCNO 1	udd	156.453 149.2123 149.2123 149.3934 141.439 141.439 141.439 141.456 113.456 113.456 113.456 113.456 113.456 113.656 113.656 113.656 113.656 113.656 113.656 113.656 113.7566 113.7566 113.7566 113.7566 113.7566 113.7566 113.7566 113.7566 110	$\bigwedge_{76.999}^{77.211}$	37.370 36.671 29.685 21.585 16.916 14.403
F2 - Acquisition Parameters Date20151228 Time 14.34 INSTRUM spect PROBRD S mm (NP 1H/1 PULPROG 32768 SOLVENT CDC13 NS 5120 DS 0 SHM 45045.047 FIDRES 1.374666 AQ 0.3637748 SW 11.100 DM 11.100 DH 13.5000000 sec DI1 3.5000000 sec DLTA 3.4000000 sec MEREST 0.0000000 sec MCREX 0.01050000 sec				
NUC1 13C F1 4.80 usec PL1 0.00 dB SF01 150.5094992 MHz		[⊥] _N [−] [†] s 30		
CPDPRG2 waltz16 NUC2 1H PCPD2 92.00 usec PL2 120.00 dB PL12 9.00 dB PL13 14.00 dB SF02 598.5029925 MHz				
F2 - Processing parameters SI 65536 SF 150.4929487 MHz MCM EM SSB 0 LB 3.00 Hz GB 0 PC 1.00		1		
1D NMR plot parameters CK 20.00 cm CY 10.00 cm F1P 200.000 ppm F1 30098.59 Hz F2P 0.000 ppm F2 0.000 Hz PPMCM 10.00000 ppm/cm H2CM 1504.92944 Hz/cm	ppm	180 160 140 120 100	80 .60	40 20

~-

- .

- .

--

