Supporting information

Visible Light-Induced Intramolecular Dearomative Cyclization of a-

Bromo-N-benzyl-alkylamide for the Synthesis of 2-

Azaspiro[4.5]decanes

Bei Hu,^{*a*} Yuyuan Li,^{*b*} Wuheng Dong,^{*a*} Kai Ren,^{*a*} Xiaomin Xie,^{*a*} Jun Wan^{*b*} and Zhaoguo Zhang^{**a,c*}

^aSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

^bCollege of Chemistry and Molecular Engineering and College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao 266042, China ^cShanghai institute of organic chemistry, Chinese Academy of Sciences, 345 Lingling road, Shanghai 200032, China

Content

1. General Information	2
2. Preparation of substrates	2
2.1 Representative procedure for the preparation of 2-bromo-N-(tert-butyl)- N-(4-	
methoxybenzyl)-2-methylpropanamide.	2
2.2 The preparation of 2-bromo-N-(tert-butyl)-N- (4-hydroxybenzyl)-2-methylpropanamide	
(1 p)	3
3. A general procedure for <i>fac</i> -Ir(ppy) ₃ -catalyzed intramolecular dearomative cyclization	
under visible light	3
4. The <i>fac</i> -Ir(ppy) ₃ -catalyzed intramolecular dearomative cyclization in 1g or 1j and control	
experiments of 1a	4
5. Spectral data for substrates and products	4
6. References	.14
7. NMR spectra of the products	.15

1. General Information

Unless otherwise noted, all reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Materials were purchased from commercial source and were used without further purification. Anhydrous DMF, DMA, NMP, DCE, CH₃CN, DCM were freshly distilled from calcium hydride, ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz spectrometer. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of deuterochloroform (77.00 ppm) as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. HRMS were performed under ESI ionization technique on a Q-TOF Premier Mass Spectrometer. Flash column chromatography was performed on silica gel (300-400 mesh).

2. Preparation of substrates

2.1 Representative procedure for the preparation of 2-bromo-*N*-(*tert*-butyl)- *N*-(4methoxybenzyl)-2-methylpropanamide. (1a-1o, 1q-1s)¹

To a solution of 4-methoxybenzaldehyde (10.0 mmol) in ethanol (20 mL), *tert*-butylamine (15 mmol) was added at room temperature. After 4 h, NaBH₄ (6 mmol) was added at 0 °C and stirred for 2-3 h. After completion, the reaction was quenched with H₂O (5 mL) and the solvent was evaporated after filtered over a celite pad. The resulting residue was dissolved in EtOAc (25 mL) and washed with water (2 x 20 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford the corresponding secondary amine, which was used to the next reaction without further purification.

To a solution of the crude amine in dichloromethane (20 mL) and ^{*i*}Pr₂NEt (12 mmol), 2-bromo-2-methylpropionyl bromide (12 mmol) was added dropwise slowly at 0 °C.

After completion, the reaction was quenched with H₂O (20 mL) and extracted with DCM (3 x 25 mL). The combined organic extracts were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by silica-gel column chromatography to give 2-bromo-*N*-(*tert*-butyl)-*N*-(4-methoxybenzyl)-2-methylpropanamide (**1a**) as a white solid (2.9 g, 86% yield, mp: 97 - 100 °C).¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.8, 2H), 6.89 – 6.86 (m, 2H), 4.97 (s, 2H), 3.80 (s, 3H), 1.93 (s, 6H), 1.37 (s, 9H) ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 158.5, 131.8, 127.4, 113.8, 60.5, 59.7, 55.2, 50.1, 33.6, 28.4.

2.2 The preparation of 2-bromo-*N*-(*tert*-butyl)- *N*-(4-hydroxybenzyl)-2methylpropanamide (1p)²

A mixture of TBS-protected 2-bromo-*N*-(*tert*-butyl)-*N*-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-2-methylpropanamide **1o** (1 mmol) and K₃PO₄ (0.25 mmol) in DMF-H₂O (2 mL, 10:1,V/V) was stirred at room temperature until the substrate finished as indicated by TLC. Then, the reaction mixture was diluted with brine (10 mL), extracted with EtOAc (3 x 5 mL), and dried over anhydrous Na₂SO₄. The solvent was removed in a vacuum and was purified by flash column chromatography over silica gel using ethyl hexane:acetate (5:1) as eluent. Finally, the desired product **1p** was obtained with 70% yield.¹H NMR (400 MHz, DMSO) δ 9.29 (s, 1H), 7.04 (d, *J* = 8.4, 2H), 6.72 (d, *J* = 8.4, 2H), 4.87 (s, 2H), 1.84 (s, 6H), 1.27 (s, 9H). ¹³C NMR (100 MHz, DMSO) δ 174.7, 160.5, 134.3, 131.8, 131.5, 119.6, 66.2, 63.4, 53.9, 37.8, 32.3.

3. A general procedure for *fac*-Ir(ppy)₃-catalyzed intramolecular dearomative cyclization under visible light

A dried Schlenk tube equipped with a stirrer bar which was evacuated and backfilled with nitrogen was added substrate 1 (0.5 mmol), *fac*-Ir(ppy)₃ (0.005 mmol) and Li₂CO₃ (0.5 mmol). Then 2 mL of DMA was added into the reaction tube via a syringe. The reaction mixture was

degassed by the freeze-pump-thaw method and then irradiated with a 7W blue LED in N_2 atmosphere (distance app. 5 cm) for 48 h. After the completion of the reaction, it was quenched by water and extracted with DCM (3 x 15 mL). The organic layers were combined and the pure product was obtained by flash column chromatography on silica gel.

4. The fac-Ir(ppy)₃-catalyzed intramolecular dearomative cyclization in 1g or 1j and

control experiments of 1a

Intramolecular dearomative cyclization in 1g or 1j and radical inhibition experiments of 1a

The experiment of turn on/off the light of 1a

5. Spectral data for substrates and products

5.1 Spectral data for substrates.

2-Bromo-N-(tert-butyl)-N-(4-methoxybenzyl)-2-methylpropanamide

White solid, 86% yield, mp: 97 - 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.8, 2H), 6.89 – 6.86 (m, 2H), 4.97 (s, 2H), 3.80 (s, 3H), 1.93 (s, 6H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 158.5, 131.8, 127.4, 113.8, 60.5, 59.7, 55.2, 50.1, 33.6, 28.4. HRMS-ESI (m/z): Calculated for C₁₆H₂₅⁷⁹BrNO₂ (M + H)⁺: 342.1069, Found: 342.1073.

2-Bromo-N-methyl-N-(4-methoxybenzyl)-2-methylpropanamide

Pale yellow liquid, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.0, 2H), 6.87 (d, *J* = 8.4, 2H), 4.67 (s, 2H), 3.80 (s, 3H), 3.12 (s, 3H), 2.01 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 158.9, 128.6, 114.0, 57.0, 55.2, 53.2, 36.6, 32.6. HRMS-ESI (m/z): Calculated for C₁₃H₁₈⁷⁹BrNO₂Na (M + Na)⁺: 322.0419, Found: 322.0428.

2-Bromo-N-isopropyl-N-(4-methoxybenzyl)-2-methylpropanamide

Pale yellow liquid, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 7.6, 2H), 6.83 (d, *J* = 8.4, 2H), 4.99 (s, 1H), 4.43 (s, 2H), 3.78 (s, 3H), 2.00 (s, 6H), 1.24 (d, *J* = 6.4, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 158.2, 131.0, 127.4, 113.7, 57.6, 55.1, 49.7, 44.8, 32.9, 20.7. HRMS-ESI (m/z): Calculated for C₁₅H₂₃⁷⁹BrNO₂ (M + H)⁺: 328.0912, Found: 328.0917. **2-Bromo-***N***-butyl-***N***-(4-methoxybenzyl)-2-methylpropanamide**

Pale yellow liquid, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.12 (m, 2H), 6.87 – 6.85 (m, 2H), 4.91 – 4.57 (m, 2H), 3.78 (s, 3H), 3.59 – 3.22 (m, 2H), 1.97 (s, 6H), 1.52 (s, 2H), 1.27 – 1.26 (m, 2H), 0.89 (t, J = 6.4, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 128.2, 114.0,

57.3, 55.1, 51.9, 48.2, 47.8, 46.7, 32.86, 29.6, 28.9, 28.4, 20.0, 13.8. HRMS-ESI (m/z): Calculated for C₁₆H₂₅⁷⁹BrNO₂ (M + H)⁺: 342.1069, Found: 342.1070.
2-Bromo-N-cyclohexyl-N-(4-methoxybenzyl)-2-methylpropanamide

Pale yellow liquid, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.0, 2H), 6.82 (d, *J* = 8.4, 2H), 4.46 (s, 3H), 3.78 (s, 3H), 2.00 (s, 6H), 1.81 (t, *J* = 14.8, 4H), 1.68 – 1.64 (m, 2H), 1.54 – 1.45 (m, 2H), 1.37 – 1.33 (m, 1H), 1.12 – 1.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 158.1, 131.1, 127.4, 113.6, 58.2, 57.7, 55.1, 45.9, 32.9, 31.4, 25.8, 25.2. HRMS-ESI (m/z): Calculated for C₁₈H₂₇⁷⁹BrNO₂ (M + H)⁺: 368.1225, Found: 368.1230.

2-Bromo-N-(4-methoxybenzyl)-2-methylpropanamide

White solid, 80% yield, mp: 47 - 49 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.20 (m, 2H), 6.89 (s, 1H), 6.90 – 6.86 (m, 2H), 4.39 (d, *J* = 5.6, 2H), 3.80 (s, 3H), 1.98 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 159.1, 129.8, 128.9, 114.2, 62.9, 55.3, 43.9, 32.7. HRMS-ESI (m/z): Calculated for C₁₂H₁₆⁷⁹BrNO₂Na (M + Na)⁺: 308.0262, Found: 308.0266.

2-Bromo-N-(4-methoxybenzyl)-2-methyl-N-phenylpropanamide

Pale yellow liquid, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 3H), 7.18 – 7.06 (m, 4H), 6.82 – 6.75 (m, 2H), 4.83 (s, 2H), 3.78 (s, 3H), 1.71 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 158.8, 142.0, 130.2, 129.9, 129.0, 128.6, 128.1, 113.5, 58.4, 56.2, 55.0, 33.3. HRMS-ESI (m/z): Calculated for C₁₈H₂₁⁷⁹BrNO₂ (M + H)⁺: 362.0756, Found: 362.0750. *N*-Benzyl-2-bromo-*N*-(4-methoxybenzyl)-2-methylpropanamide

Pale yellow liquid, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 3H), 7.23 – 7.07 (m, 4H), 6.88 (s, 2H), 4.90 (s, 2H), 4.53 (s, 2H), 3.81 (s, 3H), 2.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 158.8, 136.3, 128.5, 127.2, 114.0, 57.1, 55.1, 51.2, 48.5, 32.9. HRMS-ESI (m/z): Calculated for C₁₉H₂₃⁷⁹BrNO₂ (M + H)⁺: 376.0912, Found: 376.0913. **Methyl 2-(2-bromo-***N***-(4-methoxybenzyl)-2-methylpropanamido)acetate**

Colorless liquid, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 2H), 6.88 (d, *J* = 8.4, 2H), 5.04 (s, 2H), 3.87 (s, 2H), 3.80 (s, 3H), 3.71 (s, 3H), 2.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 159.2, 129.0, 128.5, 127.4, 114.1, 56.1, 55.2, 53.2, 52.0, 47.8, 32.5. HRMS-ESI (m/z): Calculated for C₁₅H₂₀⁷⁹BrNO₄ Na (M + Na)⁺: 380.0473, Found: 380.0474. *N*-Allyl-2-bromo-*N*-(4-methoxybenzyl)-2-methylpropanamide

MeO O Br

Colorless liquid, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.4, 2H), 6.87 (d, J = 8.4, 2H), 5.79 (s, 1H), 5.18 (s, 2H), 4.96 – 4.18 (m, 4H), 3.80 (s, 3H), 2.00 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 158.6, 132.6, 128.5, 117.7, 113.8, 56.9, 54.9, 50.2, 47.9, 32.6, 30.5. HRMS-ESI (m/z): Calculated for C₁₅H₂₀⁷⁹BrNO₂Na (M + Na)⁺: 348.0575, Found: 348.0578.

2-Bromo-N-(tert-butyl)-N-(4-methoxybenzyl)propanamide

Pale yellow liquid, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.4, 2H), 6.91 (d, *J* = 8.4, 2H), 4.71 (d, *J* = 18.8, 1H), 4.57 (d, *J* = 18.8, 1H), 4.31 (q, *J* = 6.4, 1H), 3.81 (s, 3H), 1.75 (d, *J* = 6.4, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 158.7, 130.8, 126.2, 114.3, 58.4, 55.2, 48.0, 41.9, 28.2, 22.0. HRMS-ESI (m/z): Calculated for C₁₅H₂₂⁷⁹BrNO₂Na (M + Na)⁺: 350.0732, Found: 350.0731.

2-Bromo-N-(tert-butyl)-N-(4-methoxybenzyl)acetamide

Pale yellow liquid, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.8, 2H), 6.94 – 6.86 (m, 2H), 4.61 (s, 2H), 3.81 (s, 3H), 3.75 (s, 2H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 158.8, 130.4, 126.4, 114.4, 58.5, 55.3, 48.8, 30.0, 28.3. HRMS-ESI (m/z): Calculated for C₁₄H₂₀⁷⁹BrNO₂Na (M + Na)⁺: 336.0575, Found: 336.0561. *N*-(4-(Benzyloxy)benzyl)-2-bromo-*N*-(*tert*-butyl)-2-methylpropanamide

Pale yellow liquid, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.30 (m, 5H), 7.15 (d, J = 8.4, 2H), 6.99 – 6.92 (m, 2H), 5.05 (s, 2H), 1.93 (s, 6H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) & 171.4, 157.8, 136.8, 132.1, 128.5, 127.9, 127.4, 114.7, 70.0, 60.4, 59.6, 50.1, 33.6, 28.3. HRMS-ESI (m/z): Calculated for $C_{22}H_{28}^{79}BrNO_2Na$ (M + Na)⁺: 440.1201, Found: 440.1212.

2-Bromo-N-(tert-butyl)-2-methyl-N-(4-((tetrahydro-2H-pyran-2yl)oxy)benzyl)propanamide

White solid, 70% yield, mp: 145 - 149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, J = 8.8, 2H), 7.05 - 6.97 (m, 2H), 5.38 (t, J = 3.6, 1H), 4.98 (s, 2H), 3.98 - 3.89 (m, 1H), 3.67 - 3.57 (m, 1H), 2.03 – 1.96 (m, 2H), 1.92 (s, 6H), 1.88 – 1.83 (m, 2H), 1.72 – 1.64 (m, 2H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 156.0, 132.8, 127.3, 116.4, 96.6, 62.2, 60.6, 59.7, 50.2, 33.7, 30.4, 29.7, 28.4, 25.2, 18.9. HRMS-ESI (m/z): Calculated for C₂₀H₃₁⁷⁹BrNO₃ (M + H)⁺: 412.1487, Found: 412.1486.

2-Bromo-N-(tert-butyl)-N-(4-((tert-butyldimethylsilyl)oxy)benzyl)-2-methylpropanamide

White solid, 81% yield, mp: 79 - 82 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, J = 8.4, 2H), 6.83 - 6.78 (m, 2H), 4.96 (s, 2H), 1.93 (s, 6H), 1.36 (s, 9H), 0.98 (s, 9H), 0.19 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 154.5, 132.5, 127.4, 119.9, 60.6, 59.7, 50.2, 33.7, 28.4, 25.6, 18.2, -4.4. HRMS-ESI (m/z): Calculated for C₂₁H₃₇⁷⁹BrNO₂Si (M + H)⁺: 442.1777, Found: 442.1486.

2-Bromo-N-(tert-butyl)-N-(4-hydroxybenzyl)-2-methylpropanamide

White solid, 70% yield, mp: 149 - 150 °C. ¹H NMR (400 MHz, DMSO) δ 9.29 (s, 1H), 7.04

(d, J = 8.4, 2H), 6.72 (d, J = 8.4, 2H), 4.87 (s, 2H), 1.84 (s, 6H), 1.27 (s, 9H). ¹³C NMR (100 MHz, DMSO) δ 174.7, 160.5, 134.3, 131.8, 131.5, 119.6, 66.2, 63.4, 53.9, 37.8, 32.3. HRMS-ESI (m/z): Calculated for C₁₅H₂₃⁷⁹BrNO₂ (M + H)⁺: 328.0912, Found: 328.0922. **2-Bromo-***N*-(*tert*-butyl)-*N*-(2,4-dimethoxybenzyl)-2-methylpropanamide

White solid, 65% yield, mp: 106 - 112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.4, 1H), 6.52 - 6.38 (m, 2H), 4.91 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 1.89 (s, 6H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 159.7, 156.7, 128.1, 120.6, 103.6, 98.2, 60.7, 59.6, 55.3, 45.0, 33.6, 28.1. HRMS-ESI (m/z): Calculated for C₁₇H₂₇⁷⁹BrNO₃ (M + H)⁺: 372.1174, Found: 372,1165.

2-Bromo-N-(3-bromo-4-methoxybenzyl)-N-(tert-butyl)-2-methylpropanamide

White solid, 82% yield, mp: 119 - 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 1.6, 1H), 7.15 (dd, *J* = 8.4, 1.6, 1H), 6.87 (d, *J* = 8.4, 1H), 4.99 - 4.93 (m, 2H), 3.89 (s, 3H), 1.92 (s, 6H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 154.8, 133.5, 132.6, 131.1, 127.8, 126.4, 111.8, 60.21, 59.8, 56.2, 49.6, 43.2, 33.6, 32.5, 28.4. HRMS-ESI (m/z): Calculated for C₁₆H₂₄Br₂NO₂ (M + H)⁺: 422.0153 (⁸¹Br), 420.0174 (⁷⁹Br) Found: 420.0183 (⁷⁹Br), 422.0170 (⁸¹Br).

2-Bromo-N-(tert-butyl)-N-((4-methoxynaphthalen-1-yl)methyl)-2-methylpropanamide

Pale yellow solid, 82% yield, mp: 138 - 140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.4, 1H), 7.92 (d, J = 8.2, 1H), 7.62 – 7.51 (m, 2H), 7.34 (d, J = 8.0, 1H), 6.80 (d, J = 8.0, 1H), 4.01 (s, 3H), 1.82 (s, 6H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 154.7, 130.5, 126.9, 125.8, 125.2, 124.1, 123.0, 121.6, 102.8, 61.1, 59.9, 55.4, 47.7, 28.1. HRMS-ESI (m/z): Calculated for C₂₀H₂₇⁷⁹BrNO₂ (M + H)⁺: 392.1225, Found: 392.1227.

5.1 Spectral data for products

2-(tert-Butyl)-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

White solid, 85% yield, mp: 108 - 112 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.91 – 6.87 (m, 2H), 6.40 – 6.36 (m, 2H), 3.39 (s, 2H), 1.42 (s, 9H), 1.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 185.0, 177.1, 148.9, 130.7, 54.2, 50.1, 49.5, 47.5, 27.5, 20.4. HRMS-ESI (m/z): Calculated for C₁₅H₂₂NO₂ (M + H)⁺: 248.1651, Found: 248.1654.

2,4,4-Trimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow liquid, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 10.4, 2H), 6.39 (d, J = 10.4, 2H), 3.35 (s, 2H), 2.93 (s, 3H), 1.09 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 177.0, 148.6, 130.6, 53.4, 49.4, 48.3, 30.0, 20.6. HRMS-ESI (m/z): Calculated for C₁₂H₁₆NO₂ (M + H)⁺: 206.1181, Found: 206.1182.

2-Isopropyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow solid, 91% yield, mp: 102 - 107 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.89 – 6.83 (m, 2H), 6.43 – 6.34 (m, 2H), 4.48 – 4.38 (m, 1H), 3.29 (s, 2H), 1.15 (d, *J* = 7.8, 6H), 1.08 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 184.8, 176.0, 148.6, 130.6, 49.7, 48.0, 46.2, 42.6, 20.3, 19.3. HRMS-ESI (m/z): Calculated for C₁₄H₂₀NO₂ (M + H)⁺: 234.1494, Found: 234.1491. **2-Butyl-4.4-dimethyl-2-azaspiro[4.5]deca-6.9-diene-3.8-dione**

Pale yellow liquid, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 10.2, 2H), 6.39 (d, J = 10.2, 2H), 3.36 – 3.33 (m, 4H), 1.55 – 1.48 (m, 2H), 1.37 – 1.30 (m, 2H), 1.09 (s, 6H), 0.94 (t, J = 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 176.6, 148.6, 130.5, 51.1, 49.5, 48.2, 42.3, 29.0, 20.5, 19.8, 13.5. HRMS-ESI (m/z): Calculated for C₁₅H₂₂NO₂ (M + H)⁺: 248.1651, Found: 248.1646.

2-Cyclohexyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow solid, 78% yield, mp: 101 - 110 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.86 (d, J = 10.2, 2H), 6.37 (d, J = 10.2, 2H), 4.04 – 3.95 (m, 1H), 3.30 (s, 2H), 1.87 – 1.62 (m, 7H), 1.44 – 1.31 (m, 4H), 1.07 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 176.0, 148.6, 130.6, 50.5, 49.6, 48.2, 47.3, 29.9, 25.1, 20.4. HRMS-ESI (m/z): Calculated for C₁₈H₂₄NO₂ (M + H)⁺: 274.1807, Found: 274.1802.

4,4-Dimethyl-2-phenyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow solid, 22% yield, mp: 105 - 110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.60 (m, 2H), 7.44 – 7.36 (m, 2H), 7.22 – 7.18 (m, 1H), 7.02 – 6.94 (m, 2H), 6.51 – 6.37 (m, 2H), 3.84 (s, 2H), 1.21 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7, 176.0, 148.0, 138.7, 131.0, 129.0, 125.0, 119.7, 52.4, 50.3, 47.7, 29.5, 20.8. HRMS-ESI (m/z): Calculated for C₁₇H₁₈NO₂ (M + H)⁺: 268.1333, Found: 268.1337.

1-(4-Methoxybenzyl)-3,3-dimethylindolin-2-one

Pale yellow liquid, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.19 (m, 3H), 7.16 – 7.12 (m, 1H), 7.02 (t, *J* = 7.2, 1H), 6.84 (d, *J* = 8.8, 2H), 6.74 (d, *J* = 7.6, 1H), 4.85 (s, 2H), 3.77 (s, 3H), 1.42 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 181.4, 159.0, 141.6, 135.8, 128.5, 128.2, 127.5, 122.4, 122.3, 114.12, 109, 55.2, 44.1, 43.0, 24.5. HRMS-ESI (m/z): Calculated for C₁₈H₁₉NO₂Na (M + Na)⁺: 304.1313, Found: 304.1313.

2-Benzyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow liquid, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 3H), 7.28 – 7.24 (m, 2H), 6.82 – 6.79 (m, 2H), 6.36 – 6.33 (m, 2H), 4.52 (s, 2H), 3.20 (s, 2H), 1.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8, 176.8, 148.4, 135.5, 130.6, 128.8, 128.1, 127.9, 50.6, 49.4,

48.0, 46.8, 20.5. HRMS-ESI (m/z): Calculated for C₁₈H₁₉NO₂Na (M + Na)⁺: 304.1313, Found: 304.1310.

Methyl 2-(4,4-dimethyl-3,8-dioxo-2-azaspiro[4.5]deca-6,9-dien-2-yl)acetate

Pale yellow liquid, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 10.4, 2H), 6.40 (d, J = 10.4, 2H), 4.13 (s, 2H), 3.75 (s, 3H), 3.46 (s, 2H), 1.13 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 177.6, 168.8, 148.4, 130.7, 52.3, 51.6, 49.0, 48.4, 43.6, 20.6. HRMS-ESI (m/z): Calculated for C₁₄H₁₈NO₄ (M + H)⁺: 264.1236, Found: 264.1234.

1-(4-Methoxybenzyl)-3,3-dimethylpiperidin-2-one

colorless liquid, 2j'+2j''=82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.12 (m, 2H), 6.88 – 6.81 (m, 2H), 4.46 (d, J = 14.4, 1H), 4.29 (d, J = 14.4, 1H), 3.78 (s, 3H), 3.46 (dd, J = 10.0, 4.8, 1H), 3.35 (dd, J = 10.0, 7.6, 1H), 3.22 (t, J = 10.4, 1H), 2.86 (dd, J = 10.0, 8.4, 1H), 2.44 – 2.35 (m, 1H), 1.90 (s, 1H), 1.23 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 159.1, 129.4, 128.3, 114.1, 55.2, 48.7, 46.0, 44.0, 31.4, 29.6, 24.2, 18.2. HRMS-ESI (m/z): Calculated for C₁₅H₂₁NO₂Na (M + Na)⁺: 270.1470, Found: 270.1457.

1-(4-Methoxybenzyl)-3,3,4-trimethylpyrrolidin-2-one

2j''

colorless liquid, **2j**'+**2j**"=82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, J = 8.4, 2H), 6.88 – 6.81 (m, 2H), 4.43 (d, J = 14.4, 1H), 4.30 (d, J = 14.4, 1H), 3.79 (s, 3H), 3.15 (dd, J = 9.6, 7.6, 1H), 2.70 (t, J = 9.2, 1H), 2.07 – 1.96 (m, 1H), 1.14 (s, 3H), 0.92 – 0.91 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 179.7, 159.0, 129.3, 128.9, 114.0, 55.2, 50.4, 45.9, 43.3, 38.3, 23.6, 18.2, 12.4. HRMS-ESI (m/z): Calculated for C₁₅H₂₁NO₂Na (M + Na)⁺: 270.1470, Found: 270.1465.

2-(tert-Butyl)-4-methyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow liquid, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.88 – 6.85 (m, 1H), 6.82 – 6.78 (m, 1H), 6.39 (d, *J* = 10.0, 2H), 3.52 (d, *J* = 10.0, 1H), 3.31 (d, *J* = 10.0, 1H), 2.66 (q, *J* = 7.2, 14.4, 1H), 1.42 (s, 9H), 0.93 (d, *J* = 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 174.0, 150.1, 148.0, 131.3, 130.4, 54.5, 51.1, 47.3, 46.3, 27.6, 9.7. HRMS-ESI (m/z): Calculated for C₁₄H₂₀NO₂ (M + H)⁺: 234.1494, Found: 234.1491.

2-(tert-Butyl)-2-azaspiro[4.5]deca-6,9-diene-3,8-dione²

Pale yellow liquid, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.97 – 6.89 (m, 2H), 6.34 – 6.31 (m, 2H), 3.48 (s, 2H), 2.53 (s, 2H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 171.6, 150.0, 129.3, 54.6, 53.0, 42.5, 40.8, 27.6.

2-(tert-Butyl)-6-methoxy-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow solid, 66% yield, mp: 132 - 134 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.64 (d, J = 10.2, 1H), 6.32 - 6.29 (m, 1H), 5.56 (s, 1H), 3.69 (s, 3H), 3.56 - 3.49 (m, 2H), 1.41 (s, 9H), 1.18 (s, 3H), 0.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.8, 177.4, 176.4, 144.6, 130.2, 102.6, 55.2, 54.1, 50.6, 49.3, 49.2, 29.6, 27.3, 23.1, 19.0. HRMS-ESI (m/z): Calculated for C₁₆H₂₄NO₃ (M + H)⁺: 278.1756, Found: 278.1759.

7-Bromo-2-(tert-butyl)-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione

Pale yellow solid, 45% yield, mp: 90 - 94 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 2.8, 1H), 6.92 (dd, J = 10.0, 2.8, 1H), 6.47 (d, J = 10.0, 1H), 3.45 (d, J = 10.4, 1H), 3.41 (d, J = 10.4, 1H), 1.41 (s, 9H), 1.06 (d, J = 8.4, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 176.6, 149.2, 149.0, 129.1, 126.1, 54.5, 51.1, 50.5, 49.0, 27.5, 20.6. HRMS-ESI (m/z): Calculated for C₁₅H₂₁BrNO₂ (M + H)⁺: 326.0756 (⁷⁹Br), 328.0735 (⁸¹Br), Found: 326.0752 (⁷⁹Br),

328.0749 (⁸¹Br). 1'-(*tert*-Butyl)-4',4'-dimethyl-4H-spiro[naphthalene-1,3'-pyrrolidine]-4,5'-dione

Pale yellow solid, 50% yield, mp: 110 - 114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.0, 1H), 7.66 (d, J = 8.0, 1H), 7.56 - 7.52 (m, 1H), 7.44 (t, J = 8.0, 1H), 7.02 (d, J = 10.4, 1H), 6.58 (d, J = 10.4, 1H), 3.85 (d, J = 10.4, 1H), 3.78 (d, J = 10.4, 1H), 1.52 (s, 9H), 1.17 (s, 3H), 0.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.0, 178.0, 150.4, 144.6, 132.6, 131.6, 130.1, 127.6, 127.0, 125.4, 54.4, 52.8, 52.2, 46.8, 27.4, 23.3, 20.3. HRMS-ESI (m/z): Calculated for C₁₆H₂₃NO₃Na (M + Na)⁺: 320.1626, Found: 320.1621.

6. References:

- 1. S. D. Bull, S. G. Davies, G. Fenton, A. W. Mulvaney, R. S. Prasad and A. D. Smith, J. Chem. Soc., Perkin Trans. 1, 2000, 3765;
- 2. T. R. Ibarra-Rivera, R. Gamez-Montano and L. D. Miranda, Chem. Commun., 2007, 3485.
- 3. L. Yan, F. Zhao, Y. Gan, J. Zhao and Z. Jiang, Synth. Commun., 2011, 42, 285.

7. NMR spectra of the products

2-Bromo-*N*-(*tert*-butyl)-*N*-(4-methoxybenzyl)-2-methylpropanamide (1a)

2-Bromo-N-methyl-N-(4-methoxybenzyl)-2-methylpropanamide (1b)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

2-Bromo-*N*-isopropyl-*N*-(4-methoxybenzyl)-2-methylpropanamide (1c)

2-Bromo-N-butyl-N-(4-methoxybenzyl)-2-methylpropanamide (1d)

2-Bromo-*N*-cyclohexyl-*N*-(4-methoxybenzyl)-2-methylpropanamide (1e)

.... ----.... ---•• -... ------. . . . -

....

2-Bromo-N-(4-methoxybenzyl)-2-methylpropanamide (1f)

20

2-Bromo-N-(4-methoxybenzyl)-2-methyl-N-phenylpropanamide (1g)

N-Benzyl-2-bromo-*N*-(4-methoxybenzyl)-2-methylpropanamide (1h)

2-Bromo-N-(tert-butyl)-N-(4-methoxybenzyl)propanamide (1k)

2-Bromo-N-(tert-butyl)-N-(4-methoxybenzyl)acetamide (11)

N-(4-(Benzyloxy)benzyl)-2-bromo-*N*-(*tert*-butyl)-2-methylpropanamide (1m)

2-Bromo-*N*-(*tert*-butyl)-2-methyl-*N*-(4-((tetrahydro-2H-pyran-2-yl)oxy)benzyl)propanamide (1n)

2-Bromo-*N*-(*tert*-butyl)-*N*-(4-((*tert*-butyldimethylsilyl)oxy)benzyl)-2-methylpropanamide (10)

^{230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10}

2-Bromo-N-(tert-butyl)-N-(4-hydroxybenzyl)-2-methylpropanamide (1p)

2-Bromo-*N*-(*tert*-butyl)-*N*-(2,4-dimethoxybenzyl)-2-methylpropanamide (1q)

2-Bromo-N-(3-bromo-4-methoxybenzyl)-N-(tert-butyl)-2-methylpropanamide (1r)

2-Bromo-*N*-(*tert*-butyl)-*N*-((4-methoxynaphthalen-1-yl)methyl)-2-methylpropanamide (1s)

2-(*tert*-Butyl)-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2a)

2,4,4-Trimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2b)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

2-Isopropyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2c)

2-Butyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2d)

2-Cyclohexyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2e)

4,4-Dimethyl-2-phenyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2g)

39

1-(4-Methoxybenzyl)-3,3-dimethylindolin-2-one (2g')

2-Benzyl-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2h)

1-(4-Methoxybenzyl)-3,3-dimethylpiperidin-2-one (2j')

1-(4-Methoxybenzyl)-3,3,4-trimethylpyrrolidin-2-one (2j")

2-(*tert*-Butyl)-4-methyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2k)

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1}

2-(tert-Butyl)-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2l)

2-(tert-Butyl)-6-methoxy-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2q)

7-Bromo-2-(tert-butyl)-4,4-dimethyl-2-azaspiro[4.5]deca-6,9-diene-3,8-dione (2r)

1'-(*tert*-Butyl)-4',4'-dimethyl-4H-spiro[naphthalene-1,3'-pyrrolidine]-4,5'-dione (2s)