Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

[Ru(phen)₂dppz]²⁺ Luminescence Reveals Nanoscale Variation of Polarity in the Cyclodextrin Cavity

Patrick Higgs,^a Andrew W. McKinley,^b and Eimer M. Tuite^a*

a. Chemical Nanoscience Laboratory, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. b: Department of Chemistry, Imperial College London, London SW7 2AZ, UK. E-mail: a.mckinley@imperial.ac.uk * Corresponding author. Fax: +44 (0)191 2226929; Tel: +44 (0)191 2225523; E-mail: eimer.tuite@ncl.ac.uk

Supporting Information

MATERIALS AND METHODS

The Δ - and Λ -enantiomers of [Ru(phen)₂dppz]Cl₂, [Ru(bpy)₂dppz]Cl₂, [Ru(bpy)₃]Cl₂, and [Ru(phen)₃]Cl₂ were prepared and purified as previously described [C. Hiort, P. Lincoln, B. Nordén, J. Am. Chem. Soc. 115 (1993) 3448-3454; P. Lincoln, B. Nordén, J. Phys. Chem. B 102 (1998) 9583-9594]. Luminescence excitation spectroscopy was used to establish that emissive impurities made no contribution above baseline emission. Enantiomeric purity was established by CD spectroscopy (Jasco J-720). The concentrations of ruthenium complexes were determined using the following extinction coefficients in water: [Ru(phen)₂dppz]²⁺, ε (439 nm) = 20,000 M⁻¹ cm⁻¹; [Ru(bpy)₂dppz]²⁺, ε (444 nm) = 16,100 M⁻¹ cm⁻¹; [Ru(phen)₃]²⁺, ε (445 nm) = 19,000 M⁻¹ cm⁻¹; [Ru(bpy)₃]²⁺, ε (452 nm) = 14,600 M⁻¹ cm⁻¹.

 β -cyclodextrin hydrate (Sigma, 99%) and β -cyclodextrin phosphate sodium salt (Sigma, \geq 95%, 2-6 mol phosphate per mol cyclodextrin) and γ -cyclodextrin (Sigma, \geq 98%) were used as received. Concentrations were determined by mass, and the average β -cyclodextrin phosphate sodium salt molar mass was calculated with 4 mol phosphate per mol cyclodextrin.

All experiments were carried out in ultrapure water. Absorption spectra were recorded with a Cary 100-Bio UV/vis spectrometer. Emission and excitation spectra were recorded on a SPEX Fluoromax spectrofluorimeter. Emission lifetimes were measured by single-photon counting with excitation at 405 nm and emission at 625 nm.

Binding constants at low $[\beta$ -P_nCD]/[Ru] ratios were estimated using the Benesi-Hildbrand method, assuming 1:1 stoichiometry using Equation (1) for absorbance and Equation (2) for emission [H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71 (1949) 2703-2707].

$$\frac{1}{A - A_0} = \frac{1}{K(A_{\infty} - A_0)} \cdot \frac{1}{[CD]_0} + \frac{1}{(A_{\infty} - A_0)}$$
(1)

$$\frac{1}{F - F_0} = \frac{1}{K(F_{\infty} - F_0)} \cdot \frac{1}{[CD]_0} + \frac{1}{(F_{\infty} - F_0)}$$
(2)

where A is absorbance, F is emission intensity, and K is the equilibrium constant for association of the ruthenium complex with β -P_nCD. When 1/(A–A₀) or 1/(F–F₀) is plotted against 1/[CD]₀, the binding constant equates to y-intercept/gradient.

Stern-Volmer analysis was applied to emission data to determine rate constants for quenching of the ruthenium complexes by oxygen using Equation (3).

$$\frac{F_0}{F} = 1 + k_q \tau_0[Q] \tag{3}$$

where τ_0 is the lifetime in the absence of quencher. The concentrations of oxygen in water are 0.3 mM in air and 0.0 mM under inert gas ["Handbook of Photochemistry" M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, 3rd Edn. (Taylor & Francis) 2006.]. These values were used both in the absence and presence of β -P_nCD.

ADDITIONAL EXPERIMENTAL DATA

solvent	λ_{max} / nm	τ / ns (air)	τ / ns (Ar)
dimethylformamide [1]	663	181	255
acetonitrile [1]	634	174	213
ethanol [1]	619	153	175
1,2-propanediol [2]	620	-	86
methanol [1]	627	27	29
1,3-propanediol [2]	620	-	27
formamide [1]	660	13	12
glycerol [2]	639	-	8.2
ethylene glycol [2]	656	-	7.5
water [3]	800	-	0.8
polymer		-	
poly(dA) [4]	650	5/67/216	-
poly(dT) [4]	647	7/84/248	-

Table S1. Emission lifetimes and emission spectral maxima of Δ -[Ru(phen)₂dppz]²⁺ in air at 293-298 K.

[1] A.W. McKinley, PhD Thesis, University of Newcastle upon Tyne, 2008. *Photophysics of Light Switch Ruthenium Complexs and Their Interactions with DNA*.

[2] J. Olofsson, L.M. Wilhelmsson, P. Lincoln, J. Am. Chem. Soc. 126 (2004) 15458-15465.

[3] E.J.C. Olson, D. Hu, A. Hormann, A.M. Jonkman, M.R. Arkin, E.D.A. Stemp, J.K. Barton, P.F. Barbara, J. Am. Chem. Soc. 119 (1997) 11458-11467.

[4] J.M. Moon, J.-M. Lee, J.Y. Choi, H.M. Lee, S.K. Kim, J. Inorg. Biochem. 101 (2007) 1386-1393.

Table S2. Equilibrium constants for initial interaction with β -P_nCD using Benesi-Hildebrand method, assuming formation of a 1:1 complex.

	Λ -[Ru(phen) ₂ dppz] ²⁺	Δ -[Ru(phen) ₂ dppz] ²⁺	Δ -[Ru(bpy) ₂ dppz] ²⁺	Δ -[Ru(phen) ₃] ²⁺	Δ -[Ru(bpy) ₃] ²⁺
abs	3.37×10 ³	1.01×10 ⁵	5.09×10^{4}	5.51×10 ⁵	6.75×10 ⁵
em	4.75×10^{3}	2.03×10^{4}	1.66×10^4	1.19×10^{4}	1.07×10^{5}
av	4.06×10 ³	6.07×10 ⁴	3.38×10 ⁴	2.81×10 ⁵	3.91×10 ⁵
$\log(K)$	3.61	4.78	4.53	5.45	5.59

Figure S1. Absorption spectra of Δ -[Ru(phen)₂dppz]²⁺ with added β -CD. [Ru] = 20 μ M. Legend shows [β -CD]/[Ru] ratios.

Figure S2. Emission spectra of Δ -[Ru(phen)₂dppz]²⁺ with added β -CD. $\lambda_{ex} = 410$ nm. [Ru] = 20 μ M. Legend shows [β -CD]/[Ru] ratios.

Figure S3. Absorption spectra of Δ -[Ru(phen)₂dppz]²⁺ with added β -CD-phosphate. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S4. Emission spectra of Δ -[Ru(phen)₂dppz]²⁺ with added β -P_nCD. $\lambda_{ex} = 475$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios. The spectrum with β -CD at a ratio of 20 is shown for comparison.

Figure S5. Normalised emission spectra of Δ -[Ru(phen)₂dppz]²⁺ with added β -P_nCD. $\lambda_{ex} = 475$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios. The spectrum with β -CD at a ratio of 20 is shown for comparison.

Figure S6. Normalized absorption and emission changes of Δ -[Ru(phen)₂dppz]²⁺ as a function of added β -P_nCD. [Ru] = 20 μ M. The legend shows the monitored wavelengths.

Figure S7. Absorption spectra of Λ -[Ru(phen)₂dppz]²⁺ with added β -CD-phosphate. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S8. Emission spectra of Λ -[Ru(phen)₂dppz]²⁺ with added β -P_nCD. $\lambda_{ex} = 475$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S9. Normalised emission spectra of Λ -[Ru(phen)₂dppz]²⁺ with added β -P_nCD. $\lambda_{ex} = 475$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S10. Normalized absorption and emission changes of Λ -[Ru(phen)₂dppz]²⁺ as a function of added β -P_nCD. [Ru] = 20 μ M. The legend shows the monitored wavelengths.

Figure S11. Absorption spectra of Δ -[Ru(bpy)₂dppz]²⁺ with added β -CD-phosphate. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S12. Emission spectra of Δ -[Ru(bpy)₂dppz]²⁺ with added β -P_nCD. $\lambda_{ex} = 470$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S13. Normalised emission spectra of Δ -[Ru(bpy)₂dppz]²⁺ with added β -P_nCD. $\lambda_{ex} = 470$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S14. Normalized absorption and emission changes of Δ -[Ru(bpy)₂dppz]²⁺ as a function of added β -P_nCD. [Ru] = 20 μ M. The legend shows the monitored wavelengths.

Figure S15. Absorption spectra of Δ -[Ru(phen)₃]²⁺ with added β -CD-phosphate. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S16. Emission spectra of Δ -[Ru(phen)₃]²⁺ with added β -P_nCD. $\lambda_{ex} = 470$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S17. Normalised emission spectra of Δ -[Ru(phen)₃]²⁺ with added β -P_nCD. $\lambda_{ex} = 470$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S18. Normalized absorption and emission changes of Δ -[Ru(phen)₃]²⁺ as a function of added β -P_nCD. [Ru] = 20 μ M. The legend shows the monitored wavelengths.

Figure S19. Absorption spectra of Δ -[Ru(bpy)₃]²⁺ with added β -CD-phosphate. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S20. Emission spectra of Δ -[Ru(bpy)₃]²⁺ with added β -CD-phosphate. $\lambda_{ex} = 470$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S21. Normalised emission spectra of Δ -[Ru(bpy)₃]²⁺ with added β -CD-phosphate. $\lambda_{ex} = 470$ nm. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S22. Relative intensities of Δ -[Ru(bpy)₃]²⁺ with added β -CD-phosphate. [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S23. Single photon counting decays for Δ -[Ru(phen)₂dppz]²⁺ with added β -CD-phosphate, with triexponential fits overlaid. $\lambda_{ex} = 405 \text{ nm}/ \lambda_{em} = 625 \text{ nm}.$ [Ru] = 20 μ M. Legend shows [β -P_nCD]/[Ru] ratios.

Figure S24. Model of the 1:1 docking complex formed between Δ -[Ru(phen)₂dppz]²⁺ and β -CD. The metal complex geometry was minimized using the SPARTAN 04 programme and was docked into the cyclodextrin cavity using iMol.

Figure S25. Benesi-Hildebrand binding plots at low binding ratios.