Supporting Information

Highly Diastereoselective Approach to Methylenecyclopropanes via Boron-Homologation / Allylboration Sequences

A. N. Baumann, A. Music, K. Karaghiosoff and D. Didier*

Table of contents

1. General remarks 2
2. Experimental procedures 2
3. Experimental data 5
4. NMR spectra 18
5. Single Crystal X-Ray Diffraction Studies of 7d 52

1. General Remarks

Commercial available starting materials were used without further purification unless otherwise stated. All reactions were carried out under N_{2} atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with argon prior to use.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was predried over CaCl_{2} and distilled from CaH_{2}. THF was refluxed and distilled from sodium benzophenone ketyl under nitrogen. $\mathrm{Et}_{2} \mathrm{O}$ was predried over CaCl_{2} and passed through activated $\mathrm{Al}_{2} \mathrm{O}_{3}$ (the solvent purification system SPS-400-2 from Innovative Technologies Inc.).

Chormatography purifications were performed using silica gel ($\mathrm{SiO}_{2}, 0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM) from Merck or Florisil ($\mathrm{MgSiO}_{3}, 60-100$ mesh) from APOLLO.The spots were visualized under UV $(254 \mathrm{~nm})$ or by staining the TLC plate with KMnO_{4} solution $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 10 \mathrm{~g}-\mathrm{KmnO}_{4}, 1.5 \mathrm{~g}-\mathrm{H}_{2} \mathrm{O}, 150 \mathrm{~mL}-\right.$ $\mathrm{NaOH} 10 \%$ in $\mathrm{H}_{2} \mathrm{O}, 1.25 \mathrm{~mL}$), p-anisaldehyde solution (conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 10 \mathrm{~mL}-\mathrm{EtOH}, 200 \mathrm{~mL}-\mathrm{AcOH}, 3 \mathrm{~mL}$ - p-anisaldehyde, 4 mL) and/or "Magic stain" (phosphomolybdic acid, 2.5 g - $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, 1 \mathrm{~g}$ - conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, $6 \mathrm{~mL}-\mathrm{H}_{2} \mathrm{O}, 94 \mathrm{~mL}$).

Diastereoisomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR.
NMR spectra were recorded on Bruker WH-400 instrument. Chemical shifts are reported as δ values in ppm relative to residual solvent peak (${ }^{1} \mathrm{H}-\mathrm{NMR}$) or solvent peak (${ }^{13} \mathrm{C}-\mathrm{NMR}$) in deuterated chloroform $\left(\mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\delta 77.16 \mathrm{ppm}$ for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$. Abbreviations for signal coupling are as follows: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet) and br (broad). Gas chromatography was performed with machines of Agilent Technologies 7890, using a column of type HP 5 (Agilent 5\% phenylmethylpolysiloxane; length: 15 m ; diameter: 0.25 mm ; film thickness: $0.25 \mu \mathrm{~m}$) or Hewlett-Packard 6890 or 5890 series II, using a column of type HP 5 (HewlettPackard, 5\% phenylmethylpolysiloxane; length: 15 m ; diameter: $0,25 \mathrm{~mm}$; film thickness: $0.25 \mu \mathrm{~m}$).

High resolution mass spectra (HRMS) and low resolution mass spectra (LRMS) were recorded on Finnigan MAT 95Q or Finnigan MAT 90 instrument or JEOL JMS-700. Infrared spectra were recorded on a Perkin 281 IR spectrometer and samples were measured neat (ATR, Smiths Detection DuraSample IR II Diamond ATR). The absorption bands were reported in wave numbers (cm^{-1}) and abbreviations for intensity are as follows: vs (very strong; maximum intensity), s (strong; above 75% of max. intensity), m (medium; from 50% to 75% of max. intensity), w (weak; below 50% of max. intensity) and br (broad). Melting points were determined on a Büchi B-540 apparatus and uncorrected. Single-crystal X-ray diffraction data were measured with Agilent Technologies Xcalibur or with a Spellman generator (50 kV , 40 mA) and a Kappa CCD detector, operating with Mo-Ka radiation ($\lambda=0.71071 \AA$).
[n-BuLi] $=2.41 \mathrm{M}$ in hexane (titration with isopropanol / 1,10-phenanthroline), purchased from Rockwood Lithium GmbH.
$\left[\mathrm{TMSCH}_{2} \mathrm{MgCl}\right]=1.29$ in THF (titration with I_{2}), purchased from Aldrich.

2. Experimental procedures

2.1. Synthesis of 1,1,2-tribromocyclopropanes

2,3-dibromo-1-propene ($2.44 \mathrm{~mL}, 25 \mathrm{mmol}$) and copper iodide ($997 \mathrm{mg}, 5.0 \mathrm{mmol}$) were stirred in diethyl ether (120 mL). After cooling the solution to $-30^{\circ} \mathrm{C}, \mathrm{TMSCH} 2 \mathrm{MgCl}(23.0 \mathrm{~mL}, 30.0 \mathrm{mmol})$ was added dropwise. The mixture was then allowed to stir at room temperature. After 3 h , a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and after extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ the organic layers were combined and dried over magnesium sulfate. Volatiles were evaporated under reduced pressure and the crude product (10, quantitative yield) was used in the next reaction without further purification.

2.2. Synthesis of 1,1,2-tribromocyclopropanes

To a solution of vinylbromide (20.0 mmol), $\mathrm{CHBr}_{3}(5.25 \mathrm{~mL}, 60.0 \mathrm{mmol})$ and $\left[n-\mathrm{Bu}_{3} \mathrm{NMe}\right] \mathrm{Cl}(472 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a solution of 50% sodium hydroxide $(10 \mathrm{~mL})$ at room temperature. The mixture was stirred for 5 days. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$ and combined organic layers were dried over magnesium sulfate and concentrated under vacuum. The crude product was purified by column chromatography on silica gel (pure hexane) to obtain pure 1,1,2tribromocyclopropanes 1a-e.

2.3. Synthesis of cyclopropenylmethylboronic ester derivatives

To a stirred solution of 1,1,2-tribromocyclopropane (0.5 mmol) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise n BuLi ($207 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the reaction mixture was slowly warmed to $-20^{\circ} \mathrm{C}$ (over 2 h). The in situ generated cyclopropenyllithium was cooled back to $-78^{\circ} \mathrm{C}$ and 2 -(iodomethyl)-1,3,2-dioxa-4,4,5,5-tetramethyl-borolane $2(134 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The reaction mixture was warmed to room temperature over 1 h . The crude mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and combined organic layers were dried over MgSO_{4}, concentrated under reduced pressure and the crude product was purified by column chromatography on Florisil ${ }^{\circledR}$ (pentanes) to obtain pure allylboronate derivatives $1 \mathrm{a}-\mathrm{c}$ and 1 e .

2.4. Synthesis of TBS-protected cyclopropene 8

TBSOTf

(2-butyl-2-cyclopropene-1-yl)methanol 11 ($1.26 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 2,6-lutidine ($1.27 \mathrm{~mL}, 11.0 \mathrm{mmol}$) were stirred in DCM (50.0 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and tert-butyldimethylsilyl trifluoromethanesulfonate ($2.53 \mathrm{~mL}, 11.0 \mathrm{mmol}$) was added and the reaction was stirred for $15 \mathrm{~min} . \mathrm{HCl}$ $(1 \mathrm{M}, 10 \mathrm{~mL})$ was then added and the mixture was warmed to room temperature, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 15 \mathrm{~mL})$ and combined organic layers were dried over MgSO_{4}, concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel (Hex 95:5 EtOAc), to furnish 8 (1.47 g, 79%) as a clear yellowish oil.

2.5. General procedures for the synthesis of methylenecyclopropanes

2.5.1. Procedure A: Boron allylation from cyclopropenylmethylboronic esters

To a solution of boronic ester 3 (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~mL} / \mathrm{mmol}$) was added the corresponding aldehyde (1.0 equiv.) neat at r.t.. The reaction was monitored by TLC (hex/EtOAc $=9: 1$) upon completion ($5-10$ minutes). After addition of water, the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, concentrated under reduce pressure and purified on silica with the appropriate mixture of solvents.

2.5.2. Procedure B: One-pot sequence from tribromocyclopropanes

To a stirred solution of 1,1,2-tribromocyclopropane (1 eq, 0.5 mmol) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise n-BuLi $(2.41 \mathrm{M}, 2 \mathrm{eq}, 1.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and the solution was slowly warmed to $-20^{\circ} \mathrm{C}$ (over 2 h$)$. The in situ generated cyclopropenyllithium was cooled back to $-78^{\circ} \mathrm{C}$ and 2 -(iodomethyl)-1,3,2-dioxa-$4,4,5,5$-tetramethyl-borolane $2(1 \mathrm{eq}, 0.5 \mathrm{mmol})$ was added as a solution in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The mixture was warmed to room temperature over 1 h . Volatiles were then removed under inert conditions in vacuum, followed by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The appropriate aldehyde was added dropwise to the solution and the reaction was monitored by TLC upon completion. Water (5 mL) was added and the crude mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and combined organic layers were dried over MgSO_{4}, concentrated under reduced pressure and the product was purified by column chromatography on silica gel (hexane/EtOAc) to obtain the desired methylenecyclopropane.

2.5.3. Procedure C: One-pot sequence from TBS-protected cyclopropene 8

To a stirred solution of 1-methoxy-tert-butyldimethylsilyl-2-butyl-2-cyclopropene 8 ($120 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ was added n-BuLi (0.5 mmol) dropwise at $-78^{\circ} \mathrm{C}$ and stirred for 30 min . The solution was warmed up to $-50^{\circ} \mathrm{C}$ and stirred for an additional hour. After cooling back to $-78{ }^{\circ} \mathrm{C}$, the in situ generated cyclopropenyllithium was treated with 2-(iodomethyl)-1,3,2-dioxa-4,4,5,5-tetramethylborolane $2(132 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$. The reaction mixture was warmed slowly to room temperature over 1 h . Volatiles were removed in vacuum, followed by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The aldehyde was then added and the mixture was stirred overnight (16 h). Water (5.0 mL) was added and the crude mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5.0 \mathrm{~mL})$ and combined organic layers were dried over MgSO_{4}, concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel (hexane/EtOAc) to obtain 9.

3. Experimental data

3.1. Tribromocyclopropanes

1,1,2-tribromo-2-methylcyclopropane (1a)
From 2-bromoprop-1-ene ($1.21 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{CHBr}_{3}(30.0 \mathrm{mmol}), \mathrm{m}=0.76 \mathrm{~g}(2.5 \mathrm{mmol}, 25 \%)$
Yellowish oil; $\mathbf{R}_{\mathbf{f}}=0,77$ (pure hexane); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=2.08(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.97(\mathrm{~d}, \mathrm{~J}=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$; Characterization data in agreement with literature. ${ }^{1}$

1,1,2-tribromo-2-pentylcyclopropane (1b)

From 2-bromo-1-heptene ($1.77 \mathrm{~g}, 10.0 \mathrm{mmol}$) and $\mathrm{CHBr}_{3}(30.0 \mathrm{mmol}), \mathrm{m}=0.90 \mathrm{~g}(2.58 \mathrm{mmol}, 26 \%)$
Yellow oil, $\mathbf{R}_{\mathrm{f}}=0,75$ (pure hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.12-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 5 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ = 46.0, 41.8, 38.2, 33.3, 31.3, 27.5, 22.7, 14.2; LRMS (EI 70 eV): m/z (\%) = 269.1 (4), 199.0 (37), 147.1 (25), 107.1 (97), 55.1 (100); HRMS (EI pos): calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Br}_{2}{ }^{+}\left(\mathrm{M}-\mathrm{Br}^{+}\right)$: 268.9364, found: 268.9329; IR

[^0]($\mathrm{v}, \mathrm{cm}^{-1}$): 2954 (s), 2927 (s), 2858 (m), 1628 (w), 1457 (m), 1417 (m), 1378 (w), 1200 (w), 1146 (w), 1051 (m), 1017 (m), 892 (m).

trimethyl(2-(1,2,2-tribromocyclopropyl)ethyl)silane (1c)
From crude $10(4.74 \mathrm{~g}, 23.0 \mathrm{mmol})$ and $\mathrm{CHBr}_{3}(69.0 \mathrm{mmol}), \mathrm{m}=2.00 \mathrm{~g}$ ($5.28 \mathrm{mmol}, 23 \%$).
Red oil, $\mathbf{R}_{\mathrm{f}}=0,81$ (pure hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=48.9,38.2,37.4,33.3,14.5,-1.6$; LRMS (EI 70 eV): m/z (\%) = 226.0 (3), 145.0 (28), 139.0 (18), 73.1 (100), 65.1 (38); HRMS (EI pos): calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{Si}^{+}\left(\mathrm{M}-\mathrm{Br}^{+}\right)$: 298.9289, found: 298.9245; IR (v, cm^{-1}): 2952 (m), 1434 (w), 1419 (w), 1335 (w), 1248 (s), 1183 (m), 1166 (w), 1052 (w), 1018 (m), 905 (w), 860 (s), 835 (s).

1,1,2-tribromo-2,3,3-trimethylcyclopropane (1d)

From 1-bromo-1,2-dimethylpropene ($2.98 \mathrm{~g}, 20.0 \mathrm{mmol}$), m = $5.11 \mathrm{~g}(15.9 \mathrm{mmol}, 80 \%)$
Yellow solid, $\mathbf{m p}=99-101^{\circ} \mathrm{C}, \mathbf{R}_{\mathbf{f}}=0,73$ (pure hexane); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.00(\mathrm{~s}, 3 \mathrm{H}), 1.51$ (s, 3H), $1.37 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; Characterization data in agreement with literature. ${ }^{2}$

1,1,2-tribromo-2,3-dimethylcyclopropane (1e)

From 2-bromobut-2-ene ($2.7 \mathrm{~g}, 20.0 \mathrm{mmol}$), $\mathrm{m}=4.08 \mathrm{~g}(13.3 \mathrm{mmol}, 66 \%)$
Yellowish oil, $\mathbf{R}_{\mathbf{f}}=0,70$ (pure hexane); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$): anti-1f: $\delta=2.09(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{q}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) . \operatorname{syn}-1 \mathrm{f}: \delta=1.94(\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, 3 H); Characterization data in agreement with literature. ${ }^{2}$

3.2. Cyclopropenylmethylboronic esters

[^1]

4,4,5,5-tetramethyl-2-((2-methylcycloprop-1-en-1-yl)methyl)-1,3,2-dioxaborolane (3a)
From tribromocyclopropane 1a (10.0 mmol), $\mathrm{m}=1.20 \mathrm{~g}$ ($6.2 \mathrm{mmol}, 62 \%$).
Yellowish oil, $\mathbf{R}_{\mathrm{f}}=0,71$ (hex/ $\mathrm{Et}_{2} \mathrm{O}=90: 10$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=2.02(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.96$ (br s, 2H), 1.25 (s, 12H), 0.77 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=106.4,105.8,83.6,24.9,11.5,8.9$; LRMS (EI 70 eV): m/z (\%) = 194 (79), 179 (100), 166 (8), 151 (21), 137 (82), 121 (63), 107 (45), 93 (80); HRMS (El pos): calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{BO}_{2}{ }^{+}\left(\mathrm{M}^{+}\right): 194.1478$, found: 194.1474; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): $2978(\mathrm{~m}), 2927(\mathrm{~m})$, 2859 (m), 1467 (w), 1370 (s), 1349 (s), 1325 (vs), 1272 (w), 1164 (m), 1142 (vs).

4,4,5,5-tetramethyl-2-((2-pentylcycloprop-1-en-1-yl)methyl)-1,3,2-dioxaborolane (3b)
From tribromocyclopropane 1b (2.58 mmol), $\mathrm{m}=374 \mathrm{mg}(1.49 \mathrm{mmol}, 58 \%)$.
Orange oil, $\mathbf{R}_{\mathrm{f}}=0,61\left(\mathrm{hex} / \mathrm{Et}_{2} \mathrm{O}=95: 5\right)$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.38(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}$, $2 \mathrm{H}), 1.29(\mathrm{~m}, 11 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=109.6,105.7,83.6,83.0,31.8,27.1$, 26.0, 25.0, 22.6, 14.3, 8.3; LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=205.3$ (6), 235.3 (13), 194.2 (22), 167.2 (28), 121.2 (31), 84.1 (100), 40.9 (40); HRMS (El pos): calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{BO}_{2}{ }^{+}\left(\mathrm{M}^{+}\right)$: 250.2104, found: 250.2089; IR (v, cm^{-1}): 3423 (br w), 2970 (m), 2957 (s), 2928 (s$), 2859$ (m), 2362 (w), 1717 (w), 1675 (w), 1457 (m), 1379 (s), 1350 (s), 1328 (s), 1272 (w), 1215 (w), 1160 (s), 1110 (w), 1008 (w), 968 (w).

trimethyl(2-(2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cycloprop-1-en-1-yl)ethyl)silane (3c)

From tribromocyclopropane 1c (5.28 mmol), $\mathrm{m}=1.04 \mathrm{~g}$ ($3.71 \mathrm{mmol}, 70 \%$).
Red oil, $\mathbf{R}_{\mathrm{f}}=0,85\left(\mathrm{hex} / \mathrm{Et}_{2} \mathrm{O}=95: 5\right)$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.40(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 2 \mathrm{H})$, $1.25(\mathrm{~s}, 12 \mathrm{H}), 0.79(\mathrm{~s}, 2 \mathrm{H}), 0.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=.111 .4$, 104.8, 83.6, 83.0, 25.0, 20.5, 13.9, 8.4, -1.6; LRMS (EI 70 eV): m/z (\%) =. 280 (7), 180 (8), 165 (13), 138 (29), 123 (22), 107 (13), 73 (100); HRMS (El pos): calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{BO}_{2} \mathrm{Si}^{+}\left(\mathrm{M}-\mathrm{Me}^{+}\right)$: 265.1795, found: 265.1789; IR (v, cm ${ }^{-1}$): 2979 (w), 2954 (w), 2925 (w), 2858 (w), 1469 (w), 1328 (s$), 1248$ (m), 1214 (w), 1142 (s), 1009 (m), 968 (m), 845 (s).

From tribromocyclopropane 1d (10.0 mmol$), \mathrm{m}=1.36 \mathrm{~g}(6.1 \mathrm{mmol}, 61 \%)$.
Brownish oil, $\mathbf{R}_{\mathbf{f}}=0,80(\mathrm{hex} / \mathrm{EtOAc}=95: 5)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.91(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 2 \mathrm{H}), 1.25$ (s, 12H), $1.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=119.6,119.1,83.5,25.6,25.0,24.7,19.2,8.8$; LRMS (EI 70 eV): m/z (\%) = 222 (9), 165 (22), 122 (50), 83 (100), 55 (26); HRMS (El pos): calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{BO}_{2}^{+}\left(\mathrm{M}^{+}\right)$: 222.1791, found: 222.1771; IR (v, cm ${ }^{-1}$): 3393 (br w), 2979 (m), $2932(\mathrm{w}), 1719(\mathrm{w})$, 1473 (m), 1454 (m), 1354 (s), 1304 (s), 1214 (m), 1150 (s), 1099 (s), 1008 (m), 982 (m), 852 (s).

3.3. TBS-protected cyclopropene

tert-butyl((2-butylcycloprop-2-en-1-yl)methoxy)dimethylsilane (8)
From alcohol 11 (10.0 mmol), m = 1.47 g ($7.9 \mathrm{mmol}, 79 \%$).
Colorless oil, $\mathbf{R}_{\mathbf{f}}=0,80\left(\mathrm{hex} / \mathrm{Et}_{2} \mathrm{O}=95: 5\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.58(\mathrm{~s}, 1 \mathrm{H}), 3.49$ (qd, $\mathrm{J}=10.5$ Hz and $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{td}, J=4.9 \mathrm{~Hz}$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H})$, 1.42-1.33 (m, 2H), $0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04-0.03(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=125.9,102.6,70.6,29.3,26.0,25.9,22.4,20.5,18.5,13.8,-5.0,-5.1 ;$ LRMS (EI 70 eV$): \mathrm{m} / \mathrm{z}(\%)=226$ (3), 145 (24), 137 (16), 73 (100), 65 (41); HRMS (EI pos): calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{OSi}^{+}\left(\mathrm{M}-t-\mathrm{Bu}^{+}\right): 183.1205$, found: 183.1218; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 2955 (m), 2928 (m), 2856 (m), 1471 (w), 1388 (w), 1361 (w), 1252 (m), 1079 (br m), 1005 (w), 938 (w), 820 (s), 772 (s).

3.4. Methylenecyclopropanes

$\left(R^{*}\right)-\left(\left(S^{*}\right)\right.$-1-methyl-2-methylenecyclopropyl)(phenyl)methanol (4a)
Procedure A, from benzaldehyde (0.5 mmol), $\mathrm{m}=66 \mathrm{mg}(0.38 \mathrm{mmol}, 76 \%)$; Procedure \mathbf{B}, from benzaldehyde (0.4 mmol), $\mathrm{m}=43 \mathrm{mg}(0.25 \mathrm{mmol}, 62 \%)$.

Yellowish oil, $\mathbf{R}_{\mathrm{f}}=0.15$ (hex/ $\mathrm{Et}_{2} \mathrm{O}=90: 10$); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.39-5.38$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.28-1.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.01-1.00(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=142.1,139.4,128.2,127.5$, 126.3, 104.1, 77.9, 17.4, 15.5; LRMS (EI 70 eV): m/z (\%) = 173 (10), 145 (50), 141 (20), 130 (20), 117 (20), 105 (100); HRMS (EI pos): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}^{+}\left[\mathrm{M}^{+}\right]$: 174.1045; found: 174.1006; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3384 (br w), 3066 (w), 3032 (w), 2967 (w), 2930 (w), 2869 (w), 1755 (br w), 1604 (w), 1495 (w), 1452 (m), 1397 (w), 1376 (m).

$\left(R^{*}\right)$-1-((S*)-1-methyl-2-methylenecyclopropyl)-3-phenylpropan-1-ol (4b)
Procedure A, from dihydrocinnamaldehyde (0.5 mmol), $\mathrm{m}=72 \mathrm{mg}$ ($0.36 \mathrm{mmol}, 71 \%$)
Yellowish oil, $\mathbf{R}_{\mathbf{f}}=0.24$ (hex/Et ${ }_{2} \mathrm{O}=90: 10$); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.24-7.12(\mathrm{~m}, 5 \mathrm{H}), 5.40-5.37$ (d, J = 5.0 Hz, 1H), 5.28-5.27 (d, J = 3.5 Hz, 1H), 3.15-3.12 (m, 1H), 2.80-2.56 (m, 2H), 1.85-1.75 (m, 2H), $1.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.05-1.02(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91-0.87(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz): $\delta=142.2,140.6,128.5,126.0,102.6,76.1,35.6,32.7,24.8,17.0,14.9 ;$ LRMS (EI 70 eV): m/z (\%) = $202(10), 191(10), 187(30), 184$ (70), 174 (15), 169 (100); HRMS (El pos): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}^{+}$ [M-H+]: 201.1271; found: 201.1279; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3415 (br w), 3027 (w), 2927 (m), 1604 (w), 1496 (m), 1454 (m), 1402 (w), 1377 (w).

(S*)-benzo[b]thiophen-3-yl((S*)-1-methyl-2-methylenecyclopropyl)methanol (4c)
Procedure A, from benzo[b]thiophene-3-carbaldehyde (0.5 mmol), $\mathrm{m}=77 \mathrm{mg}$ ($0.33 \mathrm{mmol}, 67 \%$).
Brownish oil, $\mathbf{R}_{\mathrm{f}}=0.56$ (hex/Et $\mathrm{E}_{2}=80: 20$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~s}$, $1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.48(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.39(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.41-1.38(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right)$: $\delta=140.5,138.8,137.8,137.1,124.3,123.8,123.0,122.7,104.8,73.4,25.8,18.2,15.7$; LRMS (EI 70 eV): m/z (\%) = 230 (10), 212 (15), 201 (80), 187 (15), 172 (10), 161 (100), 147 (40), 135 (35); HRMS (EI pos): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{OS}^{+}\left[\mathrm{M}^{+}\right]$: 230.0765, found: 230.0758; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3391 (br-w), $3067(\mathrm{w}), 2966(\mathrm{w})$, 2927 (w), 2869 (w), 1667 (w), 1458 (m), 1426 (s), 1374 (m).

($\left.R^{*}, \mathrm{E}\right)$-1-((S*)-1-methyl-2-methylenecyclopropyl)-3-phenylprop-2-en-1-ol (4d)
Procedure A, from cinnamaldehyde (0.5 mmol), $\mathrm{m}=79 \mathrm{mg}$ ($0.4 \mathrm{mmol}, 79 \%$).
Brownish oil, $\mathbf{R}_{\mathrm{f}}=0.60$ (hex/EtOAc 80:20); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.41-7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.62(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30-6.25(\mathrm{dd}, J$ $=17.2 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) 5.41-5.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H})$, $1.63-1.62(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.27(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.98(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=140.0,136.9,131.0,129.4,128.7,127.8,126.6,103.2,76.8,25.0,18.0$, 14.2; LRMS (EI 70 eV): m/z (\%) = 200 (5), 185 (20), 171 (95), 157 (20), 141 (30), 131 (100), 115 (90), 103 (65), 91 (80), 77 (55); HRMS (EI pos): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}^{+}\left[\mathrm{M}^{+}\right]$: 200.1201; found: 200.1192; IR (v, cm^{-1}): 3383 (br-w), 3062 (w), 3027 (w), 2965 (w), 2928 (w), 2868 (w), 1744 (w), 1600 (w), 1578 (w), 1495 (m), 1448 (m), 1400 (m), 1376 (m).

$\left(S^{*}\right)$-(1-methyl-1H-indol-3-yl)((S*)-1-methyl-2-methylenecyclopropyl)methanol (4e)
Procedure A, from 1-methylindol-3-carboxaldehyde (0.5 mmol), $\mathrm{m}=66 \mathrm{mg}(0.29 \mathrm{mmol}, 58 \%)$.
Orange oil, $\mathbf{R}_{\mathrm{f}}=0.43$ (hex/EtOAc $\left.=80: 20\right)$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.72(\mathrm{dt}, \mathrm{J}=7.9 \mathrm{~Hz}$ and 1.0 Hz , $1 \mathrm{H}), 7.32(\mathrm{dt}, J=8.2 \mathrm{~Hz}$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.47(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dt}, J=8.8 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}),(\mathrm{dt}, J=8.8 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=140.8,137.1$, 126.9, 126.7, 121.8, 120.2, 119.3, 116.2, 109.4, 103.3, 73.1, 33.0, 25.6, 18.4, 15.4; LRMS (El 70 eV): m/z $(\%)=225$ (19), 209 (100), 194 (49), 182 (14), 167 (12); HRMS (EI pos): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}^{+}\left[\mathrm{M}^{+}\right]$: 227.1310, found: 227.1305; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3421 (brw), 3051 (w), 2964 (m), 2928 (m), $2870(\mathrm{w}), 1706$ (m), 1683 (m), 1613 (m), 1468 (s$), 1372$ (s$), 1329$ (s$).$

$\left(S^{*}\right)$-(3-fluoro-6-methoxyquinolin-4-yl)((S*)-1-methyl-2-methylenecyclopropyl)methanol (4f)
Procedure A, from the corresponding aldehyde (0.4 mmol), $\mathrm{m}=97 \mathrm{mg}$ ($0.36 \mathrm{mmol}, 89 \%$).
White solid, $\mathbf{m p}=117-119^{\circ} \mathrm{C}, \mathbf{R}_{\mathrm{f}}=0.23$ (hex/EtOAc 90.10); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.45$ ($\mathrm{d}, \mathrm{J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=9.3 \mathrm{~Hz}$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.48$ $(\mathrm{m}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.39(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J=6.4 \mathrm{~Hz}$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ $(\mathrm{dt}, J=8.9 \mathrm{~Hz}$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{dt}, J=9.0 \mathrm{~Hz}$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): 158.1, $154.4(\mathrm{~d}, \mathrm{~J}=252.3 \mathrm{~Hz}), 141.9(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 139.2,138.0(\mathrm{~d}, \mathrm{~J}=30.9 \mathrm{~Hz}), 131.2,129.2(\mathrm{~d}$, $8.4 \mathrm{~Hz}), 128.6(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 120.9(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 104.8,104.7(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 71.5(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 55.7$, 25.7, 20.3, 14.6; LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=273$ (7), 258 (9), 240 (62), 230 (21), 214 (17), 204 (100), 190 (12), 176 (65), 161 (16), 135 (26); HRMS (El pos): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNO}_{2}{ }^{+}$[$\left.\mathrm{M}^{+}\right]$: 273.1165 , found: 273.1161; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3128 (br m), 2964 (m), 2832 (w), 1620 (s), 1578 (w), 1508 (s$), 1466$ (m), 1426 (s), 1358 (s), 1289 (s), 1232 (vs).

(S*)-(1-methyl-1H-pyrrol-2-yl)((S*)-1-methyl-2-methylenecyclopropyl)methanol (4g)
Procedure A, from 1-methyl-1H-pyrrole-2-carbaldehyde (0.5 mmol), $\mathrm{m}=46 \mathrm{mg}(0.26 \mathrm{mmol}, 52 \%)$.

Brownish oil, $\mathbf{R}_{\mathrm{f}}=0.27$ (hex/EtOAc 70:30); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.61-6.60(\mathrm{~m}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.20-6.19(\mathrm{~m}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.09(\mathrm{~m}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.61(\mathrm{~m}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.50(\mathrm{~m}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.52-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, 0.99-0.96 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 139.2,133.4,123.0,107.3,106.7,104.7,69.2,34.3,24.2$, 20.6, 13.9; LRMS (EI 70 eV): m/z (\%) = 173 (100), 159 (23), 144 (18); HRMS (El pos): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}^{+}\left[\mathrm{M}-\mathrm{OH}^{+}\right]: 160.1126$, found: 160.1121. IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3380 (br w), 2962 (w), $1608(\mathrm{w}), 1569(\mathrm{w})$, 1452 (w).

(S*)-((S*)-1-methyl-2-methylenecyclopropyl)(quinolin-3-yl)methanol (4h)
Procedure A, from quinoline-3-carbaldehyde (0.5 mmol), $\mathrm{m}=66 \mathrm{mg}$ ($0.29 \mathrm{mmol}, 73 \%$).
Brownish oil, $\mathbf{R}_{\mathrm{f}}=0.56\left(\mathrm{hex} / \mathrm{Et}_{2} \mathrm{O}=50: 50\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.83(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.05-$ $8.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.53(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 1.42-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): ~ \delta=149.3,147.1,139.1,135.0,133.4,129.4,128.8,127.9,127.8,126.9,104.0$, 76.0, 24.9, 17.7, 14.9; LRMS (EI 70 eV): m/z (\%) = 225 (15), 207 (100), 193 (10); HRMS (El pos): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}^{+}\left[\mathrm{M}-\mathrm{H}^{+}\right]$: 224.1075, found: 224.1059; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3166 (br-w), 2926 (m), 2855 (m), 1742 (m), 1618 (w), 1576 (m), 1499 (m), 1461 (m), 1371 (s), 1317 (m).

$\left(R^{*}\right)$-[1,1'-biphenyl]-4-yl((S*)-1-methyl-2-methylenecyclopropyl)methanol (4i)
Procedure A, from biphenylcarbaldehyde (0.5 mmol), $\mathrm{m}=80 \mathrm{mg}(0.32 \mathrm{mmol}, 64 \%)$; Procedure \mathbf{B}, from biphenylcarbaldehyde (0.4 mmol), $\mathrm{m}=65 \mathrm{mg}$ ($0.26 \mathrm{mmol}, 64 \%$).

Colourless oil, $\mathbf{R}_{\mathrm{f}}=0.27$ (hex/EtOAc $=90: 10$); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.51-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.36-$ $7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}$, 1 H), 1.36 (ddd, $J=8.9 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $0.98(\mathrm{~s}, \mathrm{H}), 0.94$ (ddd, $J=8.9 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$ and 2.0 Hz , $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=141.2,140.9,140.4,140.0,128.9,127.3,127.1,126.9,126.9,103.7$, 77.9, 25.7, 17.9, 15.1; LRMS (EI 70 eV): m/z (\%) = 250 (11), 249 (5), 233 (27), 183 (100), 173 (16), 97 (61); HRMS (El pos): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}^{+}\left[\mathrm{M}^{+}\right]: 250.1358$, found: 250.1344; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3389 (br w), 3041 (w), 2958 (w), 2930 (w), 2868 (w), 1750 (w), 1600 (w), 1452 (m), 1391 (w), 1372 (m).

$\left(R^{*}\right)-\left(\left(S^{*}\right)\right.$-1-methyl-2-methylenecyclopropyl)(4-nitrophenyl)methanol (4j)

Procedure A, from 4-nitrobenzaldehyde (0.5 mmol), $\mathrm{m}=78 \mathrm{mg}$ ($0.36 \mathrm{mmol}, 71 \%$); Procedure B, from 4 -nitrobenzaldehyde (0.4 mmol), $\mathrm{m}=56 \mathrm{mg}$ ($0.26 \mathrm{mmol}, 64 \%$).

Yellowish solid, $\mathbf{m p}=83-85^{\circ} \mathrm{C}, \mathbf{R}_{\mathbf{f}}=0.29$ (hex/ $\mathrm{Et}_{2} \mathrm{O}=90: 10$); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.16-8.13(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.43-5.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.39(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~s}, 1 \mathrm{H}), 1.28-1.26(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-1.03(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz): $\delta=149.5,138.5,127.0,123.4,104.9,26.2,16.8,15.9$; LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=218(1)$, 202 (13), 190 (10), 179 (17), 160 (14), 150 (100), 129 (61); HRMS (El pos): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{3}{ }^{+}$[M$\mathrm{H}^{+}$]: 218.0817, found: 218.0815; calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}^{+}[\mathrm{M}-\mathrm{OH}]^{+}$: 202.0868, found: 202.0850; IR ($v, \mathrm{~cm}^{-1}$): 3523 (m), 3111 (w), 3078 (w), 2969 (w), 2934 (w), 1713 (w), 1604 (m), 1507 (s), 1459 (w), 1372 (m), 1338 (s).

(R^{*})-[1,1'-biphenyl]-4-yl((S*)-2-methylene-1-pentylcyclopropyl)methanol (4k)
Procedure A, from biphenyl-4-carboxaldehyde (0.32 mmol), $\mathrm{m}=65 \mathrm{mg}$ ($0.21 \mathrm{mmol}, 66 \%$).
White solid $\left(0^{\circ} \mathrm{C}\right), \mathrm{mp}=21-23^{\circ} \mathrm{C}$, colourless oil, $\mathbf{R}_{\mathrm{f}}=0,40(\mathrm{hex} / \mathrm{EtOAc}=95: 5)$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.70-7.31(\mathrm{~m}, 9 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.40(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~m}, 7 \mathrm{H}), 1.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right): \delta$ $=141.2,141.0,140.4,138.6,128.9,127.4,127.2,127.0,126.9,104.6,76.6,32.3,32.2,30.1,26.2,22.7$, 14.2, 13.0; LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=306.3(2), 277.3$ (40), 231.2 (10), 207.2 (20), 181.1 (100), 155.1 (22), 77.1 (12); HRMS (EI pos): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24}{ }^{+}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}^{+}\right]:$288.1867, found: 288.1883; IR ($v, \mathrm{~cm}^{-1}$): 3426 (br-w), 3029 (w), 2955 (m), 2923 (s), 2857 (m), 2360 (w), 1600 (w), 1486 (m), 1457 (w), 1403 (w), 1261 (w), 1179 (w), 1034 (m), 1018 (m), 1008 (m), 888 (m).

(S*)-(2-bromopyridin-3-yl)((R*)-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)methanol (4I)
Procedure A, from 2-bromo-3-pyridinecarboxaldehyde (0.40 mmol), $\mathrm{m}=116 \mathrm{mg}(0.32 \mathrm{mmol}, 85 \%)$.
White solid, $\mathbf{m p}=138-139^{\circ} \mathrm{C}, \mathbf{R}_{\mathbf{f}}=0,17$ (hex/EtOAc $=90: 10$); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.24(\mathrm{~d}, \mathrm{~J}=$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~s}$, $1 \mathrm{H}), 1.79(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $0.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.75(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}),-0.02$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.8,143.0,138.6,136.9,136.3,122.6,104.9,72.7,31.8,29.3$, 13.1, 10.5, -1.7; LRMS (EI 70 eV): m/z (\%) = 260.2 (3), 232.2 (7), 170.2 (13), 154.1 (6), 73.1 (100); HRMS (El pos): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{ONBrSi}^{+}[\mathrm{M}-\mathrm{H}]^{+}: 338.0570$; found: 338.0556; IR:(cm ${ }^{-1}$): 3290 (br-w), 3068 (w), 3045 (w), 2952 (w), 2926 (w), 1577 (w), 1564 (m), 1404 (m), 1337 (w), 1246 (s), 1187 (w), 1167 (w), 1097 (m), 1081 (m), 1034 (s), 1016 (m), 944 (w).

$\left(S^{*}\right)-(1-m e t h y l-1 H-p y r r o l-2-y l)\left(\left(R^{*}\right)\right.$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)-methanol (4m)
Procedure A, from 1-methylpyrrole-2-carboxaldehyde (0.40 mmol), $\mathrm{m}=57 \mathrm{mg}(0.21 \mathrm{mmol}, 54 \%)$.
Yellow oil, $\mathbf{R}_{\mathbf{f}}=0,72$ (hexane/EtOAc $=90: 10$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.59(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ $-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.11-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{td}, \mathrm{J}=13.6 \mathrm{~Hz}$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{dd}, \mathrm{J}=13.8 \mathrm{~Hz}$ and $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.32$ $-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{dt}, J=8.7 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.53(\mathrm{td}, J=13.6 \mathrm{~Hz}$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{td}, J=$ 13.8 Hz and $4.9 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.3,133.4,122.8,107.2,106.7$, 104.8, 67.2, 34.2, 30.8, 28.1, 12.5, 11.2, -1.7; LRMS (EI 70 eV): m/z (\%) = 263.1 (6), 245.2 (40), 202.2 (9), 174.1 (10), 158.2 (100), 73.1 (27); HRMS (EI pos): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NOSi}^{+}\left[\mathrm{M}-\mathrm{H}^{+}\right]: 262.1622$, found: 262.1627; IR (v, cm ${ }^{-1}$): 3435 (br-w), 3103 (w), 3065 (w), 2952 (m), 2925 (w), 1697 (w), 1491 (w), 1415 (w), 1379 (w), 1298 (m), 1247 (s), 1172 (w), 1088 (m), 1012 (m), 820 (s).

$\left(R^{*}\right)$-1-(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)-3-phenylpropan-1-ol (4n)
Procedure A, from dihydrocinnamaldehyde (0.38 mmol), m = 91 mg ($0.32 \mathrm{mmol}, 84 \%$); Procedure B, from dihydrocinnamaldehyde (0.5 mmol), $\mathrm{m}=101 \mathrm{mg}$ ($0.35 \mathrm{mmol}, 70 \%$).

Colorless oil, $\mathbf{R}_{\mathrm{f}}=0,51$ (hex/EtOAc $=95: 5$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.45(\mathrm{~d}$, $J=16.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.55(\mathrm{dd}, J=9.3 \mathrm{~Hz}$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.98-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.57(\mathrm{td}$, $J=13.8 \mathrm{~Hz}$ and $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.3,139.1,128.6,128.5,125.9,103.5,74.3,35.7,32.8,31.2,26.1,12.7,12.2,-1.8$; LRMS (EI 70 eV): m/z (\%) = 220.3 (6), 205.2 (9), 169.2 (5), 117.2 (8), 105.2 (24), 91.1 (53), 73.1 (100); HRMS (EI pos): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{OSi}^{+}[\mathrm{M}-\mathrm{Me}]^{+}$: 273.1669, found: 273.1674; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3409 (br-w), 3063 (w), 3027 (w), 2951 (m), 2921 (m), 2857 (w), 1744 (w), 1604 (w), 1496 (w), 1454 (w), 1401 (w), 1247 (s), 1174 (w), 1065 (m), 1031 (m), 1013 (m), 862 (s), 820 (s).

$\left(S^{*}\right)$-(3-fluoro-6-methoxyquinolin-4-yl) ((R^{*})-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)methanol (4o)

Procedure A, from corresponding aldehyde (0.4 mmol), $\mathrm{m}=119 \mathrm{mg}$ ($0.33 \mathrm{mmol}, 83 \%$).
White solid (at $0^{\circ} \mathrm{C}$) , $\mathbf{m p}=18-19^{\circ} \mathrm{C}$, colourless oil, $\mathbf{R}_{\mathbf{f}}=0.35$ (hex/EtOAc 80:20); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): 8.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=9.2 \mathrm{~Hz}$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.17(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, J=7.1$ Hz and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.87(\mathrm{td}, J=14.0 \mathrm{~Hz}$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dt}, J=9.1 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{td}, J$ $=13.9 \mathrm{~Hz}$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{dt}, J=9.1 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.67(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.50$ ($\mathrm{td}, \mathrm{J}=13.6 \mathrm{~Hz}$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $-0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 158.1,154.6(\mathrm{~d}, \mathrm{~J}=251.7 \mathrm{~Hz})$, $141.7,138.0(\mathrm{~d}, \mathrm{~J}=30.8 \mathrm{~Hz}), 137.8,131.2,129.0(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}), 128.7(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 120.9,104.7,104.0$, 69.6, 55.6, 32.0, 28.7, 13.1, 12.2, -1.9; LRMS (EI 70 eV): m/z (\%) = 359 (1), 344 (9), 326 (7), 300 (6), 254 (17), 230 (11), 204 (100); HRMS (ESI pos): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{FSi}^{+}$[$\left.\mathrm{M}+\mathrm{H}^{+}\right]: 360.1795$, found: 360.1790. HRMS (ESI neg): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClFNO}_{2} \mathrm{Si}^{-}\left[\mathrm{M}+\mathrm{Cl}^{-}\right.$: 394.1411 , found: 394.1424; IR ($\mathrm{v}, \mathrm{cm}^{-}$ ${ }^{1}$): 3226 (br w), 2952 (w), 2926 (w), 1621 (s), 1576 (w), 1508 (s), 1466 (m), 1427 (m), 1353 (m)l, 1247 (s), 1229 (vs).

$\left(S^{*}\right)$-benzo[b]thiophen-3-yl(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)methanol (4p)
Procedure A, from benzo[b]thiophene-3-carboxaldehyde (0.40 mmol), $\mathrm{m}=75 \mathrm{mg}$ (0.24 mmol , 59\%).
Yellowish oil, $\mathbf{R}_{\mathbf{f}}=0,55(\mathrm{hex} / \mathrm{EtOAc}=90: 10)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}$, $1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{td}, \mathrm{J}=14.0$ Hz and $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.50(\mathrm{dt}, J=8.8 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{dt}, J=8.8 \mathrm{~Hz}$ and 2.2 $\mathrm{Hz}, 1 \mathrm{H}), 0.66(\mathrm{td}, J=13.8 \mathrm{~Hz}$ and $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.45(\mathrm{td}, J=13.9 \mathrm{~Hz}$ and $4.3 \mathrm{~Hz}, 1 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.5,138.4,138.2,137.6,124.4,124.1,123.0,122.9,122.7,104.7,71.6,31.6$, 27.9, 13.1, 12.7, -1.8; LRMS (EI 70 eV): m/z (\%) = 316.2 (2), 288.1 (14), 215.1 (20), 197.1 (19), 163.1 (81), 135.1 (35), 91.2 (20), 73.2 (100); HRMS (EI pos): m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NOSSi}^{+}\left[\mathrm{M}^{+}\right.$]: 316.1317, found: 316.1317; IR (v, cm ${ }^{-1}$): 3371 (br-w), 3066 (w), 2952 (m), 2923 (w), 1744 (w), 1459 (w), 1427 (m), 1247 (s), 1172 (w), 1085 (m), 1056 (m), 1014 (m), 860 (s), 817 (s).

$\left(S^{*}\right)$-benzo[b]thiophen-2-yl(($\left.R^{*}\right)$-1-methyl-2-methylenecyclopropyl)methanol (syn-4q)
Procedure A, from 2-benzothiophencarboxaldehyde (0.5 mmol), m=52 mg ($0.23 \mathrm{mmol}, 45 \%$).
Colourless oil, $\mathbf{R}_{\mathrm{f}}=0.29$ (hex/EtOAc $=95: 5$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: 7.84-7.82 (m, 1H), 775-7.73 (m, $1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 5.71-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.52(\mathrm{dt}, J=8.8 \mathrm{~Hz}$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{dt}, J=8.9 \mathrm{~Hz}$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $100 \mathrm{MHz}): \delta=146.7,139.6,139.6,139.2,124.4,124.2,123.5,122.5,121.1,104.4,75.2,25.7,17.6$, 15.2; LRMS (EI 70 eV): m/z (\%) = 230 (16), 215 (12), 201 (79), 187 (21), 161 (100), 147 (57); HRMS (EI pos): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{OS}^{+}\left[\mathrm{M}^{+}\right]$: 230.0765, found: 230.0759; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3391 (br w), 3067 (w), 2965 (w), 2926 (w), 2867 (w), 1458 (m), 1426 (s), 1373 (m), 1253 (m).

Procedure A, from 2-benzothiophencarboxaldehyde (0.5 mmol), $\mathrm{m}=35 \mathrm{mg}$ ($0.15 \mathrm{mmol}, 30 \%$).
Colourless oil, $\mathbf{R}_{\mathbf{f}}=0.18$ (hex/EtOAc $=95: 5$); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: 7.75-7.73 (m, 1H), 7.67-7.65 (m, $1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.58-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.37(\mathrm{dt}, \mathrm{J}=$ 8.7 Hz and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{dt}, J=8.8 \mathrm{~Hz}$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $=\mathrm{v} 146.6,139.6,139.5,138.6,124.3,124.1,123.5,122.4,120.8,104.9,75.1,26.2,17.3,15.5$.

(R^{*})-phenyl(($\left.S^{*}\right)$-1,2,2-trimethyl-3-methylenecyclopropyl)methanol (5a)
Procedure A, from benzaldehyde (0.5 mmol), $\mathrm{m}=50 \mathrm{mg}$ ($0.25 \mathrm{mmol}, 49 \%$).
Colourless oil, $\mathbf{R}_{\mathbf{f}}=0,26$ (hex/EtOAc $=98: 2$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.46(\mathrm{~s}$, $1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=151.2,141.7,128.2,126.8,126.0,100.0,75.1,31.1,23.7,22.2,21.1,13.0 ;$ LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=316(14), 149(20), 105(45), 71(59), 57$ (100); HRMS (El pos): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}^{+}\left(\mathrm{M}^{+}\right)$: 202.1358, found: 202.1342; IR ($v, \mathrm{~cm}^{-1}$): 3421 (br w), 3061 (w), $2983(\mathrm{~m}), 2924(\mathrm{~m}), 2867(\mathrm{w}), 1602(\mathrm{w})$, 1494 (w), 1448 (s), 1373 (m), 1171 (m), 1108 (m), 1082 (m), 1016 (s), 936 (m), 887 (s).

$\left(R^{*}\right)$-(4-nitrophenyl)((S*)-1,2,2-trimethyl-3-methylenecyclopropyl)methanol (5b)
Procedure A, from 4-nitrobenzaldehyde (0.5 mmol), m = 68 mg ($0.28 \mathrm{mmol}, 55 \%$).
Orange solid, $\mathbf{m p}=77-79^{\circ} \mathrm{C}, \mathbf{R}_{\mathbf{f}}=0,71$ (hex/EtOAc $=80: 20$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.22(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, \mathrm{~J}=32.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.92$ (s, 3H), The signal for the OH-group could not be detected; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.3$, 149.34, 147.0, 127.0, 123.6, 100.6, 74.6, 31.4, 24.1, 22.5, 21.1, 13.1; LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=214$ (18), 172 (70), 142 (75), 97 (60), 59 (100); HRMS (El pos): calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}{ }^{+}\left(\mathrm{M}^{+}\right): 247.1208$, found: 247.1211; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3529 (br m), 2986 (w), 2928 (m), 2868 (w), 1743 (w), 1598 (m), 1511 (s), 1304 (s), 1235 (m), 1180 (m), 1106 (m), 1033 (s), 928 (m), 870 (s).

$\left(R^{*}\right)-\left(\left(1 S^{*}, 2 R^{*}\right)-1,2-\right.$ dimethyl-3-methylenecyclopropyl)(phenyl)methanol (7a)

Procedure B, from benzaldehyde (0.4 mmol), $\mathrm{m}=46 \mathrm{mg}$ ($0.24 \mathrm{mmol}, 61 \%$).
Colourless oil, $\mathrm{R}_{\mathrm{f}}=0.21$ (hex/EtOAc $=90: 10$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: 7.41-7.28 (m, 5H), $5.40(\mathrm{~d}, \mathrm{~J}=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=145.2,142.3,128.1,127.4,126.3,102.7,79.4,29.0$, 19.6, 12.5, 11.7; HRMS (EI pos): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15}{ }^{+}[\mathrm{M}-\mathrm{OH}]^{+}$: 171.1174, found: 171.1189; IR (v, cm^{-1}): 3226 (br w), 2952 (m), 2926 (w), 1741 (w), 1621 (m), 1508 (m), 1247 (s), 1229 (s).

$\left(R^{*}\right)$-1-((1S* $\left.2 R^{*}\right)$-1,2-dimethyl-3-methylenecyclopropyl)-3-phenylpropan-1-ol (7b)
Procedure B, from dihydrocinamaldehyde (0.5 mmol), $\mathrm{m}=91 \mathrm{mg}(0.42 \mathrm{mmol}, 84 \%)$.
Yellowish oil, $\mathbf{R}_{\mathbf{f}}=0.21$ (hexanes/ $\mathrm{Et}_{2} \mathrm{O} 90: 10$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.31-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.38$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.30(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=8.1 \mathrm{~Hz}$ and $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ddd, $J=13.8 \mathrm{~Hz}$, 9.6 Hz and $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (ddd, $J=13.8 \mathrm{~Hz}, 9.6 \mathrm{~Hz}$ and $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91-1.86 (m, 2H), 1.52 (br s, $1 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=146.4$, $142.3,128.5,128.5,125.9,101.2,78.0,35.4,32.7,27.7,18.8,11.9,11.1$; LRMS (EI 70 eV$): \mathrm{m} / \mathrm{z}(\%)=$ 216 (1), 201 (5), 133 (19), 105 (78), 91 (100); HRMS (El pos): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O} \cdot\left[\mathrm{M}^{+}\right]:$216.1514, found: 216.1532; IR (v, cm ${ }^{-1}$): 3412 (br w), 3062 (w), 2981 (m), 2929 (m), 2868 (m), 1946 (vw), 1716 (br w), 1603 (w), 1496 (m), 1454 (m), 1382 (m), 1030 (s).

$\left(R^{*}\right)$-((1S* $\left.2 R^{*}\right)$-1,2-dimethyl-3-methylenecyclopropyl)(4-nitrophenyl)methanol (7c)
Procedure B, from 4-nitrobenzaldehyde (0.4 mmol), $\mathrm{m}=67 \mathrm{mg}$ ($0.29 \mathrm{mmol}, 72 \%$).
Colourless oil, $\mathbf{R}_{\mathrm{f}}=0.38$ (hexanes/ $\mathrm{Et}_{2} \mathrm{O} 70: 30$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.21(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.64-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=149.7,147.3,144.4,127.0$, 123.4, 103.6, 78.9, 29.2, 20.3, 12.5, 11.1; HRMS (ESI neg): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{5}^{+}\left[\mathrm{M}+\mathrm{HCOO}^{-}\right]$: 278.1034, found: 278.1037; IR (v, cm${ }^{-1}$): 3455 (br m), 2979 (w), 2952 (m), 2924 (m), 2867 (w), 1941 (vw), 1670 (w), 1601 (m), 1516 (s), 1505 (s), 1345 (vs), 1108 (m), 1037 (s).

$\left(S^{*}\right)-\left(\left(1 S^{*}, 2 R^{*}\right)\right.$-1,2-dimethyl-3-methylenecyclopropyl)(6-nitrobenzo[d][1,3]dioxol-5-yl)methanol (7d)

Procedure B, from 6-piperonal (0.5 mmol), $\mathrm{m}=89 \mathrm{mg}$ ($0.32 \mathrm{mmol}, 80 \%$).
Brown crystals, $\mathrm{R}_{\mathrm{f}}=0.12$ (hex/EtOAc $\left.=90: 10\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.48(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H})$, $6.10(\mathrm{q}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=7.7,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{tdt}, J=6.4,4.8,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=151.9,146.9,144.7,142.0$, 135.4, 107.2, 105.5, 103.0, 102.8, 73.5, 29.6, 16.4, 15.8, 12.3; LRMS (EI 70 eV): $\mathrm{m} / \mathrm{z}(\%)=277$ (51), 259 (33), 243 (25), 230 (30), 216 (49), 204 (57), 188 (78), 164 (100); HRMS (El pos): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}{ }^{+}$ [M^{+}: 277.0950, found: 277.0918; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): $3530(\mathrm{~m}), 3370(\mathrm{br} \mathrm{w}), 2964(\mathrm{~m}), 2955(\mathrm{~m}), 2927(\mathrm{~m})$, 2868 (m), 1841 (vw), 1734 (w), 1618 (m), 1515 (s), 1504 (s), 1483 (s), 1321 (s), 1251 (vs), 1161 (m).

(S)-((1R,2S)-1-butyl-2-(((tert-butyldimethylsilyl)oxy)methyl)-3-methylenecyclopropyl)(phenyl)methanol (9)

Procedure C, from benzaldehyde (0.5 mmol), $\mathrm{m}=104 \mathrm{mg}(0.29 \mathrm{mmol}, 58 \%)$.
Yellowish oil, $\mathbf{R}_{\mathbf{f}}=0,26$ (hex/EtOAc $=98: 2$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.48(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=11.0 \mathrm{~Hz}$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{dd}, J=11.0 \mathrm{~Hz}$ and $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.14(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.7,140.5$, 127.9, 127.1, 126.4, 104.4, 61.0, 34.1, 30.1, 28.2, 26.7, 25.9, 23.2, 18.2, 14.0, -5.3, -5.4; LRMS (EI 70 eV): m/z (\%) = 303 (14), 211 (14), 171 (32), 105 (100), 75 (84); HRMS (EI pos): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}^{+}\left[\mathrm{M}-\mathrm{Me}^{+}\right]: 345.2250$, found: 345.2245 ; calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}^{+}\left[\mathrm{M}-t-\mathrm{Bu}^{+}\right]: 303.1780$, found: 303.1782; IR ($\mathrm{v}, \mathrm{cm}^{-1}$): 3440 (br w), 2955 (m), 2928 (m), 2857 (m), 1463 (w), 1379 (w), 1253 (m), 1102 (m), 1070 (br m), 888 (w), 820 (s).

4. NMR spectra

1,1,2-tribromo-2-pentylcyclopropane (1b)
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

trimethyl(2-(1,2,2-tribromocyclopropyl)ethyl)silane (1c)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4,4,5,5-tetramethyl-2-((2-methylcycloprop-1-en-1-yl)methyl)-1,3,2-dioxaborolane (3a) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4,4,5,5-tetramethyl-2-((2-pentylcycloprop-1-en-1-yl)methyl)-1,3,2-dioxaborolane (3b) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

trimethyl(2-(2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cycloprop-1-en-1-yl)ethyl)silane (3c)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4,4,5,5-tetramethyl-2-((2,3,3-trimethylcycloprop-1-en-1-yl)methyl)-1,3,2-dioxaborolane (3e) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

tert-butyl((2-butylcycloprop-2-en-1-yl)methoxy)dimethylsilane (8)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R^{*})-((S*)-1-methyl-2-methylenecyclopropyl)(phenyl)methanol (4a)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-1-((S*)-1-methyl-2-methylenecyclopropyl)-3-phenylpropan-1-ol (4b)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-benzo[b]thiophen-3-yl((S*)-1-methyl-2-methylenecyclopropyl)methanol (4c)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\left.R^{*}, \mathrm{E}\right)$-1-((S*)-1-methyl-2-methylenecyclopropyl)-3-phenylprop-2-en-1-ol (4d)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-(1-methyl-1H-indol-3-yl)((S*)-1-methyl-2-methylenecyclopropyl)methanol (4e)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(S^{*}\right)$-(3-fluoro-6-methoxyquinolin-4-yl)((S*)-1-methyl-2-methylenecyclopropyl)methanol (4f)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-(1-methyl-1H-pyrrol-2-yl)((S*)-1-methyl-2-methylenecyclopropyl)methanol (4g)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-((S*)-1-methyl-2-methylenecyclopropyl)(quinolin-3-yl)methanol (4h)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-[1,1'-biphenyl]-4-yl((S*)-1-methyl-2-methylenecyclopropyl)methanol (4i)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)-\left(\left(S^{*}\right)\right.$-1-methyl-2-methylenecyclopropyl)(4-nitrophenyl)methanol (4j)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-[1,1'-biphenyl]-4-yl((S*)-2-methylene-1-pentylcyclopropyl)methanol (4k)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-(2-bromopyridin-3-yl)(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)methanol (4I) ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-(1-methyl-1H-pyrrol-2-yl)(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)-methanol (4m) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-1-(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)-3-phenylpropan-1-ol (4n)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(S^{*}\right)$-(3-fluoro-6-methoxyquinolin-4-yl)(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)methanol (40)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-benzo[b]thiophen-3-yl(($\left.R^{*}\right)$-2-methylene-1-(2-(trimethylsilyl)ethyl)cyclopropyl)methanol (4p)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(S^{*}\right)$-benzo[b]thiophen-2-yl(($\left.R^{*}\right)$-1-methyl-2-methylenecyclopropyl)methanol (syn-4q)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S*)-benzo[b]thiophen-2-yl((S*)-1-methyl-2-methylenecyclopropyl)methanol (anti-4q)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R^{*})-phenyl(($\left.S^{*}\right)$-1,2,2-trimethyl-3-methylenecyclopropyl)methanol (5a)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

JS 2

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-(4-nitrophenyl)((S*)-1,2,2-trimethyl-3-methylenecyclopropyl)methanol (5b)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-((R)-2-methylene-1-phenylcyclopropyl)(phenyl)methanol (syn-4q)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-((S)-2-methylene-1-phenylcyclopropyl)(phenyl)methanol (anti-4q)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)-\left(\left(1 S^{*}, 2 R^{*}\right)\right.$-1,2-dimethyl-3-methylenecyclopropyl)(phenyl)methanol (7a)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-1-((1S* $\left.2 R^{*}\right)$-1,2-dimethyl-3-methylenecyclopropyl)-3-phenylpropan-1-ol (7b)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(R^{*}\right)$-((1S*,2R*)-1,2-dimethyl-3-methylenecyclopropyl)(4-nitrophenyl)methanol (7c)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(S^{*}\right)$-((1S*,2R*)-1,2-dimethyl-3-methylenecyclopropyl)(6-nitrobenzo[d][1,3]dioxol-5-yl)methanol (7d) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(S)-((1R,2S)-1-butyl-2-(((tert-butyldimethylsilyl)oxy)methyl)-3-methylenecyclopropyl)(phenyl)methanol (9)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5. Single Crystal X-Ray Diffraction Studies of 7d

Single crystals of compound $\mathbf{7 d}$, suitable for X-ray diffraction, were obtained by slow evaporation of dichloromethane solution. The crystals were introduced into perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped with a Spellman generator ($50 \mathrm{kV}, 40 \mathrm{~mA}$) and a Kappa CCD detector, operating with $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71071 \AA$).

Data collection was performed with the CrysAlis CCD software; ${ }^{\text {a) }}$ CrysAlis RED software ${ }^{\text {b) }}$ was used for data reduction. Absorption correction using the SCALE3 ABSPACK multiscan method ${ }^{\text {c) }}$ was applied. The structures were solved with SHELXS-97, ${ }^{\text {d) }}$ refined with SHELXL-97e ${ }^{\mathrm{e})}$ and finally checked using PLATON. ${ }^{\mathrm{f})}$ Details for data collection and structure refinement are summarized in Table 1.

CCDC- 1439072 contains supplementary crystallographic data for compound 7d reported in this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Details for X-ray data collection and structure refinement for compound 7d.

	7d
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}$
Formula mass	277.27
T[K]	173(2)
Crystal size [mm]	$0.39 \times 0.28 \times 0.26$
Crystal description	pale yellow block
Crystal system	monoclinic
Space group	$P 21 / c$
a []	9.5866(4)
b [] $]$	19.5978(6)
c [\AA]	7.6285(3)
$\beta\left[{ }^{\circ}\right]$	111.316(5)
$\mathrm{V}\left[\dot{A}^{3}\right]$	1335.17(9)
Z	4
$\rho_{\text {calce. }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.379

$\mu\left[\mathrm{mm}^{-1}\right]$	0.106
$F(000)$	584
Θ range $\left[^{\circ}\right]$	$4.16-30.51$
Index ranges	$-13 \leq h \leq 13$
	$-27 \leq k \leq 27$
	$-10 \leq l \leq 10$
Reflns. collected	26741
Reflns. obsd.	3152
Reflns. unique	4061
	$\left(\mathrm{R}_{\mathrm{int}}=0.0405\right)$
$R_{1}, w R_{2}$ (2 σ data)	$0.0462,0.1173$
$R_{1}, w R_{2}$ (all data)	$0.0633,0.1252$
GOOF on F^{2}	1.070
Peak/hole [e $\left.\AA^{-3}\right]$	$0.343 /-0.241$

Figure 1. Molecular structure of compound 7d in the crystal, DIAMOND ${ }^{\text {g) }}$ representation; thermal ellipsoids are drawn at 50% probability level.

Table 2. Selected bond lengths (\AA) of compound 7d.

$\mathrm{C} 5-\mathrm{C} 4$	$1.404(2)$	$\mathrm{C} 7-\mathrm{C} 2$	$1.363(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.406(2)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.433(2)$
$\mathrm{C} 5-\mathrm{C} 8$	$1.521(2)$	$\mathrm{C} 11-\mathrm{C} 14$	$1.508(2)$
$\mathrm{O} 5-\mathrm{C} 8$	$1.433(1)$	$\mathrm{C} 11-\mathrm{C} 9$	$1.555(2)$
$\mathrm{C} 3-\mathrm{O} 1$	$1.364(1)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.513(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.368(2)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.366(1)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.385(2)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.416(2)$
$\mathrm{N} 1-\mathrm{O} 4$	$1.224(1)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.312(2)$
$\mathrm{N} 1-\mathrm{O} 3$	$1.238(1)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.465(2)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.456(1)$	$\mathrm{C} 12-\mathrm{C} 9$	$1.471(2)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.528(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.405(2)$

Table 3. Selected bond angles $\left({ }^{\circ}\right)$ of compound 7d.

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$117.2(1)$	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{O} 2$	$128.9(1)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$118.0(1)$	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$121.2(1)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$124.8(1)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$110.0(1)$
$\mathrm{C} 8-\mathrm{O} 5-\mathrm{H} 5$	$106.5(1)$	$\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 10$	$118.6(1)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$127.5(1)$	$\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 8$	$121.4(1)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$109.7(1)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$113.1(1)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.8(1)$	$\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 11$	$57.84(8)$
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{O} 3$	$122.4(1)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 11$	$119.6(1)$
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 6$	$119.7(1)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$	$115.7(1)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 6$	$117.9(1)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$108.4(1)$
$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 5$	$111.0(1)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1$	$115.0(1)$
$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 9$	$110.3(1)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$121.0(1)$
$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9$	$114.0(1)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$116.3(1)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1$	$105.0(1)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1$	$104.8(1)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$147.8(1)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.7(1)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 9$	$147.8(1)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 14$	$122.9(1)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 9$	$63.96(9)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$	$58.20(8)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$123.9(1)$	$\mathrm{C} 14-\mathrm{C} 11-\mathrm{C} 9$	$123.1(1)$

Table 4. Selected torsion angles $\left({ }^{\circ}\right)$ of compound $\mathbf{7 d}$.

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 5$	$-27.2(1)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 7$	$-172.3(1)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 5$	$150.8(1)$	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$8.9(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9$	$98.1(1)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$-179.2(1)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9$	$-83.9(1)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$0.9(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.3(2)$	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2$	$-0.3(1)$
$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-177.7(1)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2$	$179.8(1)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$178.2(1)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 10$	$-64.1(3)$
$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$0.3(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 10$	$108.8(1)$

$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$-163.4(1)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 8$	$84.6(3)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7$	$15.9(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 8$	$-102.5(1)$
$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$18.5(2)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 9-\mathrm{C} 11$	$-172.9(3)$
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-162.3(1)$	$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 12$	$135.6(1)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-0.9(2)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 12$	$9.9(2)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-179.0(1)$	$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-74.2(1)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1$	$171.6(1)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$160.1(1)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1$	$-8.3(2)$	$\mathrm{O} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$	$69.0(1)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.6(1)$	$\mathrm{C} 5-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$	$-56.7(1)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.6(2)$	$\mathrm{C} 14-\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 12$	$111.0(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$0.9(2)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10$	$-107.0(1)$
$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$179.1(1)$	$\mathrm{C} 14-\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10$	$4.0(2)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 14$	$61.5(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$112.3(1)$
$\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 14$	$-111.4(2)$	$\mathrm{C} 14-\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$-136.6(1)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$	$172.8(3)$	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$-14.0(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2-\mathrm{O} 2$	$-178.4(1)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$13.9(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$0.4(2)$		

References

a) CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34).
b) CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34).
c) SCALE3 ABSPACK - An Oxford Diffraction Program (1.0.4, gui:1.0.3) (C), Oxford Diffraction, Ltd., 2005.
d) Sheldrick, G. M. (1997) SHELXS-97: Program for Crystal Structure Solution, University of Göttingen, Germany.
e) Sheldrick, G. M. (1997) SHELXL-97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany.
f) Spek, A. L. (1999) PLATON: A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.
g) DIAMOND, Crystal Impact GbR., Version 3.2i.

[^0]: ${ }^{1}$ E. Zohar, I. Marek Org. Lett. 2004, 6, 341-343.

[^1]: ${ }^{2}$ W. G. von der Schulenburg, H. Kopf, R. Walsh Chem. Eur. J. 2000, 6, No. 11

