Supporting Information for:

Upgrading Ethanol to 1-Butanol Catalyzed by a Homogeneous Air-Stable Ruthenium Catalyst

Kuei-Nin T. Tseng, Steve Lin, Jeff W. Kampf, and Nathaniel K. Szymczak*

Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, United States

Corresponding Author: nszym@umich.edu

Table of Contents

General Considerations	S2
General Procedure for GC-FID Analysis	S2
General Procedure for the Guerbet Reaction using EtOH	S 3
Table S1. Catalytic Conversion of EtOH to 1-BuOH	S4
General Procedure for Poisoning Experiments	S 5
Table S2. Catalytic Conversion of EtOH to 1-BuOH with Poisoning Additives	S 5
Figure S1. Representative GC Chromatogram of Conversion of EtOH to 1-BuOH Catalyzed by 2-H	S 6
Preparation and Characterization of Ru(bMepi)(PPh ₃)(Cl)CO (3)	S 7
Preparation and Characterization of Ru(bpi)(CO) ₂ Cl (4b)	S 7
References	S 8

General Considerations

All manipulations were conducted under a nitrogen atmosphere in a glovebox unless otherwise stated. All reagents were purchased from commercial vendors. The 3Å molecular sieves were dried at 250 °C under dynamic vacuum for 24 h. 200 proof anhydrous ethanol (Decon) was sparged with N₂ for 2 h, and then stored over 3Å molecular sieves for 3 days. Sodium ethoxide (Sigma-Aldrich), lithium ethoxide (Sigma-Aldrich), potassium ethoxide (Sigma-Aldrich), and sodium hydroxide (Sigma-Aldrich) were used without further purification. The following compounds were synthesized according to literature methods: Ru(bMepi)(PPh₃)cl¹, HRu(bMepi)(PPh₃)₂¹, Ru(bpi)(PPh₃)₂Cl², Ru(b4OMepi)Cl(PPh₃)₂², and Ru(b4Clpi)Cl(PPh₃)₂². Diethyl ether (Et₂O), benzene (C₆H₆), dichloromethane (DCM) and pentane were purified using a Glass Contour solvent purification system consisting of a copper catalyst, neutral alumina, and activated molecular sieves then passed through an in-line 2 μ m filter immediately before using dispensed.

NMR spectra were recorded on MR400 and Varian vnmrs 500 spectrometers at ambient temperature. ¹H and ¹³C shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. The follow abbreviations are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), multiplet (m). ¹³C NMR resonances were observed as singlets unless otherwise stated. Solid-state IR spectra were collected using a Nicolet iS10 spectrometer equipped with a diamond attenuated total reflectance (ATR) accessory. Elemental analysis was performed by Midwest Microlab, LLC.

General Procedure for GC-FID Analysis

GC-FID analyses were performed using a Shimadzu GC-2014 GC/FID; the GC contains a 15 m long SH-Rxi-5ms column with a 0.25 mm I.D. and utilized H₂ as the carrier gas. GC measurements were conducted using the following method: 50 °C hold for the first 2 min, ramp to 250 °C at 35 °C/min and hold for 2 min. A calibration curve for the Guerbet products was obtained by GC analysis by plotting the ratios of the areas, $A_{sample}/A_{standard}$, against the known the concentrations.

General Procedure for the Catalytic Conversion of EtOH to 1-BuOH under Air

On the benchtop, ethanol (1 mL, 17.1 mmol) was added to a 10 mL Biotage microwave vial (Product No. 351521) containing Ru(bpi)(PPh₃)₂Cl (**2-H**) (0.1 mol%, 0.0172 mmol, 16.4 mg), NaOEt (5 mol%, 0.858 mmol, 58.3 mg), and a stir bar. The vial was crimped with a septum, heated to 150 °C using an aluminum-heating block, and stirred at 1500 rpm. After 2 h, the vial was removed from the aluminum-heating block and cooled to room temperature. The solution was diluted with CHCl₃ to 25 mL and filtered through celite. The products and yields were analyzed using GC-FID against naphthalene as an internal standard.

General Procedure for the Catalytic Conversion of EtOH to 1-BuOH under N₂

Inside an inert-atmosphere glovebox, ethanol (1 mL, 17.1 mmol) was added to a 10 mL Biotage microwave vial (Product No. 351521) containing catalyst (0.1 mol%, 0.0172 mmol), base (5 mol%, 0.858 mmol), and a stir bar. Unless otherwise stated, Ru(bpi)(PPh₃)₂Cl (**2-H**) (16.4 mg, 0.0172 mmol) and NaOEt (58.3 mg, 0.858 mmol) were used. The vial was crimped with a septum, heated to 150 °C using an aluminum-heating block, and stirred at 1500 rpm. After 2 h, the vial was removed from the aluminum-heating block and cooled to room temperature. The solution was diluted with CHCl₃ to 25 mL and filtered through celite. The products and yields were analyzed using GC-FID against naphthalene as an internal standard.

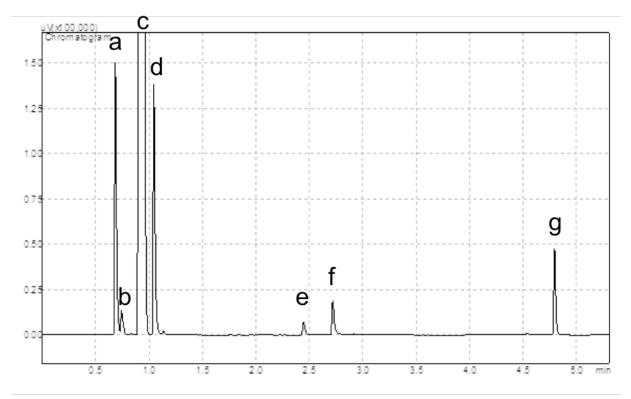
	e 51. Catalytic Conversion of Ltor.				-			_	-	-	
Entry	Conditions	Catalyst Amount (mg)	I-butanol (%)	2-ethyl-1-butanol (%)	I-Hexanol (%)	2-ethyl-1-hexanol (%)	I-Octanol (%)	Total Conversion $(\%)^a$	I-BuOH Selectivity (%) ^b	TON^c	$TOF\left(h^{-L^{-}} ight)$
1	Ru(bMepi)(PPh ₃)Cl	12.4	10	0	1	0	0	11	91	118	59
2	HRu(bMepi)(PPh ₃) ₂	16.4	10	0	0	0	0	10	100	101	51
3 ^{<i>d</i>}	Ru(bpi)(PPh ₃) ₂ Cl	16.4	25	1	3	0	0	30	91	296	148
4	Ru(bpi)(PPh ₃) ₂ Cl No Stirring	16.4	29	2	4	0	0	35	88	347	174
5 ^e	Ru(bpi)(PPh ₃) ₂ Cl Teflon	16.4	30	3	6	1	1	40	82	397	199
6	0.3 mol% Ru(bpi)(PPh ₃) ₂ Cl	49.5	23	1	3	0	0	27	89	92	46
7	0.05 mol% Ru(bpi)(PPh ₃) ₂ Cl	8.2	20	2	3	0	0	25	81	501	250
8	0.01 mol% Ru(bpi)(PPh ₃) ₂ Cl	1.6	5	0	1	0	0	6	86	625	313
9	0.001 mol% Ru(bpi)(PPh ₃) ₂ Cl	0.2	1	0	0	0	0	1	100	1423	711
10	Ru(b4OMepi)(PPh ₃) ₂ Cl	17.5	24	1	3	0	0	28	89	284	142
11	Ru(b4Clpi)(PPh ₃) ₂ Cl	17.6	21	1	3	0	0	25	89	251	126
12	Ru(bMepi)(PPh ₃)(Cl)CO	12.9	16	0	1	0	0	17	95	168	84
13	Ru(bpi)(CO) ₂ Cl	8.4	3	0	0	0	0	3	100	31	16
14 ^{<i>f</i>}	Ru(bpi)(PPh ₃) ₂ Cl Set up under air	16.4	27	2	5	0	0	34	83	342	171
15 ^d	0.5 h	16.4	3	0	0	0	0	3	100	31	62
16 ^{<i>d</i>}	1 h	16.4	11	0	1	0	0	12	96	116	116
17 ^d	4 h	16.4	31	3	6	1	1	45	81	448	112
18 ^{<i>d</i>}	6 h	16.4	32	4	7	2	1	46	80	457	76
19 ^d	24 h	16.4	33	4	7	1	1	46	80	460	19
20	10 mol% NaOEt (116.6 mg)	16.4	31	2	6	1	1	42	82	422	211
21	10 mol% NaOEt (116.6 mg) under air	16.4	29	3	6	0	0	38	80	385	192
22	5 mol% LiOEt (44.6 mg)	16.4	4	0	0	0	0	4	100	39	20
23	5 mol% KOEt (72.2 mg)	16.4	19	1	2	0	0	23	89	226	113
24	5 mol% NaOH (34.3 mg)	16.4	26	1	3	0	0	30	90	300	150
25	0.1 mol% PPh ₃ (4.5 mg)	16.4	38	3	8	0	0	49	84	489	245
26	0.2 mol% PPh ₃ (9.0 mg)	16.4	36	3	8	1	1	49	81	489	245
27	0.4 mol% PPh ₃ (18.0 mg)	16.4	37	3	10	1	2	53	78	529	265
28 ^g	20% v/v 1-butanol	16.4	23	3	7	1	1	35	85	348	174
29	180 °C	16.4	28	4	6	2	1	41	78	410	205

Table S1. Catalytic Conversion of EtOH to 1-BuOH

30	No catalyst	0	0	0	0	0	0	0	0	0	0
31	Ru(bpi)(PPh ₃) ₂ Cl – No NaOEt base	0	0	0	0	0	0	0	0	0	0
32^h	Fisher-Porter tube – 0 psig H_2	16.4	7	0	1	0	0	8	90	78	39
33 ^{<i>h</i>}	Fisher-Porter tube – 45 psig H_2	16.4	28	4	7	2	1	42	76	421	211
34^h	Fisher-Porter tube – 90 psig H_2	16.4	23	4	5	3	1	36	73	365	182

^{*a*} Conversion of EtOH to Guerbet products. ^{*b*} 1-BuOH selectivity calculated with following equation: *mmoles of 1-butanol/mmoles of all products*. ^{*c*} TON based on mmol of substrate converted to products per mmol of Ru. ^{*d*} Average of 2 runs. ^{*e*} The reaction was performed using a 23 mL stainless steel autoclave Parr bomb lined with a Teflon vessel. ^{*f*} Average of 3 runs. ^{*g*} With 0.2 mL 1-BuOH added (20% by volume). ^{*h*} The reaction was performed using a 85 mL Fisher-Porter tube.

General Procedure for Poisoning Experiments


Following the general procedure of the Guerbet reaction, the experiment was conducted by allowing the reaction to proceed for 30 min. The reaction was removed from the aluminum-heating block and cooled for 15 min at room temperature. Then PBu_3 or Hg(0) was added to the reaction. The reaction was crimped and reheated to 150 °C for 1.5 h.

For the water poisoning experiments, water was added concomitantly with ethanol. The volume of the reaction remained constant. For example, entry 3 below indicates that 5% and 95% of the reaction volume is water and ethanol respectively (50 μ L of water and 950 μ L of ethanol).

				(%) Iou							
Entry	Conditions	Amount (uL)	I-butanol (%)	2-ethyl-1-butanol (%)	I-Hexanol (%)	2-ethyl-I-hexanol (%)	I-Octanol (%)	Total Conversion $(\%)^a$	I-BuOH Selectivity (%) b	TON^c	$TOF(h^{-l-})$
1	Control: cool for 15 min after 0.5 h at 150 °C, then reheated for 1.5 h at 150 °C	—	29	2	4	0	0	35	89	348	179
2	0.025 mol% P(<i>n</i> -Bu) ₃	1.1	25	1	3	0	0	30	88	299	150
3	0.1 mol% $P(n-Bu)_3$	4.3	25	2	4	0	0	30	86	298	149
4	$0.2 \text{ mol}\% P(n-Bu)_3$	8.6	3	0	0	0	0	3	100	31	16
5 ^{<i>d</i>}	~20 mol% Hg(0)	1 drop (~50 μL)	26	2	4	0	0	31	87	312	156
6	5% v/v Water	50	24	1	2	0	0	28	90	279	140
7	10% v/v Water	100	4	0	0	0	0	4	100	40	20
8	20% v/v Water	200	8	0	0	0	0	8	100	81	41

Table S2. Catalytic Conversion of EtOH to 1-BuOH with Poisoning Additives

^{*a*} Conversion of EtOH to Guerbet products. ^{*b*} 1-BuOH selectivity calculated with following equation: *mmoles of 1-butanol/mmoles of all products*. ^{*c*} TON based on mmol of substrate converted to products per mmol of Ru. ^{*d*} Average of 2 runs.

Figure S1. Representative GC Chromatogram of Conversion of EtOH to 1-BuOH Catalyzed by **2-H**.

- a = Ethanol (0.66 min). b = stabilizer in $CHCl_3$ (0.75 min). c = Chloroform (solvent, 0.93 min).
- d = 1-butanol (1.054 min). e = 2-ethyl-1-butanol (2.46 min). f = 1-hexanol (2.73 min)
- g = naphthalene (internal standard, 4.81 min)

Preparation of Ru(bMepi)(PPh₃)(Cl)CO (3). DCM (5 mL) was added to a Fisher-porter tube containing Ru(bMepi)(PPh₃)Cl (101.1 mg, 0.139 mmol) and a stir bar. The reaction vessel was charged with CO (30 psig) and allowed to stir at room temperature for 15 h. The DCM solution was layered with pentane (15 mL). After 24 h at room temperature, the precipitates were collected and washed with pentane (4 × 10 mL). Evaporation of the volatiles under vacuum afforded the product as a dark orange solid. Crystals were obtained from vapor diffusion of pentane into a C₆H₆ solution at room temperature. Yield: 79 mg (75%). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.76 (dd, *J*_{HH} = 5.6, 2.4 Hz, 2H), 7.52 (dd, *J*_{HH} = 5.6, 2.4 Hz, 2H), 7.49 (t, *J*_{HH} = 7.8 Hz, 2H), 7.16 (t, *J*_{HH} = 7.6 Hz, 3H), 7.09 (d, *J*_{HH} = 7.2 Hz, 2H), 7.03 (d, *J*_{HH} = 7.8 Hz, 2H), 6.93-6.89 (m, 6H), 6.55-6.50 (m, 6H). ¹³C{¹H} (126 MHz, CD₂Cl₂): δ 206.03 (d, *J*_{CP} = 19.2 Hz), 165.45, 160.55, 155.63, 141.08, 136.91, 133.24 (d, *J*_{CP} = 9.6 Hz), 130.78, 130.41, 130.27 (t, *J*_{CP} = 3.3 Hz), 128.28 (d, *J*_{CP} = 9.6 Hz), 125.92, 121.72 (d, *J*_{CP} = 8.6 Hz), 31.71. ³¹P{¹H} (162 MHz, CD₂Cl₂): δ 43.5 (s). IR (ATR, cm⁻¹): 3066, 3015, 1929, 1639, 1604, 1577, 1545, 1519, 1474, 1432, 1393, 1371, 1318, 1286, 1236, 1187, 1156, 1117, 1094, 992, 903, 882, 800, 782, 750, 735, 714, 688. Anal. Calculated (found): C, 62.19 (62.15); H, 4.15 (4.14); N, 9.30 (9.12).

Preparation and Characterization of Ru(bpi)(**CO**)₂**Cl** (**4b**). C₆H₆ (8 mL) was added to a Fisher-porter tube containing **2-H** (81.5 mg, 0.0849 mmol) and a stir bar. The reaction vessel was charged with CO (30 psig) and allowed to stir at room temperature for 24 h. The precipitate was collected on a frit and washed with Et₂O (5 mL) and pentane (4 ×10 mL). The product was dried under vacuum to afford a yellow solid. Crystals were obtained from vapor diffusion of Et₂O into a DCM solution at 5 °C. Yield: 33 mg (79%). ¹H NMR (500 MHz, CD₂Cl₂): δ 8.76 (d, $J_{\text{HH}} = 6.0$ Hz, 2H), 8.07 (dd, $J_{\text{HH}} = 5.2$, 3.2 Hz, 2H), 7.86 (t, $J_{\text{HH}} = 7.6$ Hz, 2H), 7.69-7.65 (m, 4H), 7.04 (t, $J_{\text{HH}} = 6.0$ Hz, 2H). ¹³C{¹H} (126 MHz, CD₂Cl₂): δ 196.27, 192.31, 157.49, 156.84, 156.78, 138.94, 138.89, 131.19, 128.75, 122.00, 120.07. IR (ATR, cm⁻¹): 3091, 3069, 2046, 1977, 1647, 1603, 1577, 1528, 1459, 1428, 1381, 1321, 1307, 1287, 1201, 1184, 1150, 1121, 1101, 1011, 910, 875, 869, 846, 771, 745, 702. Anal. Calculated (found): C, 48.94 (48.73); H, 2.46 (2.45); N, 14.27 (13.71).

References

- 1. Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. Organometallics 2013, 32, 2046.
- 2. Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.