# <Electronic Supplementary Information> 

# A triple-function nanotube as reactant reservoir, reaction platform, and byproduct scavenger for photo-cyclopropanation 

Jeong Gyun Kim, Tae Hwan Noh, Yoonjung Cho, Jin Kyoon Park and Ok-Sang Jung* Department of Chemistry, Pusan National University, Pusan 609-735, Korea

## Experimental section

Materials and measurements. All commercialized chemicals including 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol, isonicotinoyl chloride hydrochloride, and cadmium(II) iodide were purchased from Aldrich and Tokyo Chemical Industry, and used without further purification. Elemental microanalyses (C, H, N) were performed on solid samples by the Pusan center, KBSI, using a Vario-EL III. Thermal analyses were undertaken under a nitrogen atmosphere at a scan rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ using a Labsys TGA-DSC 1600 . Infrared spectra were obtained on a Nicolet 380 FT-IR spectrometer with samples prepared as KBr pellets. FT-Raman spectra were obtained by Vertex 80V Microscopic FT-IR/Raman Spectrometer (Bruker, Germany) with a Nd:YAG laser (100 mW, 1064 nm ), at KBSI Busan Center, Korea. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75 \mathrm{MHz}) \mathrm{NMR}$ spectra were recorded on a Varian Mercury Plus 300. Electronic spectra were acquired on a Shimadzu UV-1800.

## Preparation of 2,6-bis[(2-isonicotinoyloxy-5-methylphenyl)methyl]-p-tolylisonicotinate

 (L). Triethylamine ( $11.15 \mathrm{~mL}, 80.0 \mathrm{mmol}$ ) in chloroform $(10 \mathrm{~mL})$ was slowly added to a mixture of 2,6-bis(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol (3.48 g, 10.0 mmol )and isonicotinoyl chloride hydrochloride ( $6.41 \mathrm{~g}, 36 \mathrm{mmol}$ ) in chloroform ( 120 mL ). The reaction mixture was refluxed for 24 h . The solution was filtered, and then the filtrate was washed with water several times. The chloroform layer was dried over $\mathrm{MgSO}_{4}$ and filtered. Evaporation of the chloroform gave ivory solids. Recrystallization from dichloromethane/diethyl ether afforded large, transparent crystals suitable for X-ray crystallographic characterization. Yield, $5.44 \mathrm{~g}(82 \%)$. m.p. $173{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$ : C 74.19, H 5.01, N 6.33; Found: C 74.08, H 5.05, N $6.28 \% ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.76\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.74\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.71\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.8\right.$ $\mathrm{Hz}, 4 \mathrm{H}), 7.49\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.04\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 6.83$ (s, 2H), $6.71(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 4 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}), 1.89 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=163.14,162.30,150.55,150.44,146.44,145.05,136.37,136.09,135.98$, $135.94,131.72,131.55,130.61,130.07,128.32,122.96,122.84,121.94,32.54,20.53,20.28$ ppm; IR (KBr): $\tilde{v}=1747,1592,1562,1499,1471,1408,1323,1268,1192,1135,1111,1083$, $1059,872,847,812,788,752,701,670 \mathrm{~cm}^{-1}$.

Synthesis of $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \cdot \mathbf{0 . 5} \mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{O H} @\left[\mathbf{C d I}_{\mathbf{2}}(\mathbf{L})\right]$. An ethanol solution $(10 \mathrm{~mL})$ of $\mathrm{CdI}_{2}(0.15$ $\mathrm{mmol}, 50 \mathrm{mg})$ was layered onto a dichloromethane solution $(10 \mathrm{~mL})$ of $\mathrm{L}(0.15 \mathrm{mmol}, 100$ mg ). After 3 days, colorless crystals suitable for single crystal X-ray diffraction were obtained. Yield, 150 mg ( $87 \%$ ). m.p. $368^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6.5} \mathrm{Cl}_{2} \mathrm{CdI}_{2}$ : C 45.03, H 3.42, N 3.66; Found: C 45.19, H 3.54, N 3.49\%; IR (KBr): $\tilde{v}=1745,1614,1564,1497$, $1468,1419,1327,1275,1228,1194,1126,1088,1061,1018,876,852,810,791,754,696$, $682 \mathrm{~cm}^{-1}$.

Synthesis of $\mathbf{0 . 5} \mathrm{CH}_{2} \mathrm{Br}_{2} \cdot \mathbf{0 . 3 3} \mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{O H} \cdot \mathbf{0 . 5} \mathbf{H}_{\mathbf{2}} \mathbf{O} @\left[\mathbf{C d I}_{\mathbf{2}}(\mathbf{L})\right]$. An ethanol solution ( 10 mL ) of $\mathrm{CdI}_{2}(0.15 \mathrm{mmol}, 50 \mathrm{mg})$ was layered onto a dibromomethane solution $(10 \mathrm{~mL})$ of $\mathrm{L}(0.15$
mmol, 100 mg ). After 3 days, colorless crystals suitable for single crystal X-ray diffraction were obtained. Yield, $142 \mathrm{mg}(83 \%)$. m.p. $369{ }^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{42.17} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6.83} \mathrm{BrCdI}_{2}$ : C 44.38, H 3.26, N 3.68; Found: C 44.49, H 3.31, N 3.57\%; IR (KBr): $\tilde{v}=1743,1612,1560$, $1497,1419,1273,1194,1128,1061,1018,879,852,808,754,696,683,418 \mathrm{~cm}^{-1}$.

Synthesis of $\mathbf{C H}_{\mathbf{2}} \mathbf{I}_{\mathbf{2}} @\left[\mathbf{C d I}_{\mathbf{2}} \mathbf{( L )}\right]$. An ethanol solution $(10 \mathrm{~mL})$ of $\mathrm{CdI}_{2}(0.15 \mathrm{mmol}, 50 \mathrm{mg})$ was layered onto a mixture of dichloromethane and diiodomethane solution $(10 \mathrm{~mL}, v / v=3$ : 1) of L ( $0.15 \mathrm{mmol}, 100 \mathrm{mg}$ ). After 4 days, yellow crystals suitable for single crystal X-ray diffraction were obtained. Yield, $152 \mathrm{mg}(78 \%)$. m.p. $350^{\circ} \mathrm{C}$; Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{CdI}_{4}$ : C 38.87, H 2.72, N 3.24; Found: C 38.83, H 2.79, N 3.18\%; IR (KBr): $\tilde{v}=1741,1610,1560,1500,1468,1417,1327,1277,1196,1115,1088,1061,1016,872,850$, $806,756,698,681 \mathrm{~cm}^{-1}$.

Recognition of dihalomethane molecules. In order to determine the distinguishability in recognition, a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Br}_{2}$, and $\mathrm{CH}_{2} \mathrm{I}_{2}$ were employed in the substrate molecules. All of the solvate molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ could be removed at $50^{\circ} \mathrm{C}$ in vacuum, as confirmed by reference to the IR, elemental analysis, and ${ }^{1} \mathrm{H}$ NMR results. The evacuated $\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ was immersed in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Br}_{2}$, and $\mathrm{CH}_{2} \mathrm{I}_{2}(v / v / v=1: 1: 1)$ for 1 day. The ${ }^{1} \mathrm{H}$ NMR spectrum of the resulting sample was measured in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$ in order to confirm the incorporation of dihalomethane molecules, even though each compound was dissociated in the solution.

UV-irradiation of $\mathbf{C H}_{2} \mathbf{I}_{2} @\left[\mathbf{C d I}_{2}(\mathbf{L})\right]$. The crystalline solids of $\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ were exposed to the 350 nm UV-irradiation by using LZC-4V Photoreactor (Luzchem Res., Inc.) with the intensity of $1.75 \mathrm{~mW} \mathrm{~cm}^{-2}$ at ambient temperature for 3 days.

## Photo-cyclopropanation reaction of alkenes with $\mathbf{C H}_{\mathbf{2}} \mathbf{I}_{\mathbf{2}} @\left[\mathbf{C d I}_{\mathbf{2}}(\mathbf{L})\right]$. General method:

Cyclohexene, 1-methylcyclohexene, 1-octene, cis-4-octene, and trans-4-octene were employed as reactants for the photo-cyclopropanation. $500 \mathrm{mg}(0.385 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ as a crystalline solid was added to $\mathrm{CDCl}_{3}(3 \mathrm{~mL})$ solution of each alkene ( 0.385 mmol ). The resulting mixture was placed in LZC-4V Photoreactor and exposed to UV-radiation of 350 nm at ambient temperature for the proposed time. The yields of photoreaction were monitored via ${ }^{1} \mathrm{H}$ NMR spectra and summarized in Figure S4. For the recycle experiments, the resulting dark-brown solid was filtered and washed with acetone several times in order to remove the iodine molecules within the MONT. The resulting yellowish solid of MONT was employed the next photoreaction of alkenes with $\mathrm{CH}_{2} \mathrm{I}_{2}(1: 1$ mole ratio). Stepwise experiments: To the resulting mixture after the photoreaction of cyclohexene with $\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ for 1 day, $\mathrm{CH}_{2} \mathrm{I}_{2}(20 \mu \mathrm{~L}, 0.248 \mathrm{mmol})$ was added and allowed to stand for 1 day in the dark, in order to re-adsorb $\mathrm{CH}_{2} \mathrm{I}_{2}$ into the channel of the present MONT, and then, the photoreaction and re-adsorption sequence was repeated. Control experiments: To a $\mathrm{CDCl}_{3}(3 \mathrm{~mL})$ solution of cyclohexene and $\mathrm{CH}_{2} \mathrm{I}_{2}(1: 1$ mole ratio), the evacuated MONT was added, and then the photoreaction was conducted. In addition, a mixture of $\mathrm{CdI}_{2}$ and $\mathrm{L}(1: 1$ mole ratio) was employed for the photoreaction instead of the present MONT.

Crystal structure determinations. X-ray data were collected on a Bruker SMART automatic diffractometer with a graphite-monochromated Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA$ ) and a CCD detector at $-25^{\circ} \mathrm{C}$. The data reduction was performed by using the Bruker APEXII with SADABS packages. ${ }^{1}$ The structure was solved by direct methods and refined by full-matrix least squares calculation using SHELX-2014/7., ${ }^{2,3}$ The non-hydrogen atoms were refined
anisotropically, and hydrogen atoms were placed in calculated positions and refined only for the isotropic displacement parameters. The crystal parameters and procedural information corresponding to the data collection and structure refinement are listed in Table S1.

Refinements of structures with the SQUEEZE routine in PLATON. For the present MONTs, some of solvate molecules in the nanotube were highly disordered and were impossible to refine using conventional discrete-atom models. Therefore, the residual electron density was treated as diffuse contributions using the SQUEEZE of the PLATON software and located a series of voids (see below). ${ }^{4}$

$$
\text { For } \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right] \text {, }
$$

| aton_squeeze_void_nr |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| _platon_squeeze_void_average_x |  |  |  |  |  |
| _platon_squeeze_void_average_y |  |  |  |  |  |
| _platon_squeeze_void_average_z |  |  |  |  |  |
| _platon_squeeze_void_volume |  |  |  |  |  |
| _platon_squeeze_void_count_electrons |  |  |  |  |  |
| _platon_squeeze_void_content |  |  |  |  |  |
|  | 0.000 | 0.000 | -0.009 | 1997 | 632 |
| 2 | 0.020 | 0.611 | 0.914 | 20 | 2 |
| 3 | 0.055 | 0.742 | 0.248 | 20 | 2 |
| 4 | 0.075 | 0.353 | 0.419 | 20 | 2 |
| 5 | 0.333 | 0.667 | 0.614 | 2006 | 633 |
| 6 | 0.258 | 0.313 | 0.248 | 20 | 2 |
| 7 | 0.278 | 0.925 | 0.419 | 20 | 2 |
| 8 | 0.313 | 0.055 | 0.752 | 21 | 2 |
| 9 | 0.353 | 0.278 | 0.581 | 20 | 2 |
| $10$ | 0.389 | 0.409 | 0.914 | 20 | 2 |
| 11 | 0.409 | 0.020 | 0.086 | 20 | 2 |
|  | 0.667 | 0.333 | 0.281 | 2006 | 633 ' |
| $13$ | 0.591 | 0.980 | 0.914 | 20 | $2 '$ |
|  | 0.611 | 0.591 | 0.086 | 20 | $2 '$ |
| $15$ | 0.647 | 0.722 | 0.419 | 20 | $2^{\prime \prime}$ |
| 16 | 0.687 | 0.945 | 0.248 | 21 | $2^{\prime}$ |
| 17 | 0.722 | 0.075 | 0.581 | 20 | $2^{\prime}$ |
|  | 0.742 | 0.686 | 0.752 | 20 | 2 |


| 19 | 0.925 | 0.647 | 0.581 | 20 | $2^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | 0.945 | 0.258 | 0.752 | 20 | $2^{\prime \prime}$ |
| 21 | 0.980 | 0.389 | 0.086 | 20 | $2^{\prime \prime}$ |

_platon_squeeze_void_probe_radius 1.20
_platon_squeeze_details
?

For $0.5 \mathrm{CH}_{2} \mathrm{Br}_{2} \cdot 0.33 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$,

| laton_squeeze_void_nr |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| platon_squeeze_void_average_x |  |  |  |  |  |
| _platon_squeeze_void_average_y |  |  |  |  |  |
| _platon_squeeze_void_average_z |  |  |  |  |  |
| _platon_squeeze_void_volume |  |  |  |  |  |
| _platon_squeeze_void_count_electrons platon_squeeze_void_content |  |  |  |  |  |
|  |  |  |  |  |  |
|  | 0.000 | 0.000 | -0.002 | 706 | 29 |
| 2 | 0.012 | 0.413 | 0.430 | 15 | 0 |
| 3 | 0.068 | 0.321 | 0.763 | 15 | 0 |
| 4 | 0.080 | 0.735 | 0.903 | 15 | 0 |
| 5 | 0.333 | 0.667 | 0.617 | 705 | 331 |
|  | 0.253 | 0.932 | 0.763 | 15 | $0^{\prime \prime}$ |
|  | 0.265 | 0.345 | 0.903 | 15 | $0{ }^{\prime \prime}$ |
|  | 0.321 | 0.253 | 0.237 | 15 | $0{ }^{\prime \prime}$ |
|  | 0.345 | 0.080 | 0.096 | 15 | 0 |
| 10 | 0.401 | 0.988 | 0.430 | 15 | 0 |
|  | 0.413 | 0.401 | 0.570 | 15 | 0 |
| 12 | 0.667 | 0.333 | 0.284 | 704 | 331 |
| 13 | 0.586 | 0.599 | 0.430 | 15 | $0^{\prime \prime}$ |
|  | 0.599 | 0.012 | 0.570 | 15 | $0^{\prime \prime}$ |
|  | 0.654 | 0.920 | 0.903 | 15 | $0^{\prime \prime}$ |
|  | 0.679 | 0.747 | 0.763 | 15 | $0^{\prime \prime}$ |
|  | 0.735 | 0.654 | 0.097 | 15 | $0^{\prime \prime}$ |
|  | 0.747 | 0.068 | 0.237 | 15 | 0 |
|  | 0.920 | 0.265 | 0.096 | 16 | 0 ' |
|  | 0.932 | 0.679 | 0.237 | 15 | 0 |
|  | 0.988 | 0.586 | 0.570 | 15 |  |

_platon_squeeze_void_probe_radius 1.20
_platon_squeeze_details ?

For 350 nm -UV-irradiated $\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$.
_platon_squeeze_void_nr


1 G. M. Sheldrick, SADABS: A Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1996.

2 G. M. Sheldrick, SHELXS-97: A Program for Structure Determination, University of Göttingen, Göttingen, Germany, 1997.

3 G. M. Sheldrick, SHELXL-2014/7: A Program for Structure Refinement, University of Göttingen, Göttingen, Germany, 2014.

4 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

Table S1 Crystal refinement parameters for $\mathrm{L}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$, $0.5 \mathrm{CH}_{2} \mathrm{Br}_{2} \cdot 0.33 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$, and $\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ (before and after UVirradiated crystals)

|  | L | $\begin{aligned} & \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{C}- \\ & \mathrm{H}_{2} \mathrm{OH} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right] \end{aligned}$ | $0.5 \mathrm{CH}_{2} \mathrm{Br}^{2} \cdot 0.33 \mathrm{C}$ $\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OH} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}-$ $@\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]$ | $\underset{\text { (before } \mathbf{U V})}{\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]}$ | $\underset{(\text { after } \mathbf{U V})}{\mathrm{CH}_{2} \mathrm{I}_{2} @\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$ | $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{CdI}_{2}{ }^{\text {a }}$ | $\begin{aligned} & \mathrm{C}_{42.17} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6.33} \mathrm{Br}- \\ & \mathrm{CdII}_{2}^{\mathrm{a}} \end{aligned}$ | $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{CdI}_{4}$ | $\mathrm{C}_{41} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{CdI}_{2}{ }^{\text {a }}$ |
| $M_{\mathrm{w}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ | 633.70 | $1029.90^{\text {a }}$ | $1132.18^{\text {a }}$ | 1297.73 | $1029.90^{\text {a }}$ |
| Cryst. system | Monoclinic | Trigonal | Trigonal | Trigonal | Trigonal |
| Space group | $P 2_{1} / \mathrm{c}$ | R-3 | R-3 | R-3 | R-3 |
| $a=b / \AA$ | 11.1829(5) | 54.6374(5) | 54.581(1) | 54.772(1) | 54.882(1) |
| $c / \AA$ | 26.226(1) | 8.9458(1) | 8.9081(2) | 8.8733(2) | 8.8759(2) |
| $\alpha /{ }^{\circ}$ | 90 | 90 | 90 | 90 | 90 |
| $\beta 1{ }^{\circ}$ | 92.219(3) | 90 | 90 | 90 | 90 |
| $\gamma /^{\circ}$ | 90 | 120 | 120 | 120 | 120 |
| $V / \AA^{3}$ | 3370.4(3) | 23127.6(5) | 22983(1) | 23053(1) | 23153(1) |
| $Z$ | 4 | 18 | 18 | 18 | 18 |
| $\sigma / \mathrm{g} \mathrm{cm}^{-3}$ | 1.308 | $1.331^{\text {a }}$ | $1.472^{\text {a }}$ | 1.683 | $1.330^{\text {a }}$ |
| $\mu / \mathrm{mm}^{-1}$ | 0.089 | 1.664 | 2.460 | 2.878 | 1.663 |
| $R_{\text {int }}$ | 0.1303 | 0.1204 | 0.1335 | 0.1394 | 0.1544 |
| $F(000)$ | 1392 | 9036 | 9864 | 11088 | 9036 |
| GoF on $F^{2}$ | 1.186 | 0.889 | 1.010 | 1.090 | 0.884 |
| $R_{1}[1>2 \sigma(I)]^{\text {b }}$ | 0.1400 | 0.0465 | 0.0634 | 0.1110 | 0.0610 |
| $w R_{2}$ (all data) ${ }^{\text {c }}$ | 0.4384 | 0.1236 | 0.2088 | 0.3636 | 0.1536 |

${ }^{\text {a }}$ Some of solvate molecules within the MONTs are missing from this formula since they could not be located from the crystallographic data due to their extensive disorder. Therefore, the residual electron density was treated as diffuse contributions using the SQUEEZE of the PLATON software. ${ }^{\mathrm{b}} R_{1}=\sum| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \sum\left|\mathrm{F}_{\mathrm{o}}\right|,{ }^{\mathrm{c}} w R_{2}=$ $\left(\sum \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \sum \mathrm{wF}_{\mathrm{o}}{ }^{2}\right)^{1 / 2}$


Fig. S1 (red) TGA and (blue) DSC curves of $\mathrm{CH}_{2} \mathrm{I}_{2} @ M O N T$.



Fig. S2 ORTEP drawing of (top) L and (bottom) $\mathrm{CH}_{2} \mathrm{I}_{2} @$ MONT with anisotropic displacement parameters at $30 \%$ probability. The three pyridyl groups are highlighted. Hydrogen atoms and solvate diiodomethane molecules of $\mathrm{CH}_{2} \mathrm{I}_{2} @$ MONT are omitted for clarity.


Fig. $\mathbf{S 3}$ (left) Top and (right) side views of X-ray crystal structure of $\mathrm{CH}_{2} \mathrm{I}_{2} @$ MONT showing $\mathrm{Cd}_{6} \mathrm{~L}_{6}$ unit in chair-form and $\mathrm{CH}_{2} \mathrm{I}_{2}$ within nanotube representing as yellow framework and space-filling diagram, respectively. Hydrogen atoms were omitted for clarity. The occupancies corresponding to a $\left(\mathrm{CH}_{2} \mathrm{I}_{2}\right)_{3}$ cluster, $\mathrm{a}\left(\mathrm{CH}_{2} \mathrm{I}_{2}\right)_{6}$ cluster, and additional $\mathrm{CH}_{2} \mathrm{I}_{2}$ molecules are $1 / 6,1 / 3$, and $1 / 2$, respectively.


Fig. S4 Plot showing conversion yield for (red dashed line) 1-methylcyclohexene, (black line) cyclohexene, (green line) 1-octene, (blue line) cis-4-octene, and (orange line) trans-4octene as substrates in the photo-cyclopropanation with $\mathrm{CH}_{2} \mathrm{I}_{2} @ \mathrm{MONT}$. The yields in were determined on the basis of the integration ratio for the residual alkenes versus norcaranes.

(c)

(b)

Fig. $\mathbf{S 5}$ (a) Plot and (b) the corresponding ${ }^{1} \mathrm{H}$ NMR spectra for cyclopropanation reaction of cyclohexene to norcarane along with corresponding yields via stepwise method $\left(i-v i, 1^{\text {st }}-6^{\text {th }}\right.$ reactions). (c) The chemical equation for the cyclopropanation of cyclohexene with $\mathrm{CH}_{2} \mathrm{I}_{2} @ M O N T$. The yields were determined on the basis of the integration of $\mathbf{H}_{C}$ and $\mathbf{H}_{N}$ for the residual cyclohexene and norcarane, respectively.


Fig. S6 Conversion yields for cyclopropanation reaction of cyclohexene using (red line) $\mathrm{CH}_{2} \mathrm{I}_{2} @ \mathrm{MONT}$ and (blue line) evacuated MONT. The black line represents the reaction yield of cyclohexene with $\mathrm{CH}_{2} \mathrm{I}_{2}$ in chloroform by using a mixture of $\mathrm{CdI}_{2}$ and L as a control experiment.


Fig. $57{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-d_{6}\right)$ spectra of (a) $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} @$ MONT and (b) the solvate molecules-exchanged sample via immersion of as-synthesized crystals into $\mathrm{CH}_{2} \mathrm{I}_{2}$ at room temperature for 1 day. (c) corresponds to the re-adsorbed samples of the evacuated $\operatorname{MONT}\left(\left[\mathrm{CdI}_{2}(\mathrm{~L})\right]\right)$ via immersion in a mixed $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Br}_{2}$, and $\mathrm{CH}_{2} \mathrm{I}_{2}(v / v / v=1: 1: 1)$ at room temperature for 1 day. The absorbed solvate molecules' ratio in (c) is $1: 2: 6$.

