Supplementary Information

Controlled Chiral Electrochromism of Polyoxometalates

Incorporated in Supramolecular Complexes

Bin Zhang, Weiming Guan, Simin Zhang, Bao Li* and Lixin Wu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. E-mail: libao@jlu.edu.cn, wulx@jlu.edu.cn

Materials

1-adamantanamine hydrochloride (AdH) was purchased from J&K Chemical Co, Ltd. and was used without any further purification. β -Cyclodextrin (CD) was the product of Sinopharm Chemical Reagent Co, Ltd. (SCRC) and was recrystallized three times before use. H₄[PMo₁₁VO₄₀]·32.5H₂O (PMo₁₁V) was synthesized according to the literature^[1]. H₃PMo₁₂O₄₀ (PMo₁₂) and the remaining chemicals were purchased from Beijing Chemical Reagent Company. Doubly distilled water was used in the experiments.

Measurements

FT-IR spectra were carried out on a Bruker Vertex 80V FT-IR spectrometer equipped with a DTGS detector (32 scans) at a resolution of 4 cm⁻¹ by using KBr pellet. The UV-Vis spectra were recorded on a spectrometer (Varian CARY 50 Probe). ¹H NMR spectra were taken on a Bruker AVANCE 500 and 600 MHz spectrometer. Chemical shifts were referenced to the solvent values (δ = 4.79 ppm for D₂O). Circular dichroism spectra (CDS) were performed on a Bio-Logic MOS-450 spectropolarimeter in water with a step size of 0.5-nm and speed of 4 nm s⁻¹ at 25 °C. Solid CDS was collected with the same spectropolarimeter on a KBr pellet. Optical rotation values were obtained with a WZZ-3 automtic polarimeter equipping with sodium lamp (λ = 589.44 nm). Electrochemical measurements were tested by CHI 660C electrochemical cell containing a platinum wire as the counter electrode, an Ag/AgCl as reference electrode and a glassy carbon electrode (GCE) as the working electrode was used in the measurement. ITC data was collected by TAM III microcalorimetric (TA) system with a stainless steel sample cell.

Sample Preparations

β-CD: β-CD (100 mg, 0.088 mmol) was dissolved in 10 ml water with stirring at room temperature for 6 h, then let the resulting solution stand 2 h for test.

β-CD-AdH: β-CD (100 mg, 0.088 mmol) and AdH (16.54 mg, 0.088 mmol) in 10 ml water was stirred at room temperature for 6 h, then the solution aged 2 h for further experiments.

β-CD-AdH-PMo₁₁V: β-CD (63.56 mg, 0.056 mmol) and AdH (10.52 mg, 0.056 mmol)

dissolving in 4 ml distilled water was stirred at room temperature for 2 h. Then $PMo_{11}V$ (3.31 mg, 0.014 mmol) in 6 ml distilled water was added dropwise into the β -CD–AdH solution by continually stirring at room temperature for 2 h. The resulting solution (β -CD:AdH:PMo₁₁V at molar ratio 4:4:1) was allowed to stand for 4 h for measurement.

Solid sample of β -CD-AdH-PMo₁₁V: The solid sample was prepared by freeze-drying the aqueous sample of β -CD-AdH-PMo₁₁V.

β-CD-AdH-PMo₁₂: The sample with β-CD:AdH:PMo₁₂ molar ratio at 3:3:1 was prepared similar as that of β-CD-AdH-PMo₁₁V.

β-CD-PMo₁₂: The sample was prepared according to the literature.^[2]

Characterizations

Fig. S1 ¹H NMR spectra of (A) AdH, (B) β -CD–AdH (1:1 molar ratio), (C) β -CD–AdH–PMo₁₁V (4:4:1 molar ratio), and (D) β -CD in D₂O at 25 °C.

Fig. S2 ¹H NMR spectrum of (A) β -CD in β -CD–AdH inclusion complex D₂O solution at 25 °C and corresponding 1D selective Gradient NOESY spectra, irradiated with the frequency belonging to

AdH at (B) 1.712 ppm for H_a , (C) 1.914 for H_b , and (D) 2.260 ppm for H_c .

Fig. S3 ¹H NMR spectra of (A) β -CD–AdH–PMo₁₁V in D₂O at 25 °C and corresponding 1D selective Gradient NOESY NMR spectra, irradiated with the frequency belonging to AdH at (B) 1.610–1.719 ppm for H_a, (C) 1.835 for H_b, and (D) 2.200 ppm for H_c.

Fig. S4 FT-IR spectra of AdH, $PMo_{11}V$, β -CD, AdH– $PMo_{11}V$ and β -CD–AdH– $PMo_{11}V$ in KBr pellets.

Fig. S5 ITC curve and corresponding plot of observed enthalpy changes (Δ_{obs}) against β -CD:AdH molar ratio by titrating 9.0 mM β -CD into 2.5 mM AdH aqueous solution, where Δ_{obs} values are expressed in terms of kJ mol⁻¹ of β -CD and the dilution enthalpy of β -CD has been deducted.

Fig. S6 ITC curve and corresponding plots of observed enthalpy changes (Δ_{obs}) against (a) β -CD-AdH:PMo₁₁V by titrating 6.0 mM β -CD-AdH into 0.8 mM PMo₁₁V aqueous solution and (b) β -CD:PMo₁₁V by titrating 6.0 mM β -CD into 0.8 mM PMo₁₁V aqueous solution. The Δ_{obs} values are in terms of kJ mol⁻¹ of β -CD-AdH and the dilution enthalpy of β -CD-AdH has been deducted.

Fig. S7 ITC curve and corresponding plots of observed enthalpy changes (Δ_{obs}) against (a) β -CD-AdH:PMo₁₂ by titrating 9.0 mM β -CD-AdH into 0.8 mM PMo₁₂ aqueous solution and (b) β -CD:PMo₁₂ by titrating 9.0 mM β -CD into 0.8 mM PMo12 aqueous solution. The Δ_{obs} values are in terms of kJ mol⁻¹ of β -CD-AdH and the dilution enthalpy of β -CD-AdH has been deducted.

Fig. S8 Plot of millidegree value in CDS of β -CD-AdH-PMo₁₁V at 320 nm versus the molar ratio of PMo₁₁V (concentration fixing at 1.4×10^{-3} mmol ml⁻¹) gradually increasing in order of β -CD:AdH:PMo₁₁V at 1:1:1, 2:2:1, 3:3:1, 4:4:1, 5:5:1, 6:6:1, 7:7:1 and 8:8:1.

Fig. S9 Plot of millidegree values in CDS of β -CD-AdH-PMo₁₂ at 400 nm versus the molar ratio of PMo₁₂ (concentration fixing at 1.11×10⁻³ mmol ml⁻¹) gradually increasing in order of β -CD:AdH:PMo₁₂ at 1:1:1, 2:2:1, 3:3:1, 4:4:1, 5:5:1, 6:6:1, 7:7:1 and 8:8:1.

Fig. S10 (A) ¹H NMR spectra of β -CD–AdH–PMo₁₁V in D₂O with a certain concentration of AdH at 4.1×10^{-2} mmol ml⁻¹ with the molar ratio of β -CD:AdH:PMo₁₁V at (a) 1:1:0, (b) 1:1:1, (c) 2:2:1, (d) 3:3:1, (e) 4:4:1, (f) 5:5:1, (g) 6:6:1 and (h) 7:7:1, and (B) corresponding plot of Ha coupling constant versus the above molar ratio changes.

Fig. S11 (A) ¹H NMR spectra of β -CD-AdH-PMo₁₂ in D₂O with a certain concentration of AdH at 4.1×10⁻² mmol ml⁻¹ except (b) 1×10⁻² mmol ml⁻¹ used considering the solubility, and the molar ratio of β -CD:AdH:PMo₁₂ set at (a) 1:1:0, (b) 1:1:1, (c) 2:2:1, (d) 3:3:1, (e) 4:4:1, (f) 5:5:1, (g) 6:6:1 and (h) 7:7:1, and (B) corresponding plot of Ha coupling constant versus the above molar ratio changes.

Chiral migration characterization

Table S1. The summary of optical rotation values of β -CD, β -CD–AdH, β -CD–AdH–PMo₁₁V and β -CD–AdH–PMo₁₂.^a

Sample	Optical Rotation ($[\alpha]^{20}_{D})^{b}$	Variance $(\sigma_{n-1})^c$
β-CD	161.62	0.286
β-CD–AdH (1:1 molar ratio)	129.15	0.187
β -CD–AdH–PMo ₁₁ V (4:4:1 molar ratio)	99.48	0.232
β -CD–AdH–PMo ₁₂ (3:3:1 molar ratio)	71.95	0.187

^a All sample solutions were prepared under a constant β -CD concentration of 10 mg ml⁻¹ (8.8 mM), and the variable concentrations of other components depending on their molar ratio to β -CD.

^b Each of optical rotation values is an average of six parallel tests.

^c The variance is the dispersion degree of tests.

Fig. S12 UV-Vis spectra of (a) β -CD-PMo₁₁V and (b) β -CD-AdH-PMo₁₁V in aqueous solution at room temperature.

Fig. S13 Solid CDS of β -CD-PMo₁₂ in KBr pellet.

Fig. S14 CDS of β -CD-AdH-PMo₁₁V in aqueous solution with a certain concentration of PMo₁₁V at 1.4×10⁻³ mmol ml⁻¹ versus the molar ratio of β -CD:AdH:PMo₁₁V at (a) 4:4:1, (b) 4:3:1, (c) 4:2:1, (d) 4:1:1, and (e) 4:0:1.

Fig. S15 UV-Vis spectra of β -CD-AdH-PMo₁₁V in aqueous solution used in corresponding to CDS in Fig S7, and there is no change of the absorption value because of the same concentration of PMo₁₁V in the experiments.

Fig. S16 CDS of β -CD-AdH-PMo₁₁V (4:4:1 molar ratio) in aqueous solution (PMo₁₁V concentration fixing at 1.4×10^{-3} mmol ml⁻¹) with gradually increasing pH from (a) 2.65, to (b) 2.86, (c) 3.48, (d) 5.36, and (e) 5.80, by adding dilute NaOH aqueous solution.

Fig. S17 UV-Vis spectra of β -CD-AdH-PMo₁₁V (4:4:1 molar ratio) in water at a fixed PMo₁₁V

concentration of 1.4×10^{-3} mmol ml⁻¹ accompanied by gradually increasing pH from (a) 2.65, to (b) 2.86, (c) 3.48, (d) 5.36, and (e) 5.80, by adding dilute NaOH (5.6×10⁻¹ mmol ml⁻¹).

Fig. S18 CDS of β -CD–AdH–PMo₁₁V with the cluster concentration of 1.4×10⁻³ mmol ml⁻¹ in water prepared (a) freshly and (b) encountered several tens of days at 4 °C.

Chiral Electrochromism Characterization

Fig. S19 CVs of β -CD-AdH-PMo₁₁V (4:4:1 molar ratio) aqueous solution with fixed PMo₁₁V concentration (1.15×10⁻² mmol ml⁻¹) at scan rate of 50, 100, 150, 200, 250 and 300 mV s⁻¹ (from inner to outer) without adding any other electrolytes.

Fig. S21 UV-Vis spectra of β -CD-AdH-PMo₁₁V (4:4:1 molar ratio) with PMo₁₁V concentration of 1.15×10⁻² mmol ml⁻¹ at different reduction state in aqueous solution.

Fig. S22 CDS of (a) β -CD-PMo₁₂ (3:1 molar ratio) and (b) β -CD-AdH-PMo₁₂ (3:3:1 molar ratio) with PMo₁₂ concentration of 1.11×10⁻³ mmol ml⁻¹ in aqueous solution at room temperature.

Fig. S23 UV-Vis spectra of (a) β -CD-PMo₁₂ and (b) β -CD-AdH-PMo₁₂ in aqueous solution at room temperature.

Fig. S24 CDS of β -CD-AdH-PMo₁₂ (3:3:1 molar ratio) with PMo₁₂ concentration of 1.11×10^{-3} mmol ml⁻¹ in aqueous solution (a) prepared freshly and (b) preserved for several tens of days at 4 °C.

Fig. S25 CVs of β -CD–AdH–PMo₁₂ (3:3:1 molar ratio) with PMo₁₂ concentration of 1.5×10^{-2} mmol ml⁻¹ at scan rates of 50, 100, 150, 200, 250, 300 and 350 mV s⁻¹ (from inner to outer) without adding any other electrolyte.

Fig. S26 The plot of peak currents of Mo^{v}/Mo^{v} versus the square root of scan speeds (*vs.* Ag/AgCl) where the data were taken from Fig. S18.

Fig. S27 CDS of β -CD-AdH-PMo₁₂ (3:3:1 molar ratio) with PMo₁₂ concentration of 1.5×10^{-2} mmol ml⁻¹ in visible region at (a) initial state, and (b) after 120 min reduction under 340 mV.

Fig. S28 UV-Vis spectra of β -CD-AdH-PMo₁₁V in aqueous solution at different reduction time, measured in every 800 s under the reduction voltage 500 mV.

Fig. S29 UV-Vis spectra of β -CD-AdH-PMo₁₁V in aqueous solution at different oxidation time, which are measured with an interval of 400 s under oxidation voltage at 900 mV.

Fig. S30 The absorbance plot of β -CD-AdH-PMo₁₁V in aqueous solution at 700 nm versus the reduction times in every 800 s under 500 mV.

Fig. S31 The absorbance plot of β -CD-AdH-PMo₁₁V in aqueous solution at 700 nm versus the oxidation time in every 400 s under 900 mV.

References

- [1] G. A. Tsigdinos and C. J. Hallada, Inorg. Chem., 1968, 7, 437.
- [2] Y. L. Wu, R. F. Shi, Y. L. Wu, J. M. Holcroft, Z. C. Liu, M. Frasconi, M. R. Wasielewski, H. Li and J. F. Stoddart, J. Am. Chem. Soc., 2015, 137, 4111.