Supplementary Information

Controlled Chiral Electrochromism of Polyoxometalates Incorporated in Supramolecular Complexes

Bin Zhang, Weiming Guan, Simin Zhang, Bao Li* and Lixin Wu*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin
University, Changchun 130012, China. E-mail: libao@jlu.edu.cn, wulx@jlu.edu.cn

Abstract

Materials 1-adamantanamine hydrochloride (AdH) was purchased from J\&K Chemical Co, Ltd. and was used without any further purification. β-Cyclodextrin (CD) was the product of Sinopharm Chemical Reagent Co, Ltd. (SCRC) and was recrystallized three times before use. $\mathrm{H}_{4}\left[\mathrm{PMo}_{11} \mathrm{VO}_{40}\right] \cdot 32.5 \mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{PMo}_{11} \mathrm{~V}\right)$ was synthesized according to the literature ${ }^{[1]} . \mathrm{H}_{3} \mathrm{PMo}_{12} \mathrm{O}_{40}\left(\mathrm{PMo}_{12}\right)$ and the remaining chemicals were purchased from Beijing Chemical Reagent Company. Doubly distilled water was used in the experiments.

Measurements

FT-IR spectra were carried out on a Bruker Vertex 80 V FT-IR spectrometer equipped with a DTGS detector (32 scans) at a resolution of $4 \mathrm{~cm}^{-1}$ by using KBr pellet. The UV-Vis spectra were recorded on a spectrometer (Varian CARY 50 Probe). ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Bruker AVANCE 500 and 600 MHz spectrometer. Chemical shifts were referenced to the solvent values (δ $=4.79 \mathrm{ppm}$ for $\mathrm{D}_{2} \mathrm{O}$). Circular dichroism spectra (CDS) were performed on a Bio-Logic MOS-450 spectropolarimeter in water with a step size of $0.5-\mathrm{nm}$ and speed of $4 \mathrm{~nm} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$. Solid CDS was collected with the same spectropolarimeter on a KBr pellet. Optical rotation values were obtained with a WZZ-3 automtic polarimeter equipping with sodium lamp ($\lambda=589.44 \mathrm{~nm}$). Electrochemical measurements were tested by CHI 660 C electrochemical workstation at room temperature under nitrogen atmosphere. A three electrode electrochemical cell containing a platinum wire as the counter electrode, an $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode and a glassy carbon electrode (GCE) as the working electrode was used in the measurement. ITC data was collected by TAM III microcalorimetric (TA) system with a stainless steel sample cell.

Sample Preparations

β-CD: β-CD ($100 \mathrm{mg}, 0.088 \mathrm{mmol}$) was dissolved in 10 ml water with stirring at room temperature for 6 h , then let the resulting solution stand 2 h for test.
$\beta-C D-A d H: ~ \beta-C D(100 \mathrm{mg}, 0.088 \mathrm{mmol})$ and AdH ($16.54 \mathrm{mg}, 0.088 \mathrm{mmol}$) in 10 ml water was stirred at room temperature for 6 h , then the solution aged 2 h for further experiments.
$\beta-C D-A d H-$ PMo $_{11} \mathrm{~V}: ~ \beta-C D(63.56 \mathrm{mg}, 0.056 \mathrm{mmol})$ and $\operatorname{AdH}(10.52 \mathrm{mg}, 0.056 \mathrm{mmol})$
dissolving in 4 ml distilled water was stirred at room temperature for 2 h . Then $\mathrm{PMo}_{11} \mathrm{~V}(3.31 \mathrm{mg}$, 0.014 mmol) in 6 ml distilled water was added dropwise into the $\beta-C D-A d H$ solution by continually stirring at room temperature for 2 h . The resulting solution ($\beta-\mathrm{CD}: \mathrm{AdH}: \mathrm{PMo}_{11} \mathrm{~V}$ at molar ratio 4:4:1) was allowed to stand for 4 h for measurement.

Solid sample of β-CD-AdH- $\mathbf{P M o}_{11} \mathbf{V}$: The solid sample was prepared by freeze-drying the aqueous sample of $\beta-C D-A d H-\mathrm{PMo}_{11} \mathrm{~V}$.
β-CD-AdH- PMo $_{12}$: The sample with β-CD:AdH:PMo ${ }_{12}$ molar ratio at $3: 3: 1$ was prepared similar as that of β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$.
$\boldsymbol{\beta}-\mathbf{C D}-\mathrm{PMo}_{12}$: The sample was prepared according to the literature. ${ }^{[2]}$

Characterizations

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectra of (A) AdH, (B) β-CD-AdH (1:1 molar ratio), (C) β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ (4:4:1 molar ratio), and (D) $\beta-C D$ in $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$.

Fig. $\mathbf{S 2}{ }^{1} \mathrm{H}$ NMR spectrum of (A) $\beta-C D$ in β-CD-AdH inclusion complex $D_{2} \mathrm{O}$ solution at $25^{\circ} \mathrm{C}$ and corresponding 1D selective Gradient NOESY spectra, irradiated with the frequency belonging to

AdH at (B) 1.712 ppm for H_{a}, (C) 1.914 for H_{b}, and (D) 2.260 ppm for H_{c}.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectra of (A) β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ in $\mathrm{D}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and corresponding 1 D selective Gradient NOESY NMR spectra, irradiated with the frequency belonging to AdH at (B) 1.610-1.719 ppm for H_{a}, (C) 1.835 for H_{b}, and (D) 2.200 ppm for H_{c}.

Fig. S4 FT-IR spectra of $\mathrm{AdH}, \mathrm{PMo}_{11} \mathrm{~V}, \beta-\mathrm{CD}, \mathrm{AdH}-\mathrm{PMo}_{11} \mathrm{~V}$ and $\beta-\mathrm{CD}-\mathrm{AdH}-\mathrm{PMo}_{11} \mathrm{~V}$ in KBr pellets.

Fig. S5 ITC curve and corresponding plot of observed enthalpy changes ($\Delta_{\text {obs }}$) against β-CD:AdH molar ratio by titrating $9.0 \mathrm{mM} \beta-C D$ into 2.5 mM AdH aqueous solution, where Δ_{obs} values are expressed in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$ of $\beta-C D$ and the dilution enthalpy of $\beta-C D$ has been deducted.

Fig. S6 ITC curve and corresponding plots of observed enthalpy changes ($\Delta_{\text {obs }}$) against (a) β-CD-AdH: $\mathrm{PMo}_{11} \mathrm{~V}$ by titrating $6.0 \mathrm{mM} \beta$-CD-AdH into $0.8 \mathrm{mM} \mathrm{PMo}{ }_{11} \mathrm{~V}$ aqueous solution and (b) $\beta-C D: P \mathrm{Po}_{11} \mathrm{~V}$ by titrating $6.0 \mathrm{mM} \beta-C D$ into $0.8 \mathrm{mM} \mathrm{PMo}{ }_{11} \mathrm{~V}$ aqueous solution. The $\Delta_{\text {obs }}$ values are in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$ of $\beta-C D-A d H$ and the dilution enthalpy of $\beta-C D-A d H$ has been deducted.

Fig. 57 ITC curve and corresponding plots of observed enthalpy changes (Δ_{obs}) against (a) β-CD-AdH: PMo_{12} by titrating $9.0 \mathrm{mM} \beta-\mathrm{CD}-\mathrm{AdH}$ into 0.8 mM PMo $\beta-C D: P_{10}{ }_{12}$ by titrating $9.0 \mathrm{mM} \beta-C D$ into $0.8 \mathrm{mM} P M o 12$ aqueous solution. The Δ_{obs} values are in terms of $\mathrm{kJ} \mathrm{mol}^{-1}$ of β-CD-AdH and the dilution enthalpy of β-CD-AdH has been deducted.

Fig. S8 Plot of millidegree value in CDS of $\beta-C D-A d H-\mathrm{PMo}_{11} \mathrm{~V}$ at 320 nm versus the molar ratio of $\mathrm{PMo}_{11} \mathrm{~V}$ (concentration fixing at $1.4 \times 10^{-3} \mathrm{mmol} \mathrm{ml}{ }^{-1}$) gradually increasing in order of β CD:AdH: $\mathrm{PMo}_{11} \mathrm{~V}$ at 1:1:1, 2:2:1, 3:3:1, 4:4:1, 5:5:1, 6:6:1, 7:7:1 and 8:8:1.

Fig. S9 Plot of millidegree values in CDS of β-CD-AdH- PMo_{12} at 400 nm versus the molar ratio of PMo_{12} (concentration fixing at $1.11 \times 10^{-3} \mathrm{mmol} \mathrm{ml}{ }^{-1}$) gradually increasing in order of β CD:AdH: PMo_{12} at 1:1:1, 2:2:1, 3:3:1, 4:4:1, 5:5:1, 6:6:1, 7:7:1 and 8:8:1.

Fig. S10(A) ${ }^{1} \mathrm{H}$ NMR spectra of $\beta-C D-A d H-\mathrm{PMo}_{11} V$ in $D_{2} \mathrm{O}$ with a certain concentration of AdH at $4.1 \times 10^{-2} \mathrm{mmol} \mathrm{ml}^{-1}$ with the molar ratio of β-CD:AdH:PMo ${ }_{11} \mathrm{~V}$ at (a) 1:1:0, (b) 1:1:1, (c) 2:2:1, (d) 3:3:1, (e) 4:4:1, (f) 5:5:1, (g) 6:6:1 and (h) 7:7:1, and (B) corresponding plot of Ha coupling constant versus the above molar ratio changes.

Fig. S11 (A) ${ }^{1} \mathrm{H}$ NMR spectra of $\beta-C D-A d H-\mathrm{PMo}_{12}$ in $\mathrm{D}_{2} \mathrm{O}$ with a certain concentration of AdH at $4.1 \times 10^{-2} \mathrm{mmol} \mathrm{ml}^{-1}$ except (b) $1 \times 10^{-2} \mathrm{mmol} \mathrm{ml}^{-1}$ used considering the solubility, and the molar ratio of $\beta-C D: A d H: P_{12}$ set at (a) 1:1:0, (b) 1:1:1, (c) 2:2:1, (d) 3:3:1, (e) 4:4:1, (f) 5:5:1, (g) 6:6:1 and (h) 7:7:1, and (B) corresponding plot of Ha coupling constant versus the above molar ratio changes.

Chiral migration characterization

Table S1. The summary of optical rotation values of $\beta-C D, \beta-C D-A d H, \beta-C D-A d H-P M o_{11} V$ and β -CD-AdH- PMo_{12}. $^{\text {a }}$

Sample	Optical Rotation $\left([\alpha]^{20}\right)^{b}$	Variance $\left(\sigma_{n-1}\right)^{c}$
$\beta-C D$	161.62	0.286
$\beta-C D-A d H(1: 1 ~ m o l a r ~ r a t i o) ~$	129.15	0.187
$\beta-C D-A d H-$ PMo $_{11} \mathrm{~V}(4: 4: 1$ molar ratio)	99.48	0.232
$\beta-C D-A d H-$ PMo $_{12}(3: 3: 1$ molar ratio)	71.95	0.187

${ }^{\text {a }}$ All sample solutions were prepared under a constant $\beta-C D$ concentration of $10 \mathrm{mg} \mathrm{ml}^{-1}(8.8 \mathrm{mM})$, and the variable concentrations of other components depending on their molar ratio to $\beta-C D$.
${ }^{\mathrm{b}}$ Each of optical rotation values is an average of six parallel tests.
${ }^{c}$ The variance is the dispersion degree of tests.

Fig. S12 UV-Vis spectra of (a) $\beta-C D-\mathrm{PMo}_{11} \mathrm{~V}$ and (b) $\beta-C D-A d H-\mathrm{PMo}_{11} \mathrm{~V}$ in aqueous solution at room temperature.

Fig. S13 Solid CDS of $\beta-C D-\mathrm{PMo}_{12}$ in KBr pellet.

Fig. S14 CDS of $\beta-C D-A d H-P M o_{11} V$ in aqueous solution with a certain concentration of $\mathrm{PMo}_{11} \mathrm{~V}$ at $1.4 \times 10^{-3} \mathrm{mmol} \mathrm{ml}^{-1}$ versus the molar ratio of $\beta-\mathrm{CD}: A d H: \mathrm{PMo}_{11} \mathrm{~V}$ at (a) 4:4:1, (b) 4:3:1, (c) 4:2:1, (d) 4:1:1, and (e) 4:0:1.

Fig. S15 UV-Vis spectra of $\beta-C D-A d H-\mathrm{PMo}_{11} V$ in aqueous solution used in corresponding to CDS in Fig S7, and there is no change of the absorption value because of the same concentration of $\mathrm{PMo}_{11} \mathrm{~V}$ in the experiments.

Fig. S16 CDS of β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ (4:4:1 molar ratio) in aqueous solution ($\mathrm{PMo}_{11} \mathrm{~V}$ concentration fixing at $1.4 \times 10^{-3} \mathrm{mmol} \mathrm{ml}^{-1}$) with gradually increasing pH from (a) 2.65 , to (b) 2.86 , (c) 3.48 , (d) 5.36 , and (e) 5.80 , by adding dilute NaOH aqueous solution.

Fig. S17 UV-Vis spectra of β-CD-AdH-PMo ${ }_{11} V$ (4:4:1 molar ratio) in water at a fixed $\mathrm{PMo}_{11} \mathrm{~V}$
concentration of $1.4 \times 10^{-3} \mathrm{mmol} \mathrm{ml}^{-1}$ accompanied by gradually increasing pH from (a) 2.65 , to (b) 2.86 , (c) 3.48 , (d) 5.36 , and (e) 5.80 , by adding dilute $\mathrm{NaOH}\left(5.6 \times 10^{-1} \mathrm{mmol} \mathrm{ml}^{-1}\right)$.

Fig. S18 CDS of β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ with the cluster concentration of $1.4 \times 10^{-3} \mathrm{mmol} \mathrm{ml}^{-1}$ in water prepared (a) freshly and (b) encountered several tens of days at $4^{\circ} \mathrm{C}$.

Chiral Electrochromism Characterization

Fig. S19 CVs of β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ (4:4:1 molar ratio) aqueous solution with fixed $\mathrm{PMo}_{11} \mathrm{~V}$ concentration ($1.15 \times 10^{-2} \mathrm{mmol} \mathrm{ml}^{-1}$) at scan rate of $50,100,150,200,250$ and $300 \mathrm{mV} \mathrm{s}^{-1}$ (from inner to outer) without adding any other electrolytes.

Fig. S20 The plot of peak current of $\mathrm{V}^{\mathrm{IV}} / \mathrm{V}^{\mathrm{V}}$ versus square root of scan speed ($v s . \mathrm{Ag} / \mathrm{AgCl}$), according to the CVs in Fig S12.

Fig. S21 UV-Vis spectra of $\beta-\mathrm{CD}-\mathrm{AdH}-\mathrm{PMo}_{11} \mathrm{~V}$ (4:4:1 molar ratio) with $\mathrm{PMo}_{11} \mathrm{~V}$ concentration of $1.15 \times 10^{-2} \mathrm{mmol} \mathrm{ml}^{-1}$ at different reduction state in aqueous solution.

Fig. S22 CDS of (a) $\beta-C D-$ PMo $_{12}$ (3:1 molar ratio) and (b) $\beta-C D-A d H-$ PMo $_{12}$ (3:3:1 molar ratio) with PMo_{12} concentration of $1.11 \times 10^{-3} \mathrm{mmol} \mathrm{ml}^{-1}$ in aqueous solution at room temperature.

Fig. S23 UV-Vis spectra of (a) $\beta-C D-\mathrm{PMo}_{12}$ and (b) $\beta-C D-A d H-\mathrm{PMo}_{12}$ in aqueous solution at room temperature.

Fig. S24 CDS of β-CD-AdH- PMo_{12} (3:3:1 molar ratio) with PMo_{12} concentration of $1.11 \times 10^{-3} \mathrm{mmol}$ ml^{-1} in aqueous solution (a) prepared freshly and (b) preserved for several tens of days at $4^{\circ} \mathrm{C}$.

Fig. S25 CVs of β-CD-AdH-PMo 12 (3:3:1 molar ratio) with PMo_{12} concentration of $1.5 \times 10^{-2} \mathrm{mmol}$ ml^{-1} at scan rates of $50,100,150,200,250,300$ and $350 \mathrm{mV} \mathrm{s}^{-1}$ (from inner to outer) without adding any other electrolyte.

Fig. S26 The plot of peak currents of $\mathrm{Mo}^{\mathrm{V}} / \mathrm{Mo}^{\mathrm{VI}}$ versus the square root of scan speeds (vs. $\mathrm{Ag} / \mathrm{AgCl}$) where the data were taken from Fig. S18.

Fig. S27 CDS of $\beta-C D-A d H-$ PMo $_{12}$ (3:3:1 molar ratio) with PMo_{12} concentration of $1.5 \times 10^{-2} \mathrm{mmol}$ ml^{-1} in visible region at (a) initial state, and (b) after 120 min reduction under 340 mV .

Fig. S28 UV-Vis spectra of β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ in aqueous solution at different reduction time, measured in every 800 s under the reduction voltage 500 mV .

Fig. S29 UV-Vis spectra of β-CD-AdH- $\mathrm{PMo}_{11} \mathrm{~V}$ in aqueous solution at different oxidation time, which are measured with an interval of 400 s under oxidation voltage at 900 mV .

Fig. S30 The absorbance plot of $\beta-\mathrm{CD}-\mathrm{AdH}-\mathrm{PMo}_{11} \mathrm{~V}$ in aqueous solution at 700 nm versus the reduction times in every 800 s under 500 mV .

Fig. S31 The absorbance plot of $\beta-C D-A d H-\mathrm{PMo}_{11} \mathrm{~V}$ in aqueous solution at 700 nm versus the oxidation time in every 400 s under 900 mV .

References

[1] G. A. Tsigdinos and C. J. Hallada, Inorg. Chem., 1968, 7, 437.
[2] Y. L. Wu, R. F. Shi, Y. L. Wu, J. M. Holcroft, Z. C. Liu, M. Frasconi, M. R. Wasielewski, H. Li and J. F. Stoddart, J. Am. Chem. Soc., 2015, 137, 4111.

