Supplementary Information

Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution

Guiyang Yu,^a Xiang Wang,^b Jungang Cao,^a Shujie Wu,^a Wenfu Yan,^c and Gang Liu^{*a}

^a Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of

Chemistry, Jilin University, Jiefang Road 2519, Changchun, 130012, China

^b Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA
 99352, USA

^c A State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Road 2699, Changchun, 130012, China .

* Address correspondence to lgang@jlu.edu.cn

Experimental Section

Au Colloids Preparation. All chemicals were analytic grade reagents and used without further purification. Distilled water was used in all of the experiments. Au colloids were prepared by a sodium citrate reduction method.¹⁻³ Typically, an aqueous solution of HAuCl₄ (0.25 mM, 100 mL) was heated to boiling, followed by the rapid addition of sodium citrate solution (0.5 M, 200 μ L). The solution was kept boiling for another 15 min, producing a stable and deep-red dispersion of Au nanoparticles with an average diameter of about 15 nm (see in Fig. 1a and 1b). The citrate-protected Au-colloids (denoted as Au-Cit) suspension was then cooled to room temperature for next use.

Au@CdS Preparation: Au@CdS photocatalysts with different amount of Au were prepared using a cysteine-assisted hydrothermal approach. Briefly, 100 mL *L*-cysteine solution (Cys, 50 mM) was mixed with Cd(NO₃)₂ in a 1:0.5 molar ratio of Cys to Cd²⁺. The mixture was stirred for 30 min to form the stable complexes of cysteine-Cd²⁺. Then Au-Cit colloids (0.25 mM, 1 mL) was added to the freshly prepared cysteine-Cd²⁺ solution under vigorous stirring for 30 min, leading to a complete coupling between amine group of Cys and Au surfaces. Subsequently, the cysteine-Cd²⁺-coupled Au colloids were diluted to a total volume of 50 mL with deionized water, and transferred into 40 mL Teflon-lined stainless-steel autoclaves. The autoclaves were maintained at 130 °C for 6 h and then cooled to room temperature naturally. The products were filtered and washed with distilled water to remove remaining ions and impurities. After that, the products were fully dried at 80 °C in an oven to obtain the final product (i.e. Au@CdS). The amount of Au in the Au@CdS composites was controlled by the amount of cysteine-Cd²⁺ in the synthesis process. The resultant photocatalysts were denoted as x %Au@CdS (x = 0.2, 0.5, 0.7, 1.0). As a reference, pure CdS was prepared with the same procedure as described above without adding Au-Cit colloids.

Characterization Methods: Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku X-ray diffractometer using Cu K α radiation ($\lambda = 1.5418$ Å). UV-vis diffused reflectance spectra of the samples were obtained from UV-vis-NIR spectrophotometer (Shimadzu-3600). Transmission electron microscopy (TEM) images were taken on JEM-2100F with an accelerating voltage of 200 kV equipped with an energy-dispersive spectroscopy analyzer. XPS was performed on a Thermo ESCA LAB 250 system with MgK α source (1254.6 eV). The binding energies were calibrated using C 1s peak at 284.6 eV as standard. The photoluminescence (PL) measurement was carried out on the FLS920 (Edinburgh Instrument) at room temperature using the excitation wavelength of 390 nm.

Photocatalytic Reaction: The photocatalytic H₂ evolution reactions were carried out in a flowing gas diffluent system. The catalyst powder (0.1 g) was dispersed by a magnetic stirrer in 100 mL of 0.35 M Na₂S and 0.25 M Na₂SO₃ aqueous solution in a reaction cell made of Pyrex glass. The reaction temperature was maintained at 15 °C. The reaction solution was evacuated 30 min to ensure complete air removal prior to light irradiation. Magnetic stirring was used to keep the photocatalyst particles in a suspension state. A 300 W Xe-lamp with a cutoff filter was employed for visible-light ($\lambda \ge 420$ nm) irradiation. The

amounts of evolved H_2 was determined by an online gas chromatograph (GC122, TCD) equipped with a 4 m 5 A molecular sieve columns and Ar as gas.

The apparent quantum efficiency was measured under the same photocatalytic reaction except for the wavelength of irradiation light. The apparent quantum efficiency of 0.1 g photocatalysts in one continuous reaction under visible light with different wavelengths of 420, 450, 500, 550, 600 nm were measured. Apparent quantum efficiency at different wavelengths was calculated by the following function. The band-pass and cutoff filters and a photodiode were used in measurement.

QE (%) =
$$\frac{\text{Number of reacted electrons}}{\text{Total number of incident photons}} \times 100$$

= $\frac{2 \times \text{The number of evoluted H}_2 \text{ molecules}}{\text{Total number of incident photons}} \times 100$

Reference

1. W. T. Chen, Y. K. Lin, T. T. Yang, Y. C. Pu and Y. J. Hsu, Chem. Comm., 2013, 49, 8486-8488.

2. X. Ji, X. Song, J. Li, Y. Bai, W. Yang and X. Peng, J. Am. Chem. Soc., 2007, **129**, 13939-13948.

3. W.-T. Chen, T.-T. Yang and Y.-J. Hsu, Chem. Mater., 2008, 20, 7204-7206.

Fig. S1 SEM images of 0.5%Au@CdS (a) and 1.0%Au@CdS (b and c).

Fig. S2 UV-vis absorption spectra of Au colloid.

Fig. S3 Cd 3d XPS spectra of CdS, fresh 0.5%Au@CdS and 0.5%Au@CdS after reaction.

Fig. S4 Photocatalytic H₂ evolution activity of CdS, Au colloid (the content is 0.5%) deposited on the surface of CdS, and 0.5%Au@CdS under visible light irradiation. Reaction condition: 0.1 g photocatalysts in 100 mL Na₂S (0.35 M)-Na₂SO₃ (0.25 M) solution, 300 W Xe-lamp equipped with cut-off filter ($\lambda \ge 420$ nm).

			Sacrifice		H_2 evolution rate		
Photocatalyst	Morphology	Cocatalyst	reagent	Light source	$(\mu mol.h^{-1}.g^{-1})^a$	QY (%) ^b	Reference
Au-CdS		_	Na ₂ S	λ≥400nm (300W Xe lamp)	7300	_	Adv. Mater., 2014, 26,
			Na ₂ SO ₃				1387.
Au@CdS/SrTiO3	D Correct	1% Pt	Na ₂ S	λ≥400nm (300W Xe lamp)	1091	12.41	Angew. Chem. Int .
			Na ₂ SO ₃			(420nm)	<i>Ed.</i> , 2014, 53 , 11203.
Au-Cu ₂ ZnSnS ₄		_	Na ₂ S	Full wavelength (300W Xe lamp)	800	_	J. Am. Chem. Soc.,
			Na ₂ SO ₃				2014, 136 , 9236.
ZnS-(CdS/Au)	a _{cds}	_	Na ₂ S	Full wavelength (300W Xe lamp)	1825	_	Angew. Chem. Int .
			Na ₂ SO ₃				<i>Ed.</i> , 2015, 54 , 11495.
	ZnS		2 5				
Au@CdS core		_	Na ₂ S	λ≥420nm	80		Small, 2014, 10, 4664.
shell			Na ₂ SO ₃	(300W Xe lamp)			
Au-Cu ₂ ZnSnS ₄		_	Na ₂ S	Full wavelength (150W Xe lamp)	102	_	Adv. Mater., 2014, 26,
			Na ₂ SO ₃				3496.

Table S1. Typical plasmonic Au-sulfide photocatalysts for hydrogen evolution

^a converted value according the optimized activity in the corresponding literature.

^b Quantum yield

Table S1 Continued

			Sacrifice		H ₂ evolution rate		
Photocatalyst	Morphology	Cocatalyst	reagent	Light source	$(\mu mol.h^{-1}.g^{-1})^a$	QY (%) ^b	Reference
			No S	1>120mm			ACS Appl. Mater.
Au@TiO ₂ –CdS		_	Na ₂ 5	(300W Xe lamp)	2000	_	Interfaces, 2013, 5,
			Na_2SO_3	(200 (1 120 minp)			8088.
Au/Cu ₂ O–TiO ₂		_	Ethanol	λ≥430nm	11400	_	J. Catal., 2015,
				(300W Xe lamp)			322 , 109.
Au@CdS/U-WO ₃	e) uwo, Au	_	Na ₂ S	λ≥420nm	1600	_	Chem. Commun.,
			Na ₂ SO ₃	(300W Xe lamp)			2015, 51 , 13842.
				Full wavelength			
Au/CdS		_	Na ₂ S	(500 W Warrior	10800	_	Appl. Catal., B,
			Na ₂ SO ₃	WEHL halogen			2016, 182 , 266.
				bulb lamp)			
Au/ZnS	Jum Contraction	_	No S	Full wavelength (350W Xe lamp)	3306	7.5	ACS Appl. Mater.
			Na ₂ 5				Interfaces, 2013, 5,
			INa2503				1031.

^a converted value according the optimized activity in the corresponding literature.

^b Quantum yield

Table S1 Continued

			Sacrifice		H ₂ evolution rate		
Photocatalyst	Morphology	Cocatalyst	reagent	Light source	$(\mu mol.h^{-1}.g^{-1})^a$	QY (%) ^b	Reference
CdS/Au/ZnO	CdS Au 50 nm znO	_	Na ₂ S	Full wavelength	600	_	J. Mater. Chem. A,
			Na ₂ SO ₃	(300W Xe lamp)			2013, 1, 2773.
CdS/Au/g-C ₃ N ₄	01: ods °C,N, −// 0.232 nm 5 nu	0.5%Pt	Na ₂ SO ₄	λ≥420nm	16.81	_	APL Mater., 2015, 3,
				(300W Xe lamp)			104410.
Au/Cu ₂ FeSnS ₄		_	N- C	λ≥420nm (150W Xe lamp)	90	_	Appl. Mater.
			Na_2SO_3				Interfaces, 2015, 7,
							9072-9077.
Au@CdS		0.1% Pt	Na ₂ S	λ≥420nm	11500	45.6	Current work
			Na ₂ SO ₃ (300W Xe lamp)	(300W Xe lamp)		(420nm)	

^a converted value according the optimized activity in the corresponding literature.

^b Quantum yield