Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Creation of Hollow SAPO-34 Single Crystals by Alkaline or Acid Etching

Yuyan Qiao, a,b Miao Yang, Beibei Gao, a,b Linying Wang, Peng Tian, a Shutao Xu,a Zhongmin Liu*a

^a National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute

of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Experimental Section

1. Chemical reagents

All chemical reagents were used without further purification. Orthophosphoric acid (85 wt%), diethylamine (DEA), NaOH and HCl (37 wt%) were purchased from Tianjin Kemiou Chemical Reagent Co., Ltd.. Tetraethylammonium hydroxide (TEAOH, 35 wt%), tetramethylammonium hydroxide (TMAOH, 25 wt%) and tetrapropylammonium hydroxide (TPAOH, 25 wt%) were purchased from Runjing Chemical Co., Ltd.. The other chemical reagents used in the experiments included fumed silica (Shenyang Chemical Co., Ltd.), pseudoboehmite (67.5 wt%, CHINALCO), tetramethyl ethylenediamine (TMEDA, Sinopharm Chemical Reagent Co., Ltd.).

2. Preparation of SAPO molecular sieve precursors

Synthesis of SAPO-34 (SP34-P): an initial gel with a molar composition of 2.0 TEAOH / 0.5 TMEDA / $1.0 \text{ Al}_2\text{O}_3$ / $1.2 \text{ P}_2\text{O}_5$ / 1.0 SiO_2 / $60 \text{ H}_2\text{O}$ was prepared by mixing pseudoboehmite, water, orthophosphoric acid, fumed silica, TEAOH and TMEDA in sequence. Milled SAPO-34 seeds (1 % gel weight) were finally added into the gel under stirring. The crystallization was conducted in a stainless steel autoclave at 200 °C for 16 h under rotation. The as-synthesized product was recovered through filtration, washed, and dried at 110 °C overnight.

Synthesis of SAPO-20: an initial gel with a molar composition of 1.5 TMAOH / 1.0 TMEDA / 1.0 Al_2O_3 / 1.0 P_2O_5 / 1.0 SiO_2 / 60 H_2O was prepared by mixing pseudoboehmite, water, orthophosphoric acid, fumed silica, TMAOH and TMEDA in sequence. Milled SAPO-34 seeds (1 % gel weight) were finally added into the gel under stirring. The crystallization was conducted in a stainless steel autoclave at 200 °C for 24 h under rotation. The as-synthesized product was recovered through filtration, washed, and dried at 110 °C overnight.

3. Alkaline or acid treatments

All the alkaline or acid treatments conditions were listed in Table 1. Typically, for alkaline treatment, 1 g SAPO-34 precursor was added to 12 g of 0.6 mol/L TEAOH solution. Then the mixture was mixed and heated in an autoclave at 180 °C for 1 h under rotation. The product was recovered through filtration, washed, and dried at 110 °C overnight. For acid treatment, the procedure was similar to the above.

4. Characterization

The powder X-ray diffraction (XRD) data were recorded on a PANalytical X'Pert PRO X-ray diffractometer with Cu K α radiation ($\lambda = 1.54059$ Å) operating at 40 mA and 40 kV. The crystal morphology was observed by field emission scanning electron microscopy (Hitachi SU8020).

Transmission electron microscopy (TEM) images were recorded with a JEM-2100 electron microscope. The bulk and surface compositions of samples were determined with Philips Magix-601 X-ray fluorescence (XRF) spectrometer and VG ESCALAB MK2 X-ray photoelectron spectrometer (XPS). Textural properties of the calcined samples were determined by N₂ adsorption/desorption at -196 °C on a Micromerities ASAP 2020 system. All the solid state NMR experiments were performed on a Bruker AvanceIII 600 spectrometer equipped with a 14.1 T wide-bore magnet. The resonance frequencies were 156.4, 242.9 and 119.2 MHz for ²⁷Al, ³¹P and ²⁹Si, respectively. Chemical shifts were referenced to 1.0 M Al(NO₃)₃ for ²⁷Al, 85% H₃PO₄ for ³¹P, and 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS) for ²⁹Si. ²⁷Al and ³¹P MAS NMR experiments were performed on a 4 mm MAS probe with a spinning rate of 12 kHz. ²⁷Al MAS NMR spectra were recorded using one pulse sequence. A 200 scans were accumulated with a $\pi/8$ pulse width of 0.75 µs and a 2 s recycle delay. ³¹P MAS NMR spectra were recorded using high-power proton decoupling. A 32 scans were accumulated with a $\pi/4$ pulse width of 2.25 µs and a 30 s recycle delay. ²⁹Si CP/MAS NMR spectra were recorded with a 4 mm MAS probe with a spinning rate of 8 kHz. A 4096 scans were accumulated with a contact time of 3 ms and a recycle delay of 2 s. The temperature-programmed desorption of ammonia (NH₃-TPD) was carried out with an Autochem 2920 equipment (Micromeritics). The calcined samples (100 mg, 40-60 mesh) was activated at 650 °C for 60 min (10 °C /min) in He, and then cooled down and saturated with ammonia at 150 °C for 30 min. After the samples were purged with He (30 ml/min) for 30 min, the measurements of the desorbed NH₃ were performed from 150 to 650 °C (10 °C /min) under He (30 ml/min).

5. Catalytic testing

Alkylation of benzene with benzyl alcohol was performed in autoclave. 0.15 g of the catalyst was transferred to the 100 ml Parr reactor; Then 29.8 g benzene (99.5%) and 0.52 g benzyl alcohol (98%) were added in sequence resulting in a molar ratio of benzene to benzyl alcohol of 80. The reactor was purged with nitrogen and maintained a permanent pressure of 20–25 bars during the reaction, so the reactants could keep in the liquid phase at the reaction temperature of 140 °C. The mixture was stirred at 300 rpm throughout the run, which was determined to be sufficiently fast. After 1 h reaction, a small amount of liquid sample were withdrawn and analyzed by using GC–MS equipped with a capillary HP-5 (Agilent Technologies) column.

Table S1. Conditions for base and acid treatments of SAPO molecular sieves

Sample	Reagent	Ca	LSRb	T(°C)	t(h)	R (r/min) ^c	Product	Solid yield
SP34-TEAOH	ТЕАОН	0.6	12	180	1	60	СНА	35%
SP34-TPAOH	ТРАОН	0.6	12	180	1	60	СНА	38%
SP34-TMAOH	ТМАОН	0.9	12	180	1	60	СНА	39%
SP34-DEA	DEA	1	10	180	1	60	СНА	42%
SP34-NaOH	NaOH	0.63	20	80	6	60	amorphous	48%
SP34-HCl	HCl	0.58	10	80	3	60	СНА	25%
SP34-HCl-i	HCl	0.96	10	180	1	60	amorphous	27%
SAPO-20-TMAOH	ТМАОН	0.5	10	200	16	10	SOD	38%
SAPO-20-HCl	HCl	0.9	11	180	1	60	SOD+amorphous	22%

^a The concentration of base or acid aqueous solution (mol/L). ^b Liquid to solid ratio (ml/g). ^c The tumbling speed during treatment.

Table S2. Bulk and surface compositions of the sample.

Sample	Product	Product composition				
	Bulk ^a	Surface b				
SAPO-20	Si _{0.209} Al _{0.435} P _{0.357}	Si _{0.488} Al _{0.284} P _{0.228}	2.33			

^a Determined by XRF. ^b Determined by XPS. ^c R=[Si/(Al+P+Si)]_{surface}/[Si/(Al+P+Si)]_{bulk}

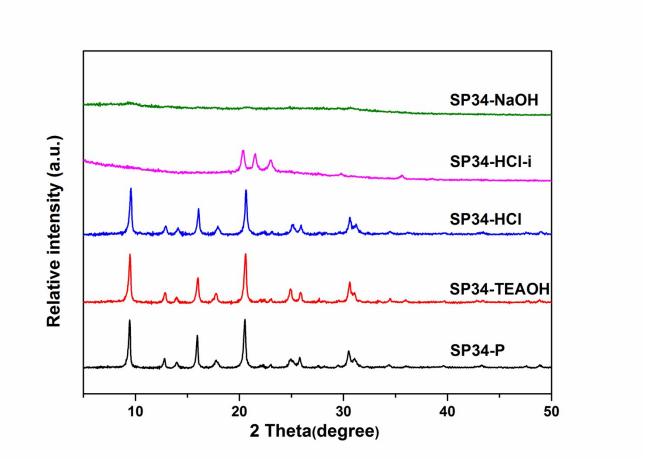


Figure S1. The XRD patterns of the samples.

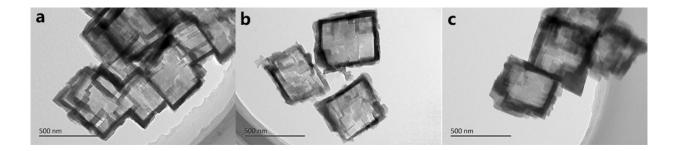


Figure S2. The TEM images of the base-treated samples: (a) SP34-TPAOH, (b) SP34-TMAOH, (c) SP34-DEA.

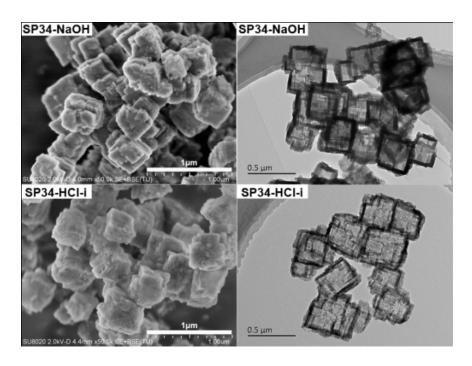


Figure S3. The SEM (left) and TEM (right) images of SP34-NaOH and SP34-HCl-i.

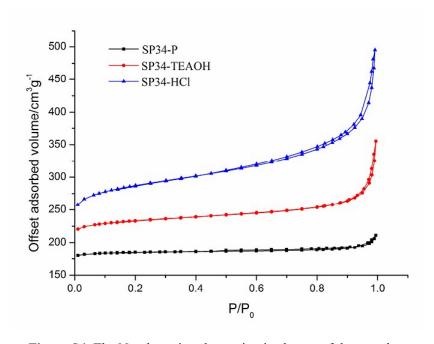


Figure S4. The N_2 adsorption-desorption isotherms of the samples.

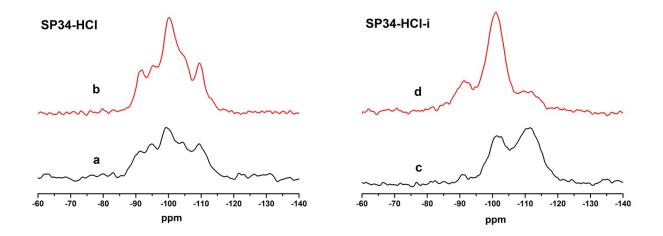


Figure S5. The ²⁹Si MAS NMR (a, c) and ¹H→²⁹Si CP MAS NMR (b, d) spectra of SP34-HCl and SP34-HCl-i.

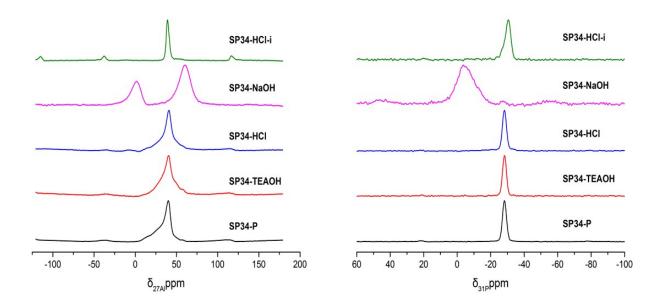
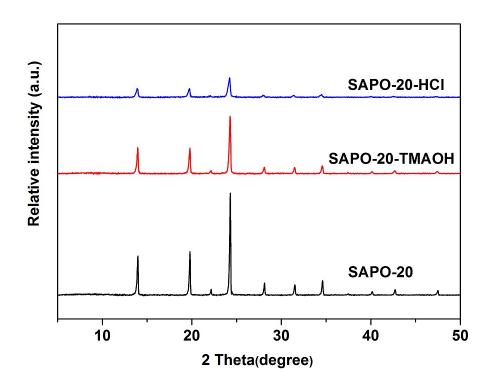
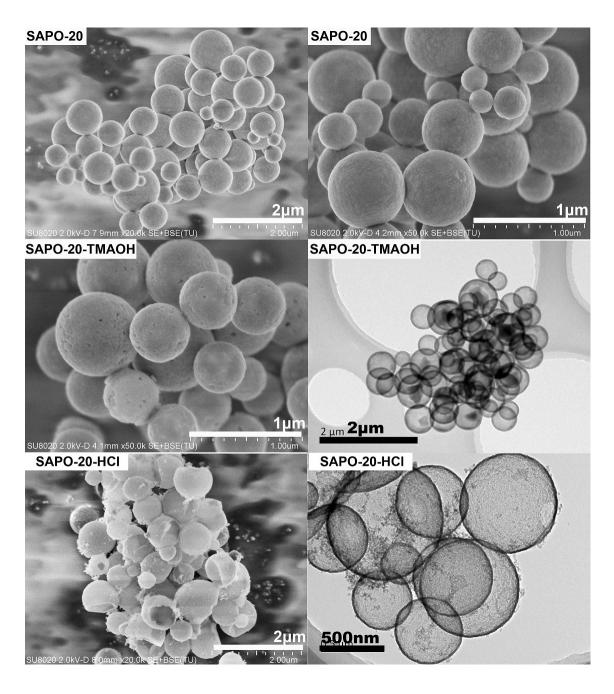
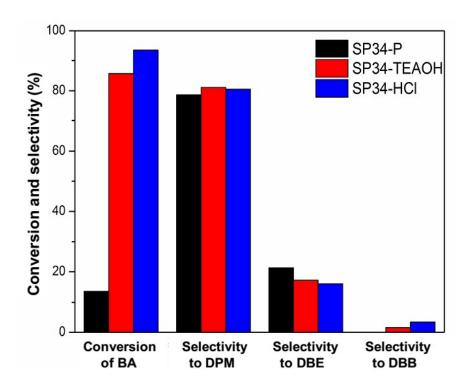





Figure S6. The ²⁷Al and ³¹P MAS NMR spectra of the samples.


Figure S7. The XRD patterns of SAPO-20 and its acid/base-treated samples.

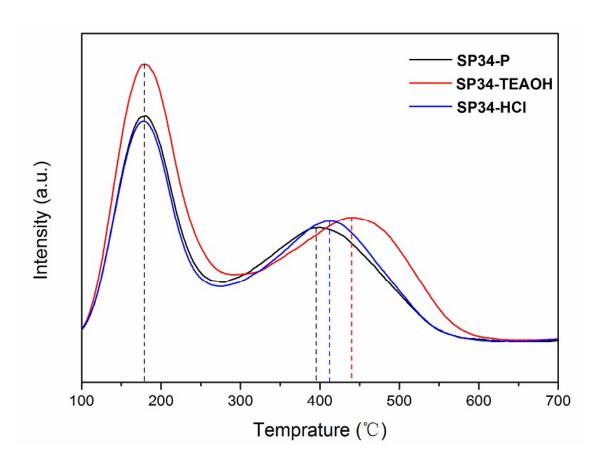

Figure S8. The SEM and TEM images of SAPO-20 and its acid/base-treated samples.

Figure S9. The ²⁹Si MAS NMR spectra of SAPO-20 and its acid/base-treated samples.

Figure S10. Results of alkylation of benzene with benzyl alcohol (BA) over the samples (DPM: diphenyl methane, DBE: dibenzyl ether, DBB: dibenzyl benzene).

Figure S11. NH₃-TPD curves of the samples.