Supporting Information

Ammonium-Crown Ether Supramolecular Cation-Templated Assembly of an Unprecedented Heterobicluster-Metal Coordination Polymer with Enhanced NLO Properties

Jinfang Zhang,^a Ding Jia,^a Mark G. Humphrey,^b Suci Meng,^a Michael J. Zaworotko,^c Marie P. Cifuentes,^b and Chi Zhang^a

 ^a China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
 ^b Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
 ^c Department of Chemical & Environmental Science, University of Limerick, Limerick, Ireland

Table of Contents

Experimental Section	S3
Preparation of HCM-CP 1	
X-ray Structure Determination	
Computational Details	S4
Nonlinear Optical Measurements	S4
Results and Discussion	
Synthetic Strategy	
TGA and PXRD Analyses	S5
Initial Structure-Property Correlations	
References	S6
Scheme S1 (Illustrative assembly of the anionic W/S/Cu-containing HCM-CP 1)	
Scheme S2 (Four-membered rings in the anionic 3-D framework of 1)	S 9
Scheme S3 (Six-membered rings in the anionic 3-D framework of 1)	S10
Scheme S4 (Eight-membered rings in the anionic 3-D framework of 1)	S 11
Figure S1 (3-D ball-and-stick packing diagram of 1 viewed along the <i>b</i> -axis)	S12
Figure S2 (3-D ball-and-stick packing diagram of 1 viewed along the <i>a</i> -axis)	
Figure S3 (Ball-and-stick diagrams of the cations)	.S14
Figure S4 (TGA curve for 1)	.S15
Figure S5 (Experimental and simulated PXRD patterns of 1)	
Figure S6 (Absorption spectra (Expt./Calc.) and peak assignment of 1)	517
Figure S7 (Z-scan measurement of aniline)	
Figure S8 (Z-scan measurement of 18-crown-6)	S19
Figure S9 (Z-scan measurement of [(NH ₄)⊂(18-crown-6)]NO ₃)	S20
Table S1 (Crystallographic and structural refinement data for HCM-CP 1)	S21
Table S2. (Mean radii of cations in some related clusters and CPs)	S22
Table S3 (NLO data of some related polymeric/discrete clusters and CPs)S	23
Table S4 (Results of TD-DFT calculations)	S27
Excitation energies and oscillator strengths	S 27
Orbital coefficients of atoms corresponding to Peak 1	.850
Orbital coefficients of atoms corresponding to Peak 2	.852
Ground-to-excited-state transition electric dipole moments	854

Experimental Section:

The reaction and manipulations were conducted using standard Schlenk techniques under an atmosphere of argon. The starting material $[NH_4]_2WS_4$ was obtained according to the literature procedure.^{S1} The solvents were carefully dried and distilled prior to use. Other chemicals were commercially available and used as received. Elemental analyses for carbon, hydrogen and nitrogen were performed on a Perkin-Elmer 240C elemental analyzer. Infrared spectra were recorded with a Nicolet FT-170SX Fourier transform spectrometer (KBr pellets). Thermogravimetric analyses were carried out on a TGA/1100SF thermal analyzer at a heating rate of 10 °C min⁻¹ between 50 and 1000 °C under a dinitrogen atmosphere with a flow rate of 50 cm³ min⁻¹. Powder X-ray diffraction (PXRD) patterns were recorded using Cu K α_1 radiation on a Bruker D8 X-ray diffractometer.

Preparation of ${}^{3}_{\infty}$ {{[(NH₄)⊂(18-crown-6)]₆·5DMF·5CH₃CN·H₂O}⊂ {[WS₄Cu₃(CN)₂]₂[WS₄Cu₃(CN)₂]₂[WS₄Cu₄(CN)₃][Cu(CN)_{1.5}]₂}} (HCM-CP 1). [NH₄]₂WS₄ (0.35 g, 1.00 mmol) and CuCN (0.27 g, 3.00 mmol) were added to 5 mL DMF and the resultant mixture was stirred for 20 min, affording a solution that was passed through a filter. The orange-red filtrate was carefully layered onto 0.5 mL DMF, and 10 mL of a solution of 18-crown-6 in CH₃CN (0.05 mol dm⁻³) was in turn added on top. Several days later, HCM-CP 1 was obtained as orange block crystals (yield: 0.22 g, 21% based on W). Anal. Calcd. for C₁₁₁H₂₂₀Cu₁₈N₃₀O₄₂S₂₀W₅: C, 24.91; H, 4.14; N, 7.85%. Found: C, 25.13; H, 4.01; N, 7.67%. IR (KBr pellets, cm⁻¹): 2146.2(vs) (CN), 1652.8(s) (C=O in DMF), 433.8(s) (W-µ₃-S).

X-ray Structure Determination. A crystal of HCM-CP **1** suitable for a single-crystal X-ray diffraction study was obtained directly from the above preparation. All measurements were made on a Saturn 724+ CCD X-ray diffractometer by using graphite-monochromated Mo $K\alpha$ ($\lambda = 0.71070$ Å) radiation. The single crystal of HCM-CP **1** was mounted with grease at the top of a glass fibre. Cell parameters were refined on all observed reflections by using the program *Crystalclear* (Rigaku Inc., 2007). The collected data were reduced by the program *Crystalclear* and an absorption correction (multiscan) was applied. The reflection data for HCM-CP **1** was solved by direct methods and refined on F^2 by full-matrix least-squares methods using the *SHELXTL* software package.^{S2} All non-hydrogen atoms

except the disordered atoms were refined anisotropically. A summary of the key crystallographic information is listed in Table S1. More detailed crystallographic data have been given in the cif file. CCDC 967653.

Computational Details. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were performed to assign the experimental absorption spectra by using the Gaussian 03 program.^{S3} A model compound of HCM-CP **1** was derived from the experimental single-crystal X-ray structure. The restricted singlet wave function for HCM-CP **1** in DMF solution (dielectric constant $\varepsilon = 36.71$) was shown to be stable within the framework of the polarized continuum model (PCM) at the B3LYP functional/LanL2DZ level of theory. Vertical electronic excitation energies of HCM-CP **1** in DMF solution were then obtained through TD-DFT/PCM calculations at the same level.

Nonlinear Optical Measurements. The third-order NLO properties of aniline, 18crown-6, [(NH₄)⊂(18-crown-6)]NO₃^{S4} and HCM-CP 1 were determined by performing Z-scan measurements.^{S5} Aniline solvent and the aniline solutions of 18crown-6, $[(NH_4) \subset (18 \text{-crown-6})]NO_3$ and HCM-CP 1 with concentrations of $1.37 \times$ 10^{-3} mol dm⁻³, 1.37×10^{-3} mol dm⁻³ and 2.28×10^{-4} mol dm⁻³, respectively, were placed in a 5 mm quartz cuvette for the nonlinear optical measurements, which were performed with linearly polarized 5 ns pulses at 532 nm generated from a Q-switched frequency-doubled Nd:YAG laser. Aniline, 18-crown-6, [(NH₄)⊂(18-crown-6)]NO₃ and HCM-CP 1 are stable toward air and laser light under the experimental conditions. The spatial profiles of the optical pulses were of nearly Gaussian transverse mode. The pulsed laser was focused onto the sample cell with a 30 cm focal length mirror. The spot radius of the laser beam was measured to be 55 μ m (half-width at $1/e^2$ maximum). The energy of the input and output pulses were measured simultaneously by precision laser detectors (Rjp-735 energy probes), which were linked to a computer by an IEEE interface,^{S6} while the incident pulse energy was varied by a Newport Com. Attenuator. The interval between the laser pulses was chosen to be 1 Hz to avoid the influence of thermal and long-term effects. The samples were mounted on a translation stage that was controlled by computer to move along the axis of the incident laser beam (Z-direction) with respect to the focal point. To determine both the sign and magnitude of the nonlinear refraction, a 0.2 mm diameter aperture was placed in front of the transmission detector and the transmittance

recorded as a function of the sample position on the *Z*-axis (closed-aperture *Z*-scan). To measure the nonlinear absorption, the *Z*-dependent sample transmittance was taken without the aperture (open-aperture *Z*-scan).

Results and Discussion:

Synthetic Strategy. Although the heterobicluster-metal coordination polymer 1 is comprised of tetranuclear clusters ($[WS_4Cu_3]^+$), pentanuclear clusters ($[WS_4Cu_4]^{2+}$), and building metal ions (Cu⁺), interconnected by ditopic anionic bridges (CN⁻), an ammonium-crown ether host-guest supramolecular cation-templated assembly protocol has been demonstrated to be responsible for the construction of the heterobicluster-metal CP. The valence state and configuration (including size, geometry and structural rigidity) of cations have been shown to affect the formation of anionic skeletons of Mo(W)/S/Ag polymeric clusters.^{S7} In our previous work, the univalent quaternary ammonium cation $[Et_4N]^+$ with a mean radius of 3.34 Å (Table S2) induced the formation of a 3-D anionic cyanide-bridged W/S/Cu cluster-based CP { $[Et_4N]_2[WS_4Cu_4(CN)_4]$ }_n (C-CP 2) fabricated from pentanuclear $[WS_4Cu_4]^{2+}$ building clusters.^{S8} When $[Et_4N]^+$ was replaced by $[n-Bu_4N]^+$, with a larger mean radius of 5.86 Å (Table S2), another 3-D anionic cyanide-bridged W/S/Cu cluster-based CP $\{[n-Bu_4N][WS_4Cu_3(CN)_2]\}_n$ (C-CP 3) composed of tetranuclear [WS₄Cu₃]⁺ building clusters was constructed.^{S9} Compared with ammonium cations $[Et_4N]^+$ and $[n-Bu_4N]^+$, quaternary the host-guest supramolecular cation [(NH₄)⊂(18-crown-6)]⁺ exhibits a distinct geometry and structural rigidity (Figure S3). The mean radius of [(NH₄)⊂(18-crown-6)]⁺ (4.62 Å, Table S2) is very close to the average value (4.60 Å) of the radii of $[Et_4N]^+$ from 2 and $[n-Bu_4N]^+$ from 3. The distinct radius afforded by supramolecular encapsulation of the ammonium ion may be a key reason that the supramolecular cation $[(NH_4) \subset (18 \text{-crown-6})]^+$ directs the formation of the novel 3-D anionic cyanidebridged W/S/Cu cluster-based CP comprised of both pentanuclear [WS₄Cu₄]²⁺ and tetranuclear [WS₄Cu₃]⁺ building clusters. Judicious choice of supramolecular encapsulation may thereby offer a continuum of ammonium ion radii, and thereby greatly expand the palette of cations/radii for templating coordination polymer assembly.

TGA and PXRD Analyses. TGA measurements reveal that the anionic framework of **1** is stable to 540 °C, beyond which it begins to slowly decompose (Figure S4). The peak positions of the experimental and simulated PXRD patterns are in good agreement (Figure S5), which indicates that the crystal structure of **1** is truly representative of the bulk crystal product.

Initial Structure-Property Correlations. We note that C-CPs **2** and **3** were constructed from single building clusters; interactions therefore only exist between the same clusters. In contrast, HCM-CP **1** was constructed from tetranuclear $[WS_4Cu_3]^+$ and pentanuclear $[WS_4Cu_4]^{2+}$ building clusters, with consequent interactions between different clusters (tetranuclear cluster $[WS_4Cu_3]^+$ and pentanuclear cluster $[WS_4Cu_4]^{2+}$). Our TD-DFT calculations confirm that electron transitions occur between the tetranuclear clusters $[WS_4Cu_3]^+$ and the pentanuclear clusters $[WS_4Cu_4]^{2+}$ (Figure S6b), and we suggest that these intercluster transitions may be a key ingredient in its enhanced optical properties.

References:

- S1. J. W. McDonald, G. D. Frieson, L. D. Rosenhein and W. E. Newton, *Inorg. Chim. Acta*, 1983, 72, 205-210.
- S2. G. M. Sheldrick, SHELXS-97 and SHELXL-97, Programs for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- S3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M.

W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03; Revision D. 01; Gaussian, Inc.: Wallingford, CT, 2004.

- S4. K. M. Doxsee, P. E. Francis Jr. and T. J. R. Weakley, *Tetrahedron*, 2000, 56, 6683-6691.
- S5. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, *IEEE J. Quantum Electron.*, 1990, **26**, 760-769.
- S6. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan and E. W. Van Stryland, *IEEE J. Quantum Electron.*, 1991, **27**, 1296-1309.
- S7. (a) H. Yu, W. J. Zhang, X. T. Wu, T. L. Sheng, Q. M. Wang and P. Lin, *Angew. Chem., Int. Ed. Engl.*, 1998, **37**, 2520-2521; (b) J. H. Li, J. F. Zhang, M. G. Humphrey and C. Zhang, *Eur. J. Inorg. Chem.*, 2013, 328-346.
- S8. C. Zhang, Y. L. Song, Y. Xu, H. K. Fun, G. Y. Fang, Y. X. Wang and X. Q. Xin, J. Chem. Soc. Dalton Trans., 2000, 2823-2829.
- S9. J. F. Zhang, Y. L. Song, J. Y. Yang, M. G. Humphrey and C. Zhang, *Cryst. Growth Des.*, 2008, 8, 387-390.

Scheme S1. Illustrative assembly of the anionic W/S/Cu-containing HCM-CP 1 (the W1-containing tetranuclear clusters, W2-containingtetranuclear clusters, pentanuclear clusters, and metal Cu ions are highlighted in green, cyanine, blue and red, respectively; the grey and blacksticksrepresenttheCN-bridges).

Scheme S2. Four-membered rings connected through bridged planar 'open' $[WS_4Cu_4]^{2+}$ clusters (the dimensions of the four-membered ring are 6.591 Å × 8.300 Å).

Scheme S3. Six-membered rings connected through bridged planar 'open' $[WS_4Cu_4]^{2+}$ clusters (the dimensions of the six-membered rings are 7.057 Å × 16.388 Å).

Scheme S4. Eight-membered rings connected through shared planar 'open' $[WS_4Cu_4]^{2+}$ clusters (the dimensions of the eight-membered rings are 11.641 Å × 20.193 Å).

Figure S1. 3-D ball-and-stick packing diagram of the anionic HCM-CP 1 viewed approximately along the *b*-axis (the W1-containing tetranuclear clusters, W2-containing tetranuclear clusters, pentanuclear clusters, and metal Cu ions are highlighted in green, cyanine, blue, and red, respectively; the grey sticks represent the CN^{-} bridges).

Figure S2. 3-D ball-and-stick packing diagram of the anionic HCM-CP 1 viewed approximately along the *a*-axis (the W1-containing tetranuclear clusters, W2-containing tetranuclear clusters, pentanuclear clusters, and metal Cu ions are highlighted in green, cyanine, blue, and red, respectively; the grey sticks represent the CN-

Figure **S3**. The configuration cation $[Et_4N]^+$ (a) from of the $\{[Et_4N]_2[WS_4Cu_4(CN)_4]\}_n \quad (C\text{-}CP$ 2), cation the $[Bu_4N]^+$ (b) from ${[Bu_4N][WS_4Cu_3(CN)_2]}_n$ (C-CP 3), and the cation $[(NH_4) \subset (18 \text{-crown-6})]^+$ (c) from HCM-CP 1 (ball-and-stick representations, C black, O pink, N purple; all H atoms were omitted for clarity).

Figure S4. TGA curve for 1.

Figure S5. Comparison of the experimental and simulated PXRD patterns of 1.

Figure S6. (a) Absorption spectra of **1** in DMF solution obtained from experimental observation (in blue line) and TD-DFT/PCM calculation (in red line). For the latter, a Lorentzian function has been employed with the spectral line width set to 60 nm. The theoretical spectrum is blue-shifted by 135 nm from that obtained from TD-DFT excitation energies. (b) Assignment of absorption peaks (Peak 1 and Peak 2) of **1** in DMF solution. The molecular orbitals are obtained through DFT/PCM calculations at the B3LYP/LanL2DZ level.

Figure S7. Normalized open-aperture (top) and closed-aperture (bottom) Z-scan curves showing negligible NLO absorption and refraction of aniline solvent, respectively, at 532 nm with 5 ns pulse durations.

Figure S8. Normalized open-aperture (top) and closed-aperture (bottom) Z-scancurves showing negligible NLO absorption and refraction of 18-crown-6, respectively,at532nmwith5nspulsedurations.

Figure S9. Normalized open-aperture (top) and closed-aperture (bottom) Z-scan curves showing negligible NLO absorption and refraction of $[(NH_4)]$ (18-crown-6)]NO₃, respectively, at 532 nm with 5 ns pulse durations.

	HCM-CP 1
Molecular formula	$C_{111}H_{220}Cu_{18}N_{30}O_{42}S_{20}W_5$
Formula weight	5351.67
Temperature (K)	150(2) K
Wavelength (Å)	0.71073
Crystal system	monoclinic
Space group	$P2_1/m$
a (Å)	16.682(3)
<i>b</i> (Å)	21.662(4)
<i>c</i> (Å)	27.674(5)
α (°)	90
β (°)	96.49(3)
γ (°)	90
$V(Å^3)$	9936(3)
Ζ	2
$\rho_{\rm calc} ({\rm g}~{\rm cm}^{-3})$	1.789
μ (mm ⁻¹)	5.037
F (000)	5286
Reflections collected	38779
Unique reflections	16529
R _{int}	0.0390
No. parameters	919
GOF	0.998
$R_1 \left[I > 2\sigma(I) \right]$	0.0690
$wR_2 [I > 2\sigma(I)]$	0.1510
$\Delta ho_{\rm max}$ / $\Delta ho_{\rm min}$ (e Å ⁻³)	1.538 / -1.892

 Table S1. Crystallographic and structural refinement data for HCM-CP 1.

Molecular Formula	Mean radius of cation ^a (Å)	Reference
${[Et_4N]_2[WS_4Cu_4(CN)_4]}_n$	3.34	[SS1]
$\{[Et_4N]_2[WS_4(CuNCSe)_4]\}_n$	3.38	[SS2]
$\{[Et_4N][WOS_3Cu_3\{S_2P(OMe)_2\}_2]\}_n$	3.36	[SS3]
[Et ₄ N] ₂ [WS ₄ Cu ₄ (SCN) ₄ (2-pic) ₄]	3.35	[SS4]
${[Et_4N][Fe(5-ClL1)]_2[Fe(CN)_6]}_n$	3.34	[SS5]
${[Et_4N][Cu_2(CN)_3]}_n$	3.38	[SS6]
${[n-Bu_4N][WS_4Cu_3(CN)_2]}_n$	5.86	[SS7]
$\{[n-Bu_4N]_2[W_2O_2S_6Cu_6Br_4(4,4'\text{-bipy})_3]\}_n$	5.84	[SS8]
$[n-Bu_4N)_4][W_4Cu_{10}S_{16.5}O_{2.5}] \cdot H_2O$	5.66	[SS9]
$[n-Bu_4N][WS_4Cu_3Br_2(dppm)_2]$	5.62	[SS10]
${[n-Bu_4N][Cu(CN)Br]}_n$	5.72	[SS11]
${[n-Bu_4N][Cu_3(CN)_4]\cdot CH_3CN}_n$	5.87	[SS11]
${[n-Bu_4N]_2[Eu(NO_3)_4Au(CN)_2]}_n$	5.79	[SS12]
${}^{3}_{\infty}$ {{[(NH ₄) \subset (18-crown-6)] ₆ ·5DMF·5CH ₃ CN·H ₂ O} \subset {[WS ₄ Cu ₃ (CN) ₂] ₂ [WS ₄ Cu ₃ (CN) ₂] ₂ [WS ₄ Cu ₄ (CN) ₃] [Cu(CN) ₁ 5] ₂ }	4.62	This work

 Table S2. The mean radii of cations in some related W/S/Cu polymeric/discrete clusters and coordination polymers.

^{*a*} The mean radius of [Et₄N]⁺ or [*n*-Bu₄N]⁺ is defined as the average value of the longest distances between the central N and each H atom on every methyl; the mean radius of [(NH₄)⊂(18crown-6)]⁺ is defined as the average value of the longest distances between the central N and each H atom on every methylene. All mean radii are calculated according to their CIFs from the CCDC.

^b Abbreviation: dppm = bis(diphenylphosphino)methane; 4,4'-bipy = 4,4'-bipyridine; 5-ClL1H2 = N,N'-bis(5-chlorosalicylidenato)-2,2-dimethyl-1,3-diaminopropane.

Molecular Formula	Skeleton Type	γ (esu)	λ (nm)	Reference
$[MoS_4Cu_4I_2(py)_6]$	Planar-Open Cluster	5.8 × 10 ⁻³⁰	532	[SS13]
$[WS_4Cu_4I_2(py)_6]$	Planar-Open Cluster	6.9×10^{-30}	532	[SS13]
$[MoS_4Cu_4Br_2(py)_6]$	Planar-Open Cluster	1.2×10^{-30}	532	[SS13]
$[WS_4Cu_4Br_2(py)_6]$	Planar-Open Cluster	1.3×10^{-30}	532	[SS13]
$[MoS_4Cu_4(SCN_2)(py)_6]$	Planar-Open Cluster	$7.0 \times 10^{-30 b}$	532	[SS14]
$[WS_4Cu_4(SCN_2)(py)_6]$	Planar-Open Cluster	7.4 × 10 ⁻³⁰ ^b	532	[SS14]
${[Et_4N]_2[MoS_4Cu_4(CN)_4]}_n$	3D Planar-Open Polymeric Cluster	1.2×10^{-29}	532	[SS1]
${[Et_4N]_2[WS_4Cu_4(CN)_4]}_n$	3D Planar-Open Polymeric Cluster	1.3×10^{-29}	532	[SS1]
$\{[WS_4Cu_4(bipy)_4][WS_4Cu_4I_4(bipy)_2 \cdot 4H_2O]\}_n$	3D Planar-Open Polymeric Cluster	$4.4 \times 10^{-29 b}$	532	[SS15]
${[Bu_4N][WS_4Cu_3(CN)_2]}_n$	3D T-Shaped Polymeric Cluster	3.4×10^{-30}	532	[SS7]
${[MoOS_3Cu_3(CN)(py)_3] \cdot 0.5C_6H_6}_n$	1D Nest-Shaped Polymeric Cluster	$1.9\times10^{\text{-}29\text{b}}$	532	[SS16]
$3_{\infty}\{[(NO_3)(NMe_4)_3] \subset [WOS_3Cu_3(CN)_3]\}$	3D Nest-Shaped Polymeric Cluster	3.3×10^{-30}	532	[SS17]
$\label{eq:3.1} \Im_{\infty}\{[(NH_4)(DMF)_2] \subset [W_2O_2S_6Cu_6(CN)_3(bipy)_4]\}$	3D Nest-Shaped Polymeric Cluster	4.9×10^{-29}	532	[SS17]
$3_{\infty}\{[(NH_4)(DMF)_2] \subset [W_2O_2S_6Cu_6(CN)_3(bpee)_4]\}$	3D Nest-Shaped Polymeric Cluster	3.6 × 10 ⁻²⁹	532	[SS17]
$\{[Tp*WS_3Cu_3(\mu_3\text{-}DMF)\{Cu(CN)_3\}]_2\cdot 2DMF\cdot MeCN\}_n$	2D Cubane-Like Polymeric Cluster	4.3×10^{-31}	800	[SS18]
$\{K[Tp^*WS_3Cu_3(\mu_3\text{-}DMF)\{Cu_2(CN)_{4.5}\}]_2\cdot 4DMF\cdot 2MeCN\}_n$	3D Cubane-Like Polymeric Cluster	4.4×10^{-31}	800	[SS18]
${[MoOS_3Cu_3(bibp)_{2.5}](I)]}_n$	2D Twin-Nest-Shaped Polymeric Cluster	$2.3 \times 10^{-29 b}$	532	[SS19]
$\{[WOS_3Cu_3Br(TIPA)] \cdot H_2O \cdot DMF\}_n$	3D Nest-Shaped Polymeric Cluster	$1.9 \times 10^{-29 b}$	532	[SS19]
$[Ag(1,3-\mu_2-SCN)(\mu_2-hmt)]_n$	2D Coordination Polymer	2.3×10^{-30}	532	[SS20]
$\{[Ag(1,1,3-\mu_3-SCN)]_2(\mu_2-hmt)\}_n$	2D Coordination Polymer	6.9×10^{-30}	532	[SS20]

Table S3. Nonlinear optical parameters (second hyperpolarizabilities) of some related Mo(W)/S/Cu polymeric/discrete heterothiometallic clusters and coordination polymers.

$[Ag(1,1,3-\mu_3-SCN)(\mu_4-hmt)_{0.5}]_n$	3D Coordination Polymer	1.1×10^{-29}	532	[SS20]
${K \cdot Na \cdot [Ni_2(\mu_6-btc)(\mu_2-ox)(H_2O)_2] \cdot 2H_2O}_n$	3D Coordination Polymer	$5.0 imes 10^{-30}$	532	[SS21]
$\{K \cdot Na \cdot [Co_2(\mu_6\text{-btc})(\mu_2\text{-}ox)(H_2O)_2] \cdot 2H_2O\}_n$	3D Coordination Polymer	3.0×10^{-30}	532	[SS21]
$[Fe_{2}(\mu_{10}\text{-}btc)_{0.5}(\mu_{2}\text{-}ox)_{0.5}(\mu_{2}\text{-}O)_{1.5}]_{n}$	3D Coordination Polymer	$6.0 imes 10^{-30}$	532	[SS22]
[Co(bbbt) ₂ (NCS) ₂] _n	2D Coordination Polymer	2.4×10^{-30}	532	[SS23]
$[Mn(bbbt)_2(NCS)_2]_n$	2D Coordination Polymer	1.5×10^{-30}	532	[SS23]
$[Cd(bbbt)_2(NCS)_2]_n$	2D Coordination Polymer	1.5×10^{-30}	532	[SS23]
$[Pb(bbbm)_2(NO_3)_2]_n$	2D Coordination Polymer	2.3×10^{-29b}	532	[SS24]
[Zn(bbbt)(NCS) ₂] _n	1D Coordination Polymer	$1.5 \times 10^{-29 b}$	532	[SS24]
[Zn(pbbt)(NCS) ₂] _n	1D Coordination Polymer	$1.2 \times 10^{-29 b}$	532	[SS24]
$\{[Cd(fcz)_2Cl_2] \cdot CH_3OH \cdot 2H_2O\}_n$	2D Coordination Polymer	1.2×10^{-30}	532	[SS25]
${[Co(fcz)_2Cl_2] \cdot 2CH_3OH}_n$	2D Coordination Polymer	1.5×10^{-30}	532	[SS25]
$[AgCu_2(C_7H_2NO_5)(C_7H_3NO_5)]_n \cdot 2nH_2O$	2D Coordination Polymer	$1.3 \times 10^{-29 b}$	532	[SS26]
$[Cu_3(C_7H_2NO_5)_2]_n \cdot 3nH_2O$	3D Coordination Polymer	$2.2 \times 10^{-30 b}$	532	[SS27]
$[CuAg_2(C_7H_3NO_5)_2]_n$	2D Coordination Polymer	$2.5 \times 10^{-30 b}$	532	[SS27]
$^{3}_{\infty}$ {{[(NH ₄)⊂(18-crown-6)] ₆ ·5DMF·5CH ₃ CN·H ₂ O} ⊂{[WS ₄ Cu ₃ (CN) ₂] ₂ [WS ₄ Cu ₃ (CN) ₂] ₂ [WS ₄ Cu ₄ (CN) ₃][Cu(CN) _{1.5}] ₂ }}	3D Planar-Open Cluster/T-Shaped Cluster/ Metal Polymeric Cluster	7.3 × 10 ⁻²⁹	532	This work

^{*a*} Abbreviation: py = pyridine, bipy = 4,4'-bipyridine, bpee = 1,2-(E)-bis(4-pyridyl)ethene, bibp = 4,4'-di(1H-imidazol-1-yl)-1,1'-biphenyl,

tipa = tris(4-(1H-imidazol-1-yl)phenyl)amine, hmt = hexamethylenetetramine, bbbt = 1,1'-(1,4-butanediyl)bis-1H-benzotriazole,

 $C_7H_5NO_5 = 2,6$ -dicarboxy-4-hydroxypyridine, bbbm = 1,1'-(1,4-butanediyl)bis-1H-benzimidazole, pbbt = 1,1'-(1,3-propylene)bis-1H-benzotriazole,

 $fcz = \alpha - (2, 4 - difluorophenyl) - \alpha - (1H - 1, 2, 4 - triazol - 1 - ylmethyl) - 1H - 1, 2, 4 - triazole - 1 - ethanol, btc = 1, 2, 4, 5 - benzenetetracarboxylate, ox = oxalate.$

^b The hyperpolarizabilities γ are calculated based on nonlinear absorptive coefficients a_2 and nonlinear refractive indexes n_2 from the references.

References for Tables S2 and S3:

- SS1. C. Zhang, Y. L. Song, Y. Xu, H. K. Fun, G. Y. Fang, Y. X. Wang and X. Q. Xin, J. Chem. Soc. Dalton Trans., 2000, 2823-2829.
- SS2. A. Beheshti, W. Clegg and H. Fallah, Inorg. Chim. Acta, 2001, 322, 1-6.
- SS3. Z. H. Li, S. W. Du and X. T. Wu, Inorg. Chem. Commun., 2006, 9, 79-81.
- SS4. C. Zhang, Y. L. Song, G. C. Jin, G. Y. Fang, Y. X. Wang, S. S. S. Raj, H. K. Fun and X. Q. Xin, J. Chem. Soc., Dalton Trans., 2000, 1317-1323.
- SS5. E. Gungor, Y. Yahsi, H. Kara and A. Caneschi, *CrystEngComm*, 2015, **17**, 3082-3088.
- SS6. E. Colacio, R. Kivekäs, F. Lloret, M. Sunberg, J. Suarez-Varela, M. Bardajl and A. Laguna, *Inorg. Chem.*, 2002, **41**, 5141-5149.
- SS7. J. F. Zhang, Y. L. Song, J. Y. Yang, M. G. Humphrey and C. Zhang, *Cryst. Growth Des.*, 2008, 8, 387-390.
- SS8. K. Liang, H. G. Zheng, Y. L. Song, Y. Z. Li, and X. Q. Xin, Cryst. Growth Des., 2007, 7, 373-376.
- SS9. J. Guo, X. T. Wu, W. J. Zhang, T. L. Sheng, Q. Huang, P. Lin, Q. M. Wang and J. X. Lu, Angew. Chem., Int. Ed. Engl, 1997, 36, 2464-2466.
- SS10. J. P. Lang and K. Tatsumi, Inorg. Chem., 1998, 37, 6308-6316.
- SS11. G. A. Bowmaker, H. Hartl and V. Urban, Inorg. Chem., 2000, 39, 4548-4554.
- SS12. R. J. Roberts, X. B. Li, T. F. Lacey, Z. Pan, H. H. Patterson and D. B. Leznoff, *Dalton Trans.*, 2012, 41, 6992-6997.
- SS13. C. Zhang, Y. L. Song, F. E. Kühn, Y. X. Wang, H. K. Fun and X. Q. Xin, J. Mater. Chem., 2002, 12, 239-248.
- SS14. H. G. Zheng, W. L. Tan, W. Ji, W. H. Leung, I. D. Williams, D. L. Long, J. S. Huang and X. Q. Xin, *Inorg. Chim. Acta*, 1999, **294**, 73-78.
- SS15. K. Liang, H. G. Zheng, Y. L. Song, M. F. Lappert, Y. Z. Li, X. Q. Xin, Z. X. Huang, J. T. Chen and S. F. Lu, *Angew. Chem. Int. Ed.*, 2004, 43, 5776-5779.
- SS16. H. W. Hou, H. G. Zheng, H. G. Ang, Y. T. Fan, M. K. M. Low, Y. Zhu, W. L. Wang, X. Q. Xin, W. Ji and W. T. Wong, *J. Chem. Soc. Dalton Trans.*, 1999, 2953-2957.
- SS17. C. Zhang, Y. Cao, J. F. Zhang, S. C. Meng, T. Matsumoto, Y. L. Song, J. Ma, Z. X. Chen, K. Tatsumi and M. G. Humphrey, *Adv. Mater.*, 2008, 20, 1870-1875.
- SS18. X. Chen, H. X. Li, Z. Y. Zhang, W. Zhao, J. P. Lang and B. F. Abrahams, *Chem. Commun.*, 2012, **48**, 4480-4482.

- SS19. X. Q. Yao, Z. R. Pan, J. S. Hu, Y. Z. Li, Z. J. Guo and H. G. Zheng, *Chem. Commun.*, 2011, **47**, 10049-10051.
- SS20. J. H. Li, S. C. Meng, J. F. Zhang, Y. L. Song, Z. P. Huang, H. J. Zhao, H. Y. Wei, W. J. Huang, M. P. Cifuentes, M. G. Humphrey and C. Zhang, *CrystEngComm*, 2012, 14, 2787-2796.
- SS21. L. J. Zhang, J. H. Yu, J. Q. Xu, J. Lu, H. Y. Bie and X. Zhang, *Inorg. Chem. Commun.*, 2005, **8**, 638-642.
- SS22. Y. Li, Z. X. Zhang, P. Z. Hong, Z. X. Wu and K. C. Li, *Inorg. Chem. Commun.*, 2008, 11, 761-764.
- SS23. H. W. Hou, X. R. Meng, Y. L. Song, Y. T. Fan, Y. Zhu, H. J. Lu, C. X. Du and W. H. Shao, *Inorg. Chem.*, 2002, **41**, 4068-4075.
- SS24. X. R. Meng, Y. L. Song, H. W. Hou, Y. T. Fan, G. Li and Y. Zhu, *Inorg. Chem.*, 2003, **42**, 1306-1315.
- SS25. H. Y. Han, Y. L. Song, H. W. Hou, Y. T. Fan and Y. Zhu, *Dalton Trans.*, 2006, 1972-1980.
- SS26. J. P. Zou, G. W. Zhou, X. Zhang, M. S. Wang, Y. B. Lu, W. W. Zhou, Z. J. Zhang, G. C. Guo and J. S. Huang, *CrystEngComm*, 2009, **11**, 972-974.
- SS27. J. P. Zou, Q. Peng, Z. H. Wen, G. S. Zeng, Q. J. Xing and G. C. Guo, Cryst. Growth Des., 2010, 10, 2613-2619.

Table S4. Results of Time-dependent Density Functional Theory (TD-DFT) Calculations

1-B3LYP-LanL2DZ TD-PCM (200 states) in DMF (dielectric constant = 36.7) solution

Excitation energies and oscillator strengths:

Excited State 264 ->265	1:	Singlet-A 0.70709	0.6272 eV	1976.84 nm	f = 0.0000
This state for op Total Energy, E	otimiza (RPA)	ation and/or second) = -4026.36864 tate density for the	nd-order corr 4041 vis state as th	rection.	PhoCI density
copying the exe	neu s	lute density for th	iis state as th	e i purificie i	choer density.
Excited State 264 ->266	2:	Singlet-A 0.70709	0.9190 eV	1349.14 nm	f = 0.0000
Excited State 264 ->267	3:	Singlet-A 0.70709	1.0488 eV	1182.11 nm	f = 0.0000
Excited State 263 ->265	4:	Singlet-A 0.70706	1.0516 eV	1178.98 nm	f = 0.0000
Excited State 264 ->268	5:	Singlet-A 0.70706	1.2662 eV	979.18 nm	f = 0.0000
Excited State 263 ->266	6:	Singlet-A 0.70705	1.3434 eV	922.90 nm	f = 0.0000
Excited State 261 ->265 262 ->265	7:	Singlet-A 0.17830 0.68191	1.4668 eV	845.24 nm	f = 0.0000
Excited State 263 ->267	8:	Singlet-A 0.70706	1.4738 eV	841.24 nm	f = 0.0000
Excited State 259 ->265 261 ->265 262 ->265	9:	Singlet-A 0.10118 0.67748 -0.16915	1.4947 eV	829.47 nm	f = 0.0000
Excited State 259 ->265 260 ->265	10:	Singlet-A 0.65127 -0.22451	1.6523 eV	750.36 nm	f = 0.0001
Excited State 263 ->268	11:	Singlet-A 0.70703	1.6912 eV	733.12 nm	f = 0.0000
Excited State 261 ->266 262 ->266	12:	Singlet-A 0.17879 0.68162	1.7574 eV	705.49 nm	f = 0.0000

Excited State 13: 264 ->271	Singlet-A 0.70679	1.7794 eV	696.76 nm	f = 0.0000
Excited State 14: 259 ->266 261 ->266 262 ->266	Singlet-A 0.10285 0.67711 -0.16935	1.7855 eV	694.40 nm	f = 0.0000
Excited State 15: 264 ->269	Singlet-A 0.70633	1.7954 eV	690.55 nm	f = 0.0000
Excited State 16: 259 ->265 260 ->265	Singlet-A 0.22891 0.66821	1.7961 eV	690.29 nm	f = 0.0000
Excited State 17: 258 ->265	Singlet-A 0.70447	1.8668 eV	664.15 nm	f = 0.0000
Excited State 18: 264 ->270	Singlet-A 0.70694	1.8845 eV	657.93 nm	f = 0.0000
Excited State 19: 261 ->267 262 ->267	Singlet-A 0.55403 -0.42206	1.8906 eV	655.79 nm	f = 0.0022
Excited State 20: 261 ->267 262 ->267	Singlet-A 0.43021 0.55567	1.8975 eV	653.42 nm	f = 0.0004
Excited State 21: 264 ->272	Singlet-A 0.70702	1.9004 eV	652.42 nm	f = 0.0000
Excited State 22: 259 ->266 260 ->266	Singlet-A 0.65090 -0.22431	1.9425 eV	638.27 nm	f = 0.0001
Excited State 23: 254 ->265 255 ->265 256 ->265 257 ->265	Singlet-A 0.15345 0.27015 0.16343 0.60501	1.9974 eV	620.72 nm	f = 0.0003
Excited State 24: 264 ->273 264 ->274	Singlet-A 0.67092 -0.22203	2.0230 eV	612.89 nm	f = 0.0000
Excited State 25: 255 ->265 256 ->265 257 ->265	Singlet-A 0.11490 0.65129 -0.24138	2.0282 eV	611.30 nm	f = 0.0000
Excited State 26:	Singlet-A	2.0514 eV	604.38 nm	f = 0.0005

253 ->265 254 ->265 255 ->265 256 ->265 257 ->265	-0.10087 0.30110 0.51774 -0.21958 -0.25818			
Excited State 27: 259 ->266 260 ->266	Singlet-A 0.22906 0.66893	2.0879 eV	593.81 nm	f = 0.0000
Excited State 28: 264 ->273 264 ->274	Singlet-A 0.22201 0.67119	2.0955 eV	591.66 nm	f = 0.0000
Excited State 29: 261 ->268 262 ->268	Singlet-A 0.56083 -0.41360	2.1064 eV	588.61 nm	f = 0.0005
Excited State 30: 261 ->268 262 ->268	Singlet-A 0.41863 0.55938	2.1144 eV	586.37 nm	f = 0.0009
Excited State 31: 252 ->265 253 ->265 254 ->265 255 ->265	Singlet-A -0.22145 0.59249 -0.16254 0.23660	2.1150 eV	586.22 nm	f = 0.0002
Excited State 32: 259 ->267 260 ->267	Singlet-A 0.65569 -0.23420	2.1309 eV	581.85 nm	f = 0.0006
Excited State 33: 253 ->265 254 ->265 255 ->265	Singlet-A 0.25853 0.58716 -0.29050	2.1578 eV	574.58 nm	f = 0.0000
Excited State 34: 258 ->266	Singlet-A 0.70444	2.1586 eV	574.37 nm	f = 0.0000
Excited State 35: 264 ->275	Singlet-A 0.70696	2.1890 eV	566.40 nm	f = 0.0000
Excited State 36: 263 ->271	Singlet-A 0.70676	2.2054 eV	562.17 nm	f = 0.0000
Excited State 37: 259 ->267 260 ->267	Singlet-A 0.23673 0.66621	2.2175 eV	559.12 nm	f = 0.0000
Excited State 38: 237 ->265 243 ->265	Singlet-A 0.13652 -0.26167	2.2175 eV	559.11 nm	f = 0.0026

244 ->265 245 ->265 253 ->265	0.57892 -0.18060 -0.10508			
Excited State 39: 263 ->269	Singlet-A 0.70696	2.2199 eV	558.52 nm	f = 0.0000
Excited State 40: 264 ->276	Singlet-A 0.70673	2.2435 eV	552.64 nm	f = 0.0000
Excited State 41: 252 ->265 253 ->265	Singlet-A 0.66008 0.23558	2.2617 eV	548.19 nm	f = 0.0000
Excited State 42: 258 ->267	Singlet-A 0.70262	2.2881 eV	541.86 nm	f = 0.0000
Excited State 43: 254 ->266 255 ->266 256 ->266 257 ->266	Singlet-A 0.15562 0.27412 0.16369 0.60070	2.2888 eV	541.70 nm	f = 0.0002
Excited State 44: 263 ->270	Singlet-A 0.70689	2.3089 eV	536.98 nm	f = 0.0000
Excited State 45: 255 ->266 256 ->266 257 ->266	Singlet-A 0.11868 0.64388 -0.24990	2.3198 eV	534.47 nm	f = 0.0000
Excited State 46: 263 ->272	Singlet-A 0.70589	2.3248 eV	533.31 nm	f = 0.0000
Excited State 47: 240 ->265 241 ->265 248 ->267 249 ->267 254 ->267 255 ->267 255 ->267	Singlet-A 0.40028 -0.37331 -0.15004 0.17893 0.11739 0.15386 0.16185	2.3263 eV	532.97 nm	f = 0.0073
Excited State 48: 240 ->265 241 ->265 248 ->267 249 ->267 251 ->267 254 ->267 255 ->267 256 ->267 257 ->267	Singlet-A -0.25254 0.23607 -0.23614 0.28180 0.12647 0.18509 0.24208 0.25436 0.12153	2.3264 eV	532.95 nm	f = 0.0014

Excited State 49: 254 ->266 255 ->266 256 ->266 257 ->266	Singlet-A 0.29684 0.51614 -0.21473 -0.25153	2.3435 eV	529.07 nm	f = 0.0009
Excited State 50: 256 ->267 257 ->267 259 ->268 260 ->268	Singlet-A 0.31592 -0.11105 0.56633 -0.20212	2.3467 eV	528.32 nm	f = 0.0002
Excited State 51: 248 ->267 249 ->267 255 ->267 256 ->267 257 ->267 259 ->268 260 ->268	Singlet-A 0.10073 -0.11567 -0.16673 0.50919 -0.21761 -0.32791 0.11730	2.3485 eV	527.94 nm	f = 0.0020
Excited State 52: 252 ->266 253 ->266 254 ->266 255 ->266	Singlet-A -0.22491 0.60101 -0.16635 0.22936	2.4067 eV	515.17 nm	f = 0.0001
Excited State 53: 246 ->267 248 ->267 253 ->267 254 ->267 255 ->267 257 ->267	Singlet-A -0.28873 0.11870 0.33710 0.14745 -0.16984 0.45657	2.4252 eV	511.23 nm	f = 0.0029
Excited State 54: 246 ->267 247 ->267 249 ->267 253 ->267 253 ->267 254 ->267 255 ->267 256 ->267 257 ->267	Singlet-A 0.34421 -0.12375 -0.12840 -0.21462 0.17809 -0.32273 0.25700 0.18014 0.21326	2.4345 eV	509.27 nm	f = 0.0025
Excited State 55: 259 ->268 260 ->268	Singlet-A 0.23656 0.66614	2.4349 eV	509.21 nm	f = 0.0000
Excited State 56: 256 ->271	Singlet-A 0.66329	2.4414 eV	507.84 nm	f = 0.0009

257 ->271	-0.15568			
Excited State 57:	Singlet-A	2.4474 eV	506.61 nm	f = 0.0000
264 ->278	0.70377			
Excited State 58:	Singlet-A	2.4476 eV	506.56 nm	f = 0.0047
246 ->267	-0.14323			
247 ->267	-0.21541			
249 ->267	0.14871			
252 ->267	-0.14510			
253 ->267	0.45677			
257 ->267	-0.36161			
Excited State 59:	Singlet-A	2.4491 eV	506.25 nm	f = 0.0000
263 ->273	0.67079			
263 ->274	-0.22162			
Excited State 60:	Singlet-A	2.4494 eV	506.18 nm	f = 0.0000
253 ->266	0.25511			
254 ->266	0.58806			
255 ->266	-0.29075			
Excited State 61:	Singlet-A	2.4571 eV	504.59 nm	f = 0.0183
237 ->265	-0.28835			
238 ->265	0.44005			
240 ->265	0.13743			
242 ->265	-0.10838			
243 ->265	0.12936			
245 ->265	-0.20192			
248 ->265	-0.20387			
249 ->265	-0.13741			
251 ->265	-0.10672			
Excited State 62:	Singlet-A	2.4778 eV	500.37 nm	f = 0.0053
264 ->277	0.48167			
264 ->279	0.51430			
Excited State 63:	Singlet-A	2.4821 eV	499.52 nm	f = 0.0006
246 ->267	-0.36317			
247 ->267	0.20847			
248 ->267	0.12110			
251 ->267	-0.12623			
252 ->267	0.12418			
254 ->267	-0.22716			
255 ->267	0.44188			
Excited State 64:	Singlet-A	2.5056 eV	494.82 nm	f = 0.0000
258 ->268	0.70052			
Excited State 65:	Singlet-A	2.5122 eV	493.54 nm	f = 0.0008
246 ->267	0.15627			
248 ->267	0.13414			
249 ->267	-0.16594			

253 ->267 254 ->267 255 ->267 257 ->267 264 ->277 264 ->279	0.14354 0.42455 0.20227 -0.13781 0.25991 -0.24071			
Excited State 66: 254 ->267 255 ->267 264 ->277 264 ->279	Singlet-A -0.24723 -0.11894 0.44593 -0.41751	2.5123 eV	493.51 nm	f = 0.0030
Excited State 67: 263 ->273 263 ->274	Singlet-A 0.22159 0.67102	2.5205 eV	491.90 nm	f = 0.0000
Excited State 68: 252 ->266 253 ->266	Singlet-A 0.64995 0.24770	2.5525 eV	485.73 nm	f = 0.0002
Excited State 69: 246 ->267 247 ->267 248 ->267 249 ->267 249 ->268 252 ->267 253 ->267 254 ->267 255 ->268 256 ->268	Singlet-A 0.19534 0.39469 -0.10805 0.12454 -0.10624 0.21902 0.30200 -0.12189 -0.14954 -0.12819 -0.11034	2.5565 eV	484.98 nm	f = 0.0057
Excited State 70: 256 ->268 257 ->268	Singlet-A 0.67218 -0.15714	2.5673 eV	482.94 nm	f = 0.0011
Excited State 71: 235 ->265 237 ->265 238 ->265 248 ->265 249 ->265 251 ->265	Singlet-A -0.10605 -0.18940 0.18254 0.24440 0.35316 0.44863	2.5698 eV	482.47 nm	f = 0.0021
Excited State 72: 252 ->271 254 ->271 255 ->271 261 ->271	Singlet-A -0.18074 0.44493 -0.25537 -0.39341	2.5854 eV	479.56 nm	f = 0.0038
Excited State 73:	Singlet-A	2.5899 eV	478.73 nm	f = 0.0065

238 ->266 243 ->266 244 ->266 245 ->266 252 ->266	0.23086 -0.15220 0.51758 -0.24266 0.11326			
Excited State 74: 246 ->267 248 ->268 249 ->268 252 ->267 253 ->267 254 ->268 255 ->268 257 ->268	Singlet-A 0.12620 -0.11766 0.15030 0.35152 0.13065 0.19148 0.32617 0.34353	2.5979 eV	477.24 nm	f = 0.0024
Excited State 75: 263 ->275	Singlet-A 0.70678	2.6140 eV	474.31 nm	f = 0.0000
Excited State 76: 247 ->267 252 ->267 255 ->268 257 ->268	Singlet-A -0.36238 0.46176 -0.17296 -0.24976	2.6155 eV	474.03 nm	f = 0.0041
Excited State 77: 235 ->265 237 ->265 248 ->265 249 ->265 251 ->265 262 ->269	Singlet-A 0.10099 0.12415 -0.29623 -0.23793 0.51672 -0.12054	2.6336 eV	470.78 nm	f = 0.0008
Excited State 78: 261 ->269 262 ->269	Singlet-A 0.18028 0.66966	2.6345 eV	470.61 nm	f = 0.0001
Excited State 79: 247 ->267 247 ->268 252 ->268 253 ->268 254 ->268 257 ->268	Singlet-A -0.13919 -0.25890 -0.23110 0.50484 -0.13247 0.19077	2.6460 eV	468.57 nm	f = 0.0011
Excited State 80: 248 ->265 249 ->265 250 ->265	Singlet-A -0.40056 0.45423 -0.29786	2.6586 eV	466.35 nm	f = 0.0004
Excited State 81: 261 ->269 262 ->269	Singlet-A 0.67596 -0.17362	2.6625 eV	465.67 nm	f = 0.0002

Excited State 82: 248 ->265 249 ->265 250 ->265	Singlet-A -0.11465 0.28651 0.63136	2.6630 eV	465.59 nm	f = 0.0000
Excited State 83: 247 ->268 254 ->268 255 ->268 257 ->268	Singlet-A -0.12397 -0.25580 0.46341 -0.39253	2.6667 eV	464.94 nm	f = 0.0016
Excited State 84: 263 ->276	Singlet-A 0.70642	2.6685 eV	464.62 nm	f = 0.0000
Excited State 85: 247 ->268 248 ->268 249 ->268 253 ->268 254 ->268 255 ->268 256 ->268 257 ->268	Singlet-A -0.14582 -0.10457 0.14289 0.20683 0.51561 -0.11558 -0.10331 -0.30053	2.6900 eV	460.91 nm	f = 0.0021
Excited State 86: 252 ->271 253 ->271 255 ->271 261 ->271 262 ->271	Singlet-A -0.26088 -0.15551 0.10144 0.10495 0.60057	2.7074 eV	457.95 nm	f = 0.0063
Excited State 87: 229 ->265 231 ->265 233 ->265 235 ->265 237 ->265 238 ->266 240 ->266 241 ->266 241 ->265 247 ->265 248 ->265	Singlet-A 0.17061 0.19680 -0.13805 0.18365 0.15243 -0.11363 -0.22261 0.15682 -0.29337 -0.15868 0.31851	2.7128 eV	457.03 nm	f = 0.0013
Excited State 88: 252 ->271 253 ->271 254 ->273 261 ->271 262 ->271	Singlet-A 0.39957 0.22170 0.11212 -0.34293 0.33387	2.7194 eV	455.92 nm	f = 0.0088
Excited State 89:	Singlet-A	2.7204 eV	455.75 nm	f = 0.0001

261 ->270 262 ->270	$0.17660 \\ 0.67548$			
Excited State 90: 261 ->272 262 ->272	Singlet-A 0.17735 0.66718	2.7347 eV	453.37 nm	f = 0.0001
Excited State 91: 247 ->268 251 ->268 252 ->268 253 ->268 255 ->268	Singlet-A 0.49880 -0.11559 0.10727 0.37975 0.12737	2.7396 eV	452.57 nm	f = 0.0011
Excited State 92: 240 ->266 241 ->266 247 ->265 261 ->270 262 ->270	Singlet-A 0.23385 -0.18523 -0.18484 0.55203 -0.12240	2.7474 eV	451.27 nm	f = 0.0025
Excited State 93: 240 ->266 241 ->266 245 ->265 247 ->265 261 ->270 262 ->270	Singlet-A -0.28719 0.21809 0.11028 0.38802 0.37754 -0.11096	2.7525 eV	450.44 nm	f = 0.0085
Excited State 94: 240 ->266 241 ->266 245 ->265 247 ->265 261 ->270 261 ->272	Singlet-A 0.17561 -0.18076 -0.10039 0.39506 -0.10344 0.41671	2.7625 eV	448.81 nm	f = 0.0070
Excited State 95: 240 ->266 241 ->266 245 ->265 247 ->265 261 ->272 262 ->272	Singlet-A -0.17035 0.13407 0.11748 -0.32413 0.50419 -0.13863	2.7637 eV	448.62 nm	f = 0.0038
Excited State 96: 252 ->271 254 ->271 255 ->271 261 ->271 261 ->278 262 ->278 262 ->279	Singlet-A 0.12060 0.12800 -0.10537 0.14424 0.46581 -0.33149 0.15933	2.7711 eV	447.42 nm	f = 0.0041

Excited State 97:	Singlet-A	2.7743 eV	446.90 nm	f = 0.0018
248 ->268	-0.28337			
249 ->268	0 33717			
251 ->268	0 14039			
251 > 200 252 > 268	0.14039			
252 = 208	0.20019			
253 ->268	0.14190			
254 ->268	-0.27076			
255 ->268	-0.24923			
Excited State 98:	Singlet-A	2.7750 eV	446.80 nm	f = 0.0180
237 ->266	-0 26166			
238 ->266	0 34320			
230 + 200	0.15883			
241 = 200 242 > 266	0.13003			
243 -> 200	0.23130			
244 ->266	-0.23080			
245 ->265	-0.10661			
247 ->265	0.10894			
248 ->266	-0.15329			
249 ->266	-0.11564			
261 ->272	0 12511			
_01 _/_	0.12011			
Excited State 99:	Singlet-A	2.7809 eV	445.85 nm	f = 0.0037
252 ->271	0 18576			
252 + 271 253 ->271	0.15810			
253 - 271	0.13810			
254 ->2/1	0.29495			
255 ->2/1	-0.23324			
261 ->271	0.42221			
261 ->278	-0.20728			
262 ->278	0.19267			
E	Circalat A	2 7047 -14	112 (2	f = 0.0028
Exclude State 100. $2(1 \ge 270)$	Singlet-A	2./94/ev	443.03 mm	1 - 0.0028
261 ->2/9	0.22203			
262 ->278	0.25032			
262 ->279	0.57435			
Excited State 101:	Singlet-A	2.8059 eV	441.87 nm	f = 0.0062
246 ->268	-0 30601			
247 ->268	-0.21905			
247 > 200 252 > 268	0.54227			
252 208	0.34227			
Excited State 102.	Singlet-A	2 8127 eV	440 80 nm	f = 0.0000
264 ->280	0 70677	2.0127 07	110.00 IIII	1 0.0000
204 -> 200	0.70077			
Excited State 103	Singlet_A	2 8176 eV	110 03 nm	f = 0.0001
246 > 265	0 (0920	2.0170 CV	440.05 mm	1 - 0.0001
240 ->203	0.09839			
Excited State 104	Singlet A	2 8204 AV	130 60 nm	f = 0.0005
Exclice State 104. $250 > 260$	o cono	2.0204 CV	₩J9.00 IIII	1 - 0.0003
259 ->269	0.65019			
260 ->269	-0.22417			
E		2 9 40 6 . 37	126 19	f = 0.0121
Excited State 105:	Singlet-A	2.8406 eV	430.48 nm	1 = 0.0121
252 ->2/1	0.15257			

252 ->273	-0.19835			
253 ->273	-0.15289			
254 ->273	-0.26669			
255 ->273	0.20998			
256 ->273	0.23311			
261 ->273	0.34375			
261 ->274	-0.11327			
201 271	0.1102/			
Excited State 106:	Singlet-A	2.8552 eV	434.23 nm	f = 0.0021
235 ->266	-0 11191			
237 ->266	-0 19544			
238 ->266	0.16926			
$250 \neq 200$ $245 \Rightarrow 265$	-0.12964			
243 -> 203	0.12704			
248 -> 200	0.27100			
249 - 200	0.34722			
251 ->200	0.41538			
Excited State 107:	Singlet A	2 8605 eV	133 13 nm	f = 0.0108
220 \267	0 22550	2.8005 CV	433.43 IIII	1 - 0.0108
239 - 207	0.55550			
240 ->207	0.10104			
242 ->267	-0.1/128			
246 ->268	-0.23525			
249 ->268	0.16/86			
251 ->267	0.33643			
252 ->268	-0.19309			
E 1 1 0 1 100	C: 1 / A	0.0(00 M	422.16	6 0 0 0 0 0 5
Excited State 108:	Singlet-A	2.8623 eV	433.16 nm	f = 0.0025
229 ->265	0.16712			
231 ->265	0.16810			
233 ->265	-0.11075			
235 ->265	0.14575			
242 ->265	-0.14166			
243 ->265	0.12873			
244 ->265	0.19558			
245 ->265	0.47919			
Excited State 109:	Singlet-A	2.8665 eV	432.52 nm	f = 0.0004
261 ->279	-0.20565			
263 ->278	0.65504			
Excited State 110:	Singlet-A	2.8800 eV	430.50 nm	f = 0.0176
239 ->267	0.11889			
246 ->268	0.45378			
247 ->268	-0.12172			
249 ->268	-0.13361			
251 ->267	0.34663			
251 ->268	0 10573			
252 ->268	0.19988			
	,			
Excited State 111:	Singlet-A	2.8909 eV	428.88 nm	f = 0.0020
261 ->279	0.22391		-	
263 ->277	0.34967			
263 ->279	0.55390			

Excited State 112: 264 ->281	Singlet-A 0.70636	2.8975 eV	427.90 nm	f = 0.0000
Excited State 113: 251 ->271 252 ->273 254 ->273 255 ->273 256 ->273 256 ->274 261 ->273	Singlet-A -0.17132 -0.11495 0.19527 -0.12622 0.45786 -0.16488 -0.22398	2.9012 eV	427.36 nm	f = 0.0133
Excited State 114: 259 ->270 259 ->272 260 ->270 261 ->279	Singlet-A 0.60991 0.11861 -0.21005 -0.13261	2.9056 eV	426.71 nm	f = 0.0018
Excited State 115: 259 ->270 259 ->272 259 ->278 261 ->278 261 ->279 262 ->279 263 ->277 263 ->278 263 ->279	Singlet-A 0.20623 -0.13499 -0.15231 -0.13580 0.46066 -0.13792 -0.17386 0.21565 -0.14032	2.9095 eV	426.14 nm	f = 0.0055
Excited State 116: 251 ->266 259 ->272 260 ->272 261 ->279	Singlet-A -0.18127 0.58010 -0.19967 0.13127	2.9206 eV	424.52 nm	f = 0.0006
Excited State 117: 237 ->266 248 ->266 249 ->266 251 ->266 259 ->272	Singlet-A 0.10292 -0.29466 -0.19625 0.51019 0.20999	2.9238 eV	424.05 nm	f = 0.0015
Excited State 118: 261 ->273 261 ->274 262 ->273 262 ->274	Singlet-A 0.19458 0.50528 -0.17720 -0.37046	2.9295 eV	423.23 nm	f = 0.0002
Excited State 119: 259 ->271 263 ->277 263 ->279	Singlet-A -0.10567 0.57022 -0.37075	2.9324 eV	422.81 nm	f = 0.0003

Excited State 120: 261 ->273 261 ->274 262 ->273 262 ->274	Singlet-A 0.13354 0.40143 0.22130 0.49450	2.9377 eV	422.04 nm	f = 0.0010
Excited State 121: 259 ->271 260 ->271 262 ->274 263 ->279	Singlet-A 0.57392 -0.32522 -0.10016 -0.10349	2.9399 eV	421.73 nm	f = 0.0025
Excited State 122: 236 ->267 239 ->267 240 ->267 241 ->267 242 ->267 246 ->267 246 ->268 249 ->267 251 ->267 262 ->273	Singlet-A -0.10235 -0.31859 -0.10599 -0.10005 0.16474 -0.11101 -0.10268 -0.23920 0.35193 -0.26477	2.9485 eV	420.50 nm	f = 0.0021
Excited State 123: 259 ->271 260 ->271	Singlet-A 0.33123 0.62016	2.9494 eV	420.37 nm	f = 0.0001
Excited State 124: 248 ->266 249 ->266 250 ->266	Singlet-A -0.38869 0.47462 -0.28630	2.9500 eV	420.29 nm	f = 0.0015
Excited State 125: 239 ->267 249 ->267 251 ->267 261 ->273 261 ->274 262 ->273 262 ->274	Singlet-A -0.13883 -0.10557 0.15149 -0.12463 0.10976 0.53061 -0.25938	2.9515 eV	420.07 nm	f = 0.0075
Excited State 126: 248 ->266 249 ->266 250 ->266	Singlet-A -0.10205 0.27842 0.63789	2.9548 eV	419.61 nm	f = 0.0000
Excited State 127: 259 ->269 260 ->269	Singlet-A 0.22917 0.66885	2.9644 eV	418.25 nm	f = 0.0000
Excited State 128:	Singlet-A	2.9670 eV	417.88 nm	f = 0.0066

252 ->273 259 ->271 259 ->278 259 ->279 260 ->278 261 ->278 261 ->278 262 ->278 262 ->279	-0.15202 -0.11376 0.32336 0.20247 -0.10998 -0.14279 -0.29231 -0.29488 0.11480			
Excited State 129: 252 ->273 252 ->274 253 ->273 256 ->273 259 ->278 261 ->273 261 ->274 262 ->273 262 ->274	Singlet-A 0.38056 -0.13789 0.23492 0.15223 0.14669 0.25901 -0.12215 0.21693 -0.10499	2.9738 eV	416.92 nm	f = 0.0109
Excited State 130: 264 ->282	Singlet-A 0.70679	2.9765 eV	416.54 nm	f = 0.0000
Excited State 131: 229 ->265 231 ->265 238 ->265 243 ->265 244 ->265	Singlet-A -0.11574 -0.12073 -0.14769 0.58500 0.23574	2.9931 eV	414.23 nm	f = 0.0003
Excited State 132: 259 ->278 259 ->279 260 ->278 261 ->278 261 ->279 262 ->278 262 ->278 262 ->279 263 ->279	Singlet-A 0.33888 0.20307 -0.11538 0.22991 0.18878 0.31214 -0.21992 -0.10217	3.0009 eV	413.16 nm	f = 0.0215
Excited State 133: 231 ->266 239 ->267 245 ->266 247 ->266 248 ->266 248 ->267 249 ->267 251 ->267	Singlet-A 0.10099 -0.11255 -0.18662 -0.11150 0.16342 0.45163 0.31773 0.12316	3.0104 eV	411.86 nm	f = 0.0013
Excited State 134: 229 ->266	Singlet-A -0.13527	3.0105 eV	411.84 nm	f = 0.0013

231 ->266	-0.15773			
233 ->266	0.11161			
235 ->266	-0.14628			
237 ->266	-0.11450			
242 ->265	0 14172			
245 ->266	0 29170			
243 = 200 247 > 266	0.27170			
247 - 200	0.17492			
248 ->266	-0.25498			
248 ->26/	0.28893			
249 ->267	0.20279			
Excited State 135:	Singlet-A	3.0193 eV	410.64 nm	f = 0.0000
258 ->271	0.70587			
Excited State 136:	Singlet-A	3.0255 eV	409.79 nm	f = 0.0006
229 ->265	0.12832			
231 ->265	0.15085			
238 ->265	0.17306			
239 ->265	0.16505			
240 ->265	-0.21662			
241 ->265	-0 18120			
242 ->265	0 49521			
242 > 265	-0 11682			
243 -> 200	-0.11082			
Excited State 137:	Singlet-A	3.0270 eV	409.59 nm	f = 0.0001
261 ->275	0 52849			
262 ->275	-0.43360			
202 - 215	0.45500			
Excited State 138	Singlet-A	3 0346 eV	408 57 nm	f = 0.0032
252 ->273	0 17179	5.05 10 01	100.07 1111	1 0.0052
252 -> 273	-0.25236			
254 -> 275	-0.23230			
255 - 275	0.13371			
201 - 2/3	-0.2/1/0			
261 ->2/4	0.10/99			
261 ->275	0.24020			
262 ->275	0.41754			
Excited State 139	Singlet-A	3 0351 eV	408 51 nm	f = 0.0000
258 ->269	0 70442	0.000101	100.01 1111	1 0.0000
250 -> 20)	0.70442			
Excited State 140	Singlet-A	3 0378 eV	408 14 nm	f = 0.0039
252 ->273	-0 15054	5.0570 01	100.1111	1 0.00000
252 + 273 254 ->273	0.13034			
254 -> 275	0.23027			
255 - 275	-0.12900			
261 ->2/3	0.25405			
261 ->275	0.38709			
262 ->275	0.34898			
Excited State 141	Singlet-A	3 0524 eV	406 18 nm	f = 0.0000
261. \222	0 70685	J.0524 CV	-100.10 IIII	1 0.0000
204 203	0.70085			
Excited State 142	Singlet-A	3.0525 eV	406 17 nm	f = 0.0006
245 ->266	-0.10217	2.002001		- 0.0000
	~··· / / · /			

247 ->266 248 ->266	0.65512 0.11817			
Excited State 143: 259 ->270 260 ->270	Singlet-A 0.22900 0.66823	3.0534 eV	406.05 nm	f = 0.0000
Excited State 144: 259 ->272 260 ->272	Singlet-A 0.22878 0.66895	3.0693 eV	403.95 nm	f = 0.0000
Excited State 145: 250 ->267	Singlet-A 0.69946	3.0726 eV	403.52 nm	f = 0.0000
Excited State 146: 239 ->268 242 ->268 251 ->268 261 ->276 262 ->276	Singlet-A 0.27706 -0.13807 0.29968 0.41830 -0.27031	3.0820 eV	402.28 nm	f = 0.0020
Excited State 147: 239 ->268 242 ->268 247 ->268 251 ->268 261 ->276 262 ->276	Singlet-A 0.27309 -0.13665 0.10109 0.30722 -0.30735 0.38762	3.0836 eV	402.07 nm	f = 0.0009
Excited State 148: 261 ->276 262 ->276	Singlet-A 0.46374 0.51115	3.0916 eV	401.04 nm	f = 0.0014
Excited State 149: 246 ->266	Singlet-A 0.69832	3.1097 eV	398.70 nm	f = 0.0001
Excited State 150: 249 ->271 251 ->271 252 ->273 255 ->271 256 ->273	Singlet-A -0.21435 0.54801 -0.11234 -0.16079 0.13016	3.1213 eV	397.22 nm	f = 0.0106
Excited State 151: 237 ->265 238 ->265 239 ->265 240 ->265 241 ->265 242 ->265	Singlet-A -0.14423 -0.17596 -0.20435 0.30420 0.38221 0.38749	3.1238 eV	396.91 nm	f = 0.0000
Excited State 152: 258 ->270	Singlet-A 0.70409	3.1241 eV	396.86 nm	f = 0.0000

Excited State 153: 229 ->265 231 ->265 235 ->265 237 ->265 238 ->265 240 ->265 241 ->265 242 ->265	Singlet-A -0.11227 -0.10552 -0.12820 0.47924 0.33067 0.15470 0.17820 0.13586	3.1354 eV	395.44 nm	f = 0.0002
Excited State 154: 258 ->272	Singlet-A 0.70419	3.1400 eV	394.85 nm	f = 0.0000
Excited State 155: 229 ->266 231 ->266 233 ->266 235 ->266 241 ->266 242 ->266 243 ->266 244 ->266 245 ->266	Singlet-A 0.16302 0.16305 -0.10754 0.14040 0.12833 -0.14504 0.12761 0.20565 0.48503	3.1523 eV	393.31 nm	f = 0.0011
Excited State 156: 236 ->268 239 ->268 240 ->268 241 ->268 242 ->268 246 ->268 246 ->268 249 ->268 251 ->268	Singlet-A -0.10527 -0.33543 -0.11292 -0.10651 0.17498 -0.11671 -0.24807 0.44836	3.1595 eV	392.42 nm	f = 0.0081
Excited State 157: 254 ->269 255 ->269 256 ->269 257 ->269	Singlet-A 0.15183 0.26839 0.16267 0.60195	3.1657 eV	391.65 nm	f = 0.0001
Excited State 158: 253 ->278 257 ->271 259 ->274 259 ->278 259 ->279 260 ->279	Singlet-A 0.14923 -0.10081 0.17533 -0.29180 0.47921 -0.16257	3.1676 eV	391.41 nm	f = 0.0133
Excited State 159: 256 ->271 257 ->271	Singlet-A 0.15600 0.66118	3.1711 eV	390.98 nm	f = 0.0006

Excited State 160: 237 ->265 239 ->265 240 ->265 241 ->265 259 ->274	Singlet-A -0.10548 0.60452 0.17460 0.18033 -0.13572	3.1724 eV	390.83 nm	f = 0.0003
Excited State 161: 239 ->265 259 ->273 259 ->274 260 ->273 260 ->274	Singlet-A 0.16428 0.32368 0.52092 -0.12593 -0.18197	3.1724 eV	390.82 nm	f = 0.0009
Excited State 162: 259 ->273 259 ->274 260 ->273 260 ->274	Singlet-A 0.50718 -0.30305 -0.31187 0.15171	3.1847 eV	389.31 nm	f = 0.0009
Excited State 163: 259 ->273 259 ->274 260 ->273 260 ->274	Singlet-A 0.32962 -0.12513 0.58257 -0.18661	3.1930 eV	388.30 nm	f = 0.0000
Excited State 164: 255 ->269 256 ->269 257 ->269	Singlet-A 0.11274 0.65216 -0.24038	3.1959 eV	387.94 nm	f = 0.0000
Excited State 165: 202 ->265 210 ->265 211 ->265 214 ->265 215 ->265 217 ->265 220 ->265 239 ->265 244 ->272	Singlet-A -0.10442 0.12607 0.10023 0.21519 0.23714 0.41940 0.19490 0.12247 0.10478	3.2131 eV	385.87 nm	f = 0.0007
Excited State 166: 264 ->284	Singlet-A 0.70486	3.2133 eV	385.85 nm	f = 0.0000
Excited State 167: 254 ->269 255 ->269 256 ->269 257 ->269	Singlet-A 0.29959 0.51791 -0.21513 -0.25820	3.2197 eV	385.08 nm	f = 0.0000
Excited State 168: 239 ->268	Singlet-A -0.12563	3.2279 eV	384.11 nm	f = 0.0003

248 ->268 249 ->268 251 ->268	0.54338 0.37427 0.13717			
Excited State 169: 263 ->280	Singlet-A 0.70673	3.2376 eV	382.95 nm	f = 0.0000
Excited State 170: 254 ->270 255 ->270 256 ->270 257 ->270	Singlet-A 0.16009 0.28270 0.16493 0.59612	3.2535 eV	381.07 nm	f = 0.0002
Excited State 171: 258 ->273 258 ->274	Singlet-A 0.66994 -0.22169	3.2628 eV	379.99 nm	f = 0.0000
Excited State 172: 259 ->274 260 ->273 260 ->274	Singlet-A 0.22336 0.20879 0.63199	3.2642 eV	379.83 nm	f = 0.0000
Excited State 173: 245 ->267 259 ->275	Singlet-A 0.65913 0.11300	3.2669 eV	379.51 nm	f = 0.0000
Excited State 174: 252 ->271 253 ->271 254 ->271 255 ->271 257 ->271	Singlet-A -0.12986 0.39876 0.26281 0.46588 -0.11883	3.2686 eV	379.31 nm	f = 0.0112
Excited State 175: 254 ->272 255 ->272 256 ->272 257 ->272 259 ->275	Singlet-A 0.15084 0.26592 0.15319 0.54902 0.23530	3.2690 eV	379.27 nm	f = 0.0003
Excited State 176: 245 ->267 255 ->272 257 ->272 259 ->275 260 ->275	Singlet-A -0.11400 -0.10468 -0.21595 0.59816 -0.21339	3.2691 eV	379.27 nm	f = 0.0001
Excited State 177: 243 ->266 252 ->269 253 ->269 254 ->269 255 ->269	Singlet-A -0.24044 -0.20428 0.54595 -0.15208 0.21766	3.2829 eV	377.67 nm	f = 0.0001

Excited State 178: 229 ->266 231 ->266 238 ->266 243 ->266 244 ->266 253 ->269 256 ->270	Singlet-A -0.10358 -0.10860 -0.13585 0.51887 0.20642 0.23974 0.17145	3.2847 eV	377.46 nm	f = 0.0003
Excited State 179: 243 ->266 255 ->270 256 ->270 257 ->270	Singlet-A -0.15966 0.11556 0.62107 -0.23755	3.2854 eV	377.38 nm	f = 0.0000
Excited State 180: 250 ->268	Singlet-A 0.69954	3.2907 eV	376.77 nm	f = 0.0000
Excited State 181: 255 ->272 256 ->272 257 ->272	Singlet-A 0.12307 0.64085 -0.25785	3.3006 eV	375.64 nm	f = 0.0001
Excited State 182: 251 ->271 252 ->271 253 ->271 254 ->271 255 ->271	Singlet-A -0.14154 -0.32162 0.43021 -0.28501 -0.27917	3.3021 eV	375.47 nm	f = 0.0020
Excited State 183: 254 ->270 255 ->270 256 ->270 257 ->270	Singlet-A 0.29568 0.50798 -0.23533 -0.26313	3.3071 eV	374.91 nm	f = 0.0003
Excited State 184: 221 ->267 239 ->267 240 ->267 241 ->267 242 ->267 243 ->267 243 ->267 244 ->267 245 ->267 259 ->276	Singlet-A 0.16602 0.11048 -0.11057 -0.14019 0.26611 0.41670 0.29135 0.12440 0.13984	3.3086 eV	374.73 nm	f = 0.0002
Excited State 185: 236 ->265	Singlet-A 0.69362	3.3110 eV	374.46 nm	f = 0.0000
Excited State 186: 229 ->266	Singlet-A 0.12101	3.3134 eV	374.19 nm	f = 0.0005

231 ->266 238 ->266 239 ->266 240 ->266 241 ->266 242 ->266	0.14452 0.16704 0.17510 -0.23363 -0.19153 0.51649			
Excited State 187: 253 ->272 254 ->272 255 ->272 256 ->272 257 ->272	Singlet-A -0.10438 0.29130 0.49581 -0.24053 -0.26907	3.3218 eV	373.25 nm	f = 0.0009
Excited State 188: 263 ->281	Singlet-A 0.70631	3.3237 eV	373.03 nm	f = 0.0000
Excited State 189: 259 ->276 260 ->276	Singlet-A 0.63837 -0.22797	3.3249 eV	372.90 nm	f = 0.0000
Excited State 190: 253 ->269 254 ->269 255 ->269	Singlet-A 0.25739 0.58787 -0.28951	3.3255 eV	372.83 nm	f = 0.0000
Excited State 191: 264 ->285	Singlet-A 0.70338	3.3296 eV	372.37 nm	f = 0.0001
Excited State 192: 258 ->273 258 ->274	Singlet-A 0.22072 0.66778	3.3349 eV	371.77 nm	f = 0.0000
Excited State 193: 261 ->277 262 ->277	Singlet-A 0.18937 0.67190	3.3452 eV	370.63 nm	f = 0.0000
Excited State 194: 229 ->265 231 ->265 232 ->265 233 ->265 235 ->265 238 ->265	Singlet-A -0.16019 -0.17195 0.16510 0.15909 0.54595 0.14775	3.3505 eV	370.04 nm	f=0.0004
Excited State 195: 249 ->273 251 ->271 251 ->273 251 ->274 254 ->273 255 ->273	Singlet-A -0.21133 0.10367 0.53263 -0.18924 -0.12407 -0.11929	3.3558 eV	369.46 nm	f=0.0022

Excited State 196: 259 ->275 260 ->275	Singlet-A 0.23644 0.66621	3.3576 eV	369.26 nm	f = 0.0000
Excited State 197: 252 ->270 253 ->270 254 ->270 255 ->270	Singlet-A -0.22380 0.59599 -0.15751 0.22801	3.3704 eV	367.86 nm	f = 0.0003
Excited State 198: 261 ->277 262 ->277	Singlet-A 0.66148 -0.17952	3.3713 eV	367.77 nm	f = 0.0001
Excited State 199: 221 ->267 243 ->267 244 ->267 248 ->274 249 ->274 251 ->274 254 ->274 255 ->273 255 ->274 257 ->274	Singlet-A -0.19755 0.24085 0.16894 -0.21234 0.23220 0.13436 0.14054 0.10139 0.26370 0.15211	3.3786 eV	366.96 nm	f = 0.0009
Excited State 200: 252 ->272 253 ->272 253 ->278 254 ->272 255 ->272	Singlet-A -0.21037 0.55880 0.11579 -0.13885 0.22087	3.3835 eV	366.44 nm	f=0.0013

Orbital coefficients of atoms corresponding to Peak 1 in the absorption spectrum of 1

Peak 1: 238 → 265

			238 (HOMO-26)
24	S	1S	0.00646
		2S	0.02232
		3PX	-0.09526
		3PY	0.15244
		3PZ	-0.09779
		4PX	-0.10099
		4PY	0.15328
27	S	1S	0.02383
		2S	0.03833
		3PX	-0.10996
		3PY	-0.16137
		3PZ	0.01627
		4PX	-0.10975
		4PY	-0.15991
		4PZ	0.00753
28	S	1S	-0.01106
		2S	-0.02854
		3PX	0.15470
		3PY	0.07661
		3PZ	0.04172
		4PX	0.15678
		4PY	0.07756
		4PZ	0.03960
			265 (LUMO)
2	w	19	205 (LUMO)
3	vv	15	-0.00229
		25	-0.00312
		33 4DV	-0.03402
		4PA 4DV	-0.01411
		4P I 4D7	0.00778
		4PZ 5DV	-0.00000
		JFA 5DV	0.03073
		SP I SDZ	-0.00240
		JFZ 6DV	-0.00001
		OFA 6DV	-0.01/90
		0F 1 6D7	0.05209
			-0.01370
		7D 0 7D+1	-0.22634
		7D+1 7D-1	0.24612
		7D-1 7D±2	0.45121
		7D-2	_0.20200
		8D0	-0.29010
		0DU 8D⊥1	-0.09/04
		00⊤1 1 סט	0.09//9
		8D+7	0.10337
		0D⊤2 פ סצ	0.1001
		0D-2	-0.12214

S	1S	-0.00746
	2S	-0.01600
	3PX	-0.05506
	3PY	0.07259
	3PZ	-0.09378
	4PX	-0.08178
	4PY	0.10416
	4PZ	-0.14200
S	1S	-0.02179
	2S	-0.04104
	3PX	0.11190
	3PY	0.07422
	3PZ	-0.05897
	4PX	0.16148
	4PY	0.11181
	4PZ	-0.07468
S	1S	-0.00513
	2S	-0.00587
	3PX	-0.10447
	3PY	-0.01617
	3PZ	0.07036
	4PX	-0.15710
	4PY	-0.02301
	4PZ	0.10543
S	1S	-0.01729
	2S	-0.03520
	3PX	0.03132
	3PY	-0.09702
	3PZ	0.06931
	4PX	0.04874
	4PY	-0.15452
	4PZ	0.10369
	S S S	 S 1S 2S 3PX 3PY 3PZ 4PX 4PY 4PZ S 1S 2S 3PX 3PY 3PZ 4PX 4PY 4PZ S 1S 2S 3PX 3PY 3PZ 4PX 4PY 4PZ S 1S 2S 3PX 3PY 3PZ 4PX 4PY 4PZ S 1S 2S 3PX 3PY 3PZ 4PX 4PY 4PZ S 1S 2S 3PX 3PY 3PZ 4PX 4PY 4PZ S 1S 2S 3PX 3PY 4PX 4PY 4PZ

.

Orbital coefficients of atoms corresponding to Peak 2 in the absorption spectrum of 1

Peak 2: $246 \rightarrow 268$

			246 (HOMO-18)
23	S	1S	0.00840
		2S	0.02404
		3PX	0.00226
		3PY	-0.03477
		3PZ	-0.21235
		4PX	0.00144
		4PY	-0.03713
		4PZ	-0.21432
25	S	1S	-0.01364
		2S	-0.02842
		3PX	-0.06054
		3PY	-0.20156
		3PZ	-0.03661
		4PX	-0.06794
		4PY	-0.20460
		4PZ	-0.03660
26	S	1S	0.00703
		2S	0.01308
		3PX	-0.02044
		3PY	0.02352
		3PZ	0.22933
		4PX	-0.02202
		4PY	0.02962
		4PZ	0.23336
30	S	1 S	-0.01259
		2S	-0.02306
		3PX	0.03702
		3PY	0.21889
		3PZ	-0.00600
		4PX	0.03320
		4PY	0.22124
		4PZ	-0.00659

268 (LUMO+3)

			()
2	W	1S	-0.00634
		2S	-0.01798
		3S	-0.09348
		4PX	-0.00467
		4PY	0.01779
		4PZ	-0.03081
		5PX	0.01640
		5PY	-0.02824
		5PZ	0.02325
		6PX	0.04564
		6PY	-0.07851
		6PZ	0.10040

		7D 0	0.01840
		7D+1	0.09248
		7D-1	0.66961
		7D+2	-0.26299
		7D-2	0.02472
		8D 0	-0.00216
		8D+1	0.03002
		8D-1	0.29643
		8D+2	-0.10430
		8D-2	0.00049
23	S	1S	-0.01030
		2S	-0.01779
		3PX	-0.03910
		3PY	0.03832
		3PZ	0.12933
		4PX	-0.06121
		4PY	0.07211
		4PZ	0.19250
25	S	1S	0.00068
		2S	0.00959
		3PX	-0.02179
		3PY	-0.16246
		3PZ	-0.03894
		4PX	-0.02993
		4PY	-0.23821
		4PZ	-0.07082
26	S	1S	-0.03400
		2S	-0.06177
		3PX	-0.04754
		3PY	-0.00564
		3PZ	-0.14085
		4PX	-0.07443
		4PY	-0.02465
		4PZ	-0.22911
30	S	1S	-0.02277
		2S	-0.04642
		3PX	0.09692
		3PY	0.12287
		3PZ	0.02258
		4PX	0.14965
		4PY	0.20636
		4PZ	0.03717

.....

Ground-1	to-excited-state	e transition el	ectric dipole r	noments (a.u.):
state	Х	Y	Z	Osc.
1	0.0161	0.0085	0.0064	0.0000
2	-0.0198	-0.0107	-0.0076	0.0000
3	-0.0014	0.0096	0.0015	0.0000
4	0.0066	0.0035	0.0027	0.0000
5	0.0005	-0.0046	-0.0005	0.0000
6	0.0023	0.0022	0.0007	0.0000
7	-0.0088	-0.0102	-0.0118	0.0000
8	0.0030	-0.0121	-0.0020	0.0000
9	0.0215	0.0153	0.0183	0.0000
10	0.0381	0.0180	0.0374	0.0001
11	-0.0006	0.0006	-0.0005	0.0000
12	-0.0062	-0.0020	0.0007	0.0000
13	0.0049	-0.0056	-0.0083	0.0000
14	-0.0098	-0.0002	-0.0089	0.0000
15	-0.0032	-0.0017	-0.0014	0.0000
16	0.0013	0.0006	0.0014	0.0000
17	-0.0039	-0.0014	-0.0027	0.0000
18	-0.0032	-0.0023	-0.0015	0.0000
19	0.1070	-0.1870	0.0037	0.0022
20	-0.0398	0.0827	-0.0291	0.0004
21	-0.0094	-0.0065	-0.0045	0.0000
22	-0.0379	0.0133	-0.0204	0.0001
23	0.0617	0.0270	0.0444	0.0003
24	-0.0028	0.0057	0.0084	0.0000
25	0.0194	0.0082	0.0123	0.0000
26	0.0743	0.0352	0.0587	0.0005
27	-0.0106	-0.0043	-0.0041	0.0000
28	-0.0002	-0.0053	-0.0011	0.0000
29	-0.0448	0.0791	-0.0369	0.0005
30	0.0467	-0.1165	0.0280	0.0009
31	-0.0332	-0.0348	-0.0481	0.0002
32	0.0543	-0.0888	-0.0056	0.0006
33	-0.0043	0.0013	0.0048	0.0000
34	0.0044	0.0001	0.0016	0.0000
35	0.0023	-0.0005	0.0012	0.0000
36	0.0031	-0.0035	-0.0053	0.0000
37	0.0018	-0.0013	0.0024	0.0000
38	0.0107	-0.0206	-0.2162	0.0026
39	0.0035	0.0007	-0.0020	0.0000
40	-0.0016	-0.0006	-0.0021	0.0000
41	0.0169	0.0098	-0.0077	0.0000
42	0.0076	-0.0226	0.0123	0.0000
43	-0.0495	-0.0106	-0.0306	0.0002
44	0.0056	0.0025	0.0025	0.0000
45	0.0052	-0.0109	-0.0083	0.0000
46	0.0111	-0.0094	-0.0003	0.0000
47	-0.2519	0.2481	-0.0497	0.0073
48	0.0608	0.1267	-0.0639	0.0014
49	-0.1141	0.0259	-0.0404	0.0009
50	-0.0224	-0.0296	0.0519	0.0002
51	-0.0004	-0.1391	0.1269	0.0020

52	0.0340	-0.0236	0.0198	0.0001
53	0.1598	-0.1459	-0.0417	0.0029
54	-0.0756	-0.1871	0.0347	0.0025
55	-0.0004	0.0021	-0.0016	0.0000
56	0.0484	-0.0026	-0.1112	0.0009
57	-0.0229	-0.0008	-0.0084	0.0000
58	0.1698	-0.1818	-0.1277	0.0047
59	-0.0003	0.0005	0.0029	0.0000
60	0.0070	0.0144	0.0089	0.0000
61	-0.3646	-0.3105	-0.2725	0.0183
62	-0.2111	-0.1742	-0.1146	0.0053
63	0.0332	0.0165	0.0963	0.0006
64	-0.0094	0.0174	-0.0068	0.0000
65	0.0257	0.0907	0.0671	0.0008
66	0.1766	0.1119	0.0696	0.0030
67	-0.0004	0.0009	0.0013	0.0000
68	-0.0427	0.0138	-0.0376	0 0002
69	-0.0371	0.2876	0.0785	0.0057
70	-0.0459	-0.0525	0 1 1 4 8	0.0011
71	0.0310	-0 1689	-0.0608	0.0021
72	0 1 5 4 9	0 1227	0 1454	0.0038
73	0 1434	-0.0617	0 2781	0.0065
74	-0.0214	-0 1302	0 1401	0.0024
75	-0.0015	0.0058	0.0050	0 0000
76	-0.0283	0.0252	-0 2495	0.0041
77	-0.0261	0.0959	0.0418	0 0008
78	-0.0308	0.0139	-0.0015	0.0001
79	0.0005	-0.0164	-0 1313	0.0011
80	-0.0327	0.0638	0.0202	0.0004
81	0.0452	0.0054	0.0163	0.0002
82	-0.0069	0.0132	0.0050	0.0000
83	-0.0874	-0.0798	0.1000	0.0016
84	0.0018	0.0000	-0.0027	0.0000
85	0.0794	-0.1129	0.1107	0.0021
86	0 1222	0 1872	-0 2131	0.0063
87	0.0982	0.0722	0.0693	0.0013
88	0.2396	-0 2722	-0.0005	0.0088
89	-0.0129	-0.0314	-0.0174	0.0001
90	0.0319	0.0254	0.0112	0 0001
91	0.0739	0.0914	-0.0558	0.0011
92	-0 1750	0.0803	0.0079	0.0025
93	0 3426	-0.0726	0.0547	0.0085
94	-0 3188	-0.0276	0.0370	0.0070
95	0.2066	-0.1062	0.0370	0.0038
96	0.1043	-0.1166	0 1901	0.0050
97	-0.0050	0.0110	0 1624	0.0018
98	0.2678	0.3246	-0 2970	0.0180
99	0 1551	-0 1009	0 1440	0.0037
100	0.0474	0.1913	-0.0395	0.0028
101	0.2516	-0.1445	-0.0792	0.0062
102	-0.0021	-0.0067	-0.0021	0.0000
103	-0.0241	0.0278	-0.0091	0.0001
104	0.0763	0.0333	0.0020	0.0005

105	-0.1289	-0.3504	0.1849	0.0121
106	-0.1290	0.0883	-0.0731	0.0021
107	-0.0522	-0.3483	0.1715	0.0108
108	-0.1225	0.1285	-0.0665	0.0025
109	-0.0015	0.0397	-0.0605	0.0004
110	-0.4984	0.0210	0.0339	0.0176
111	-0.0817	-0.1132	0.0971	0.0020
112	-0.0079	0.0027	0.0066	0.0000
113	-0.3189	0.1284	0.2637	0.0133
114	0.1037	0.1117	0.0396	0.0018
115	0.0773	-0.2452	0.1039	0.0055
116	-0.0832	-0.0302	-0.0085	0.0006
117	0.1283	-0.0564	0.0347	0.0015
118	-0.0278	-0.0326	-0.0280	0.0002
119	0.0532	-0.0141	-0.0324	0.0003
120	-0.0138	-0.1186	0.0003	0.0010
121	-0.1441	-0.0084	0.1207	0.0025
122	0.0714	-0.0493	0.1465	0.0021
123	-0.0155	-0.0029	0.0323	0.0001
124	0.1351	-0.0336	0.0387	0.0015
125	0.3170	0.0369	0.0477	0.0075
126	0.0252	-0.0035	0.0057	0.0000
127	0.0018	0.0010	0.0010	0.0000
128	-0.1755	-0.1448	-0.1965	0.0066
129	-0.3641	-0.1293	-0.0055	0.0109
130	-0.0075	-0.0058	-0.0039	0.0000
131	-0.0154	-0.0658	-0.0128	0.0003
132	0.3850	0.0760	0.3713	0.0215
133	0.1288	0.0075	-0.0230	0.0013
134	-0.0817	0.0956	0.0356	0.0013
135	0.0012	0.0020	0.0206	0.0000
136	0.0861	0.0331	0.0060	0.0006
137	-0.0157	0.0049	0.0375	0.0001
138	-0.1599	-0.1295	0.0237	0.0032
139	-0.0032	-0.0003	-0.0001	0.0000
140	0.0539	0.2208	0.0182	0.0039
141	-0.0035	0.0108	0.0166	0.0000
142	0.0854	-0.0238	0.0016	0.0006
143	0.0057	-0.0017	0.0001	0.0000
144	-0.0033	-0.0020	-0.0027	0.0000
145	0.0014	0.0012	-0.0036	0.0000
146	0.0690	-0.1391	0.0488	0.0020
147	0.0820	-0.0593	0.0444	0.0009
148	-0.1044	0.0809	-0.0353	0.0014
149	0.0245	-0.0119	-0.0041	0.0001
150	-0.1556	0.1977	0.2750	0.0106
151	-0.0156	0.0098	-0.0074	0.0000
152	-0.0037	-0.0007	-0.0020	0.0000
153	0.0188	-0.0441	-0.0011	0.0002
154	0.0019	-0.0008	0.0005	0.0000
155	0.0999	-0.0641	-0.0194	0.0011
156	-0.1725	-0.1885	0.1992	0.0081
157	0.0379	-0.0128	-0.0130	0.0001

158	-0.2617	0.2740	0.1656	0.0133
159	0.0757	0.0223	-0.0296	0.0006
160	-0.0435	0.0354	0.0225	0.0003
161	0.0872	-0.0443	-0.0450	0.0009
162	-0.0728	0.0691	0.0329	0.0009
163	-0.0135	0.0102	0.0051	0.0000
164	0.0039	0.0012	-0.0024	0.0000
165	0.0863	-0.0356	-0.0197	0.0007
166	0.0031	-0.0011	-0.0016	0.0000
167	0.0110	0.0077	-0.0097	0.0000
168	0.0146	0.0306	-0.0501	0.0003
169	-0.0027	0.0080	0.0000	0.0000
170	0.0503	-0.0031	0.0139	0.0002
171	0.0038	0.0014	-0.0014	0.0000
172	0.0022	-0.0034	-0.0001	0.0000
173	-0.0077	0.0022	-0.0049	0.0000
174	0.3265	-0.0645	-0.1698	0.0112
175	-0.0419	-0.0123	-0.0397	0.0003
176	0.0134	0.0334	0.0027	0.0001
177	-0.0335	-0.0216	-0.0028	0.0001
178	0.0328	0.0359	0.0313	0.0003
179	0.0031	-0.0122	-0.0059	0.0000
180	0.0033	0.0094	-0.0037	0.0000
181	-0.0241	-0.0048	-0.0065	0.0001
182	0.1000	-0.0398	-0.1120	0.0020
183	0.0535	-0.0066	0.0148	0.0003
184	0.0350	-0.0145	0.0271	0.0002
185	-0.0107	0.0047	-0.0055	0.0000
186	-0.0642	-0.0336	-0.0380	0.0005
187	-0.0871	-0.0253	-0.0505	0.0009
188	0.0014	-0.0022	-0.0015	0.0000
189	-0.0072	-0.0084	-0.0030	0.0000
190	0.0040	-0.0004	0.0010	0.0000
191	0.0207	0.0248	0.0027	0.0001
192	0.0032	-0.0053	-0.0061	0.0000
193	0.0105	0.0029	0.0028	0.0000
194	-0.0623	0.0083	-0.0180	0.0004
195	-0.1063	-0.0748	-0.0985	0.0022
196	0.0011	0.0015	0.0007	0.0000
197	-0.0536	-0.0178	-0.0107	0.0003
198	-0.0074	-0.0314	-0.0095	0.0001
199	-0.0568	0.0505	0.0723	0.0009
200	0.0617	-0.1015	0.0436	0.0013