Supplementary Information

General Information

All reactions were done in an argon atmosphere. Benzene- d_{6}, tetrahydrofurane- d_{8} (thf- d_{8}), n-hexane and tetrahydrofurane (thf) were dried by stirring over Na / K and then distilled. The complexes $\left[\mathrm{Pd}(\mathrm{Me})_{2}(\right.$ tmeda $\left.)\right],\left[\mathrm{Pd}\left(\mathrm{Pi}_{i} \mathrm{Pr}_{3}\right)_{2}\right](\mathbf{1})$ and the triisopropylphosphine were prepared according to literature procedures. ${ }^{1}$ 3,5-bis(pentafluorosulfanyl)-1-bromobenzene (2), 3-pentafluorosulfanyl-1-iodobenzene (4), and 4-pentafluorosulfanyl-1-bromobenzene (6) were purchased from Apollo Scientific. All other reagents were either purchased from Sigma Aldrich or abcr.

Microanalyses were performed with a HEKAtech Euro EA Elemental Analyzer. The NMR spectra were recorded at 300 K on a Bruker DPX 300 or a Bruker Avance III 300 NMR spectrometer. The ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced to residual benzene- d_{5} at $\delta=7.16$ ppm or thf $-\mathrm{d}_{7}$ at $\delta=3.58 \mathrm{ppm}$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts were referenced to benzene $-\mathrm{d}_{6}$ at $\delta 128.06 \mathrm{ppm}$. The ${ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were referenced to external CFCl_{3} at $\delta=0.0 \mathrm{ppm}$, and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at $\delta=0.0 \mathrm{ppm}$. The EI mass spectra were recorded with an AMD MSI 604 Concept 1 H at 70 eV . GC/MS spectra were measured at an Agilent 6890N gas-phase chromatograph (Agilent 19091S-433 Hewlett-Packard) and an Agilent 5973 Network mass selective detector at 70 eV . HRMS (ESI) analyses were carried out with a Micromass Q-TOF II spectrometer.

The crystallographic data collections of complex $\mathbf{1 1}$ and compound $\mathbf{9}$ and $\mathbf{1 5}$ were performed with a BRUKER D8 VENTURE area detector, Mo-K α radiation ($\lambda=0.71073 \AA$). Multi-scan absorption corrections implemented in SADABS 2 were applied to the data. The structures were solved by intrinsic phasing method (SHELXT-2013) ${ }^{3}$ and refined by full-matrix least square procedures based on F^{2} with all measured reflections (SHELXL-2013) ${ }^{4}$ with anisotropic temperature factors for all non-hydrogen atoms. All hydrogen atoms were added geometrically and refined by using a riding model. Diffraction data of complexes 3,5 and 7 were collected with a STOE IPDS 2θ diffractometer with Mo-K α radiation $(\lambda=0.71073 \AA$) at 100 K . The structures were solved by direct methods (SHELXS-97) ${ }^{5}$ and refined with fullmatrix least-square methods on F^{2} (SHELXL-97, SHELXL-2013) ${ }^{4,6}$. The hydrogen atoms were placed at calculated positions and refined by using a riding model. Crystallographic data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

TON are defined as number of borylation steps based on the amount of aromatic substrate.

Synthesis of trans-[Pd(Br)\{3,5-(SF $\left.\left.\mathbf{S O}_{\mathbf{5}} \mathbf{C}_{6} \mathbf{H}_{3}\right\}\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (3)

A solution of $\left[\mathrm{Pd}\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1})(144.0 \mathrm{mg}, 0.337 \mathrm{mmol})$ in n-hexane $(10 \mathrm{~mL})$ was treated with 3,5-bis(pentafluorosulfanyl)-1-bromobenzene (2) ($138.0 \mathrm{mg}, 0.337 \mathrm{mmol}$) and the reaction mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo and the colourless solid was sparsely washed with n-hexane (1 mL) to give $179.0 \mathrm{mg}(69 \%)$ of $\mathbf{3}$.
${ }^{1} \mathbf{H}$ NMR $\left(300.1 \mathrm{MHz}\right.$, benzene- $\left.\mathrm{d}_{6}\right): \delta=8.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 2.20$ (dsept, $\left.{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCHCH}_{3}\right), 1.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=21.2 \mathrm{~Hz}, 36 \mathrm{H}\right.$, $\left.\mathrm{PCHCH}_{3}\right) \mathrm{ppm}$; the ${ }^{3} J_{\mathrm{H}, \mathrm{H}}$ coupling constant was obtained from a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): 157.4\left(\mathrm{t}, J_{\mathrm{CP}}=5 \mathrm{~Hz}\right.$), 151.9 (quin, $J_{\mathrm{CF}}=15 \mathrm{~Hz}$), 138.7 (s), $117.8(\mathrm{br}), 25.2\left(\mathrm{vt}, J_{\mathrm{CP}}=11 \mathrm{~Hz}\right), 19.7(\mathrm{~s}) .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(121.5 \mathrm{MHz}\right.$, benzene-d $\left.\mathrm{d}_{6}\right)$: $\delta=32.1(\mathrm{~s}) \mathrm{ppm} .{ }^{19} \mathbf{F}$ NMR $\left(282.4 \mathrm{MHz}\right.$, benzene- $\left.\mathrm{d}_{6}\right): \delta=83.9\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=151 \mathrm{~Hz}, 2 \mathrm{~F}\right), 62.9\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=151 \mathrm{~Hz}, 8 \mathrm{~F}\right) \mathrm{ppm} . \mathbf{H R}$ ESI-MS, m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{~F}_{10} \mathrm{P}_{2} \mathrm{PdS}_{2}{ }^{+}[\mathrm{M}]^{+}: 755.1313$, found: 755.1308. Elemental analysis (\%) calcd. for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{BrF}_{10} \mathrm{P}_{2} \mathrm{PdS}_{2}$: calc.: C 34.48 , H 5.43 , S 7.76; found: $\mathrm{C} 35.14, \mathrm{H}$ 5.50, S 7.24 .

Figure S 1 Molecular structure of $\mathbf{3}$ (ORTEP; ellipsoids are drawn at the 50\% probability level; hydrogen atoms are omitted for clarity). Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]: \operatorname{Pd}(1)-$ $\mathrm{C}(19)$ 2.011(2); $\mathrm{Pd}(1)-\mathrm{Br}(1) 2.5067(3) ; \operatorname{Pd}(1)-\mathrm{P}(1) 2.3557(5) ; \operatorname{Pd}(1)-\mathrm{P}(2) 2.3597(5) ; \operatorname{Br}(1)-$ $\operatorname{Pd}(1)-\mathrm{C}(19) 173.51(6) ; \operatorname{Br}(1)-\mathrm{Pd}(1)-\mathrm{P}(1) 90.203(16)$.

Synthesis of trans-[Pd(I)(3-SF $\left.\left.\mathbf{5}_{6} \mathbf{H}_{4}\right)\left(\mathbf{P i P r}_{3}\right)_{2}\right]$ (5)

A solution of $\left[\mathrm{Pd}\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1})(129.0 \mathrm{mg}, 0.302 \mathrm{mmol})$ in n-hexane $(10 \mathrm{~mL})$ was treated with 3-pentafluorosulfanyl-1-iodobenzene (4) ($37 \mu \mathrm{~L}, 0.302 \mathrm{mmol}, \rho=2.7 \mathrm{~g} / \mathrm{mL}$) and the reaction mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo and the colourless solid was sparsely washed with n-hexane (1 mL) to give 40.0 mg (18%) of (5).
${ }^{1}$ H NMR (300.1 MHz , benzene- d_{6}): $\delta=8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, $7,14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 6.65\left(\mathrm{t},{ }^{2} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 2.39$ (dsept, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{HP}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCHCH}_{3}\right), 1.08\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=21.4 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{PCHCH}_{3}\right) \mathrm{ppm}$; the ${ }^{3} J_{\mathrm{H}, \mathrm{H}}$ coupling constant was obtained from a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (121.5 MHz , benzene-d d_{6}): $\delta=31.1$ (s) ppm. ${ }^{19}$ F NMR (282.4 MHz , benzene- d_{6}): $\delta=86.9$ $\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=150 \mathrm{~Hz}, 1 \mathrm{~F}\right), 62.8\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=150 \mathrm{~Hz}, 4 \mathrm{~F}\right) \mathrm{ppm}$. HR ESI-MS, m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~F}_{5} \mathrm{P}_{2} \mathrm{PdS}^{+}[\mathrm{M}]^{+}: 629.1750$, found: 629.1745. Elemental analysis (\%) calcd. for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~F}_{5} \mathrm{IP}_{2} \mathrm{PdS}$: calc.: C 38.08, H 6.13, S 4.24; found: C 38.69, H 6.13, S 3.85.

Figure S 3 Molecular structure of 5 (ORTEP; ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity). Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]: \operatorname{Pd}(1)-$ $\mathrm{C}(19)$ 2.014(2); $\mathrm{Pd}(1)-\mathrm{I}(1) 2.7009(2) ; \operatorname{Pd}(1)-\mathrm{P}(1) 2.3788(6) ; \operatorname{Pd}(1)-\mathrm{P}(2) 2.3607(6) ; \quad \mathrm{I}(1)-$ $\operatorname{Pd}(1)-\mathrm{C}(19) 178.35(6) ; \mathrm{I}(1)-\mathrm{Pd}(1)-\mathrm{P}(1) 91.312(15)$.

Synthesis of trans-[Pd(Br)(4-SF $\left.\left.\mathbf{S}_{6} \mathbf{H}_{4}\right)\left(\operatorname{PiPr}_{3}\right)_{2}\right](7)$

A solution of $\left[\mathrm{Pd}\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (1) $(225.0 \mathrm{mg}, 0.527 \mathrm{mmol})$ in n-hexane $(10 \mathrm{~mL})$ was treated with 4-pentafluorosulfanyl-1-bromobenzene (6) $(82 \mu \mathrm{~L}, 0.527 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 16 h . The solvent was removed in vacuo and the colourless solid was sparsely washed with n-hexane to give 102.0 mg (27\%) of (7).
${ }^{1} \mathbf{H}$ NMR (300.1 MHz , benzene- d_{6}): $\delta=7.44\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.25(\mathrm{~d}$, ${ }^{2} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $2.25\left(\mathrm{dsept},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCHCH}_{3}\right), 1.07(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=21.1 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{PCHCH}_{3}\right) \mathrm{ppm}$; the ${ }^{3} J_{\mathrm{HH}}$ coupling constant was obtained from a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (121.5 MHz , benzene- d_{6}): $\delta=31.4$ (s) ppm. ${ }^{19}$ F NMR (282.4 MHz , benzene- $\left.\mathrm{d}_{6}\right)$: $\delta=87.4\left(\mathrm{AB}_{4}, \mathrm{~A}\right.$ part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=149 \mathrm{~Hz}, 1 \mathrm{~F}\right), 62.9\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=149 \mathrm{~Hz}, 4 \mathrm{~F}\right) \mathrm{ppm}$. HR ESI-MS, m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~F}_{5} \mathrm{P}_{2} \mathrm{PdS}^{+}[\mathrm{M}]^{+}$: 629.1750, found: 629.1745. Elemental analysis (\%) calcd. for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{BrF}_{5} \mathrm{P}_{2} \mathrm{PdS}$: calc.: C 40.60, H 6.53, S 4.52; found: C 41.04, H 6.50, S 3.96.

Figure S 4 Molecular structure of 7 (ORTEP; ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity). Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]: \operatorname{Pd}(1)-$ $\mathrm{C}(19)$ 1.993(4); $\mathrm{Pd}(1)-\mathrm{Br}(1) 2.4753(5) ; \operatorname{Pd}(1)-\mathrm{P}(1)$ 2.3258(11); $\mathrm{Pd}(1)-\mathrm{P}(2) 2.3392(10) ; \operatorname{Br}(1)-$ $\operatorname{Pd}(1)-\mathrm{C}(19) 177.63(13) ; \operatorname{Br}(1)-\mathrm{Pd}(1)-\mathrm{P}(1) 89.01$ (3).

Treatment of trans-[Pd(I)(3-SF $\left.\left.\mathbf{5}_{5} \mathbf{C}_{6} \mathbf{H}_{4}\right)\left(\operatorname{PiPr}_{3}\right)_{2}\right](5)$ with $\mathbf{B}_{2} \mathbf{p i n}_{2}$

A solution of $5(10 \mathrm{mg}, 0.013 \mathrm{mmol})$ in benzene- $\mathrm{d}_{6}(0.6 \mathrm{~mL})$ in a NMR tube was treated with $\mathrm{B}_{2} \mathrm{pin}_{2}(3.3 \mathrm{mg}, 0.013 \mathrm{mmol})$. The mixture was then heated to $60^{\circ} \mathrm{C}$ for 16 h . The ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ spectra revealed the presence of 1-Bpin-3-SF $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{8})$ in a ratio of $\mathbf{5 : 8} \mathbf{8}$ of 1:1.2 and traces of $\left(3-\mathrm{SF}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}(\mathbf{9})$. The borylation product $\mathbf{8}$ as well as $\mathbf{9}$ could not be isolated from the reaction
mixture. The analytical data are listed below. GC-MS analysis confirmed the formation of I-Bpin, $m / z\left[\mathrm{M}-\mathrm{CH}_{3}\right]: 240$.

Treatment of trans-[$\left.\mathbf{P d}(\mathbf{B r})\left(4-\mathrm{SF}_{5} \mathrm{C}_{6} \mathbf{H}_{4}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (7) with $\mathbf{B}_{2} \mathbf{p i n}_{2}$

A solution of $7(79.4 \mathrm{mg}, 0.112 \mathrm{mmol})$ in thf- $\mathrm{d}_{8}(0.6 \mathrm{~mL})$ in a NMR tube was treated with $\mathrm{B}_{2} \mathrm{pin}_{2}(28.4 \mathrm{mg}, 0.112 \mathrm{mmol})$ and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for $48 \mathrm{~h} .{ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR spectra revealed the presence of 1-Bpin-4-SF $5_{5} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 0})$ in a ratio of $\mathbf{7}: \mathbf{1 0}$ of 1:0.5. The borylation product $\mathbf{1 0}$ could not be isolated from the reaction mixture. The analytical data are listed below.

Treatment trans-[Pd(Br)\{3,5-(SF $\left.\left.\left.\mathbf{S}_{5}\right)_{2} \mathbf{C}_{6} \mathbf{H}_{3}\right\}\left(\mathbf{P i P r}_{3}\right)_{2}\right]$ (3) with $\mathbf{B}_{2} \mathbf{p i n}_{2}$

Complex $3(20 \mathrm{mg}, 0.049 \mathrm{mmol})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}(12 \mathrm{mg}, 0.049 \mathrm{mmol})$ were in a NMR tube dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ for 16 h . The ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra revealed no conversion. .

Treatment of trans-[Pd(Br)\{3,5-($\left.\left.\left.\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (3) with CsF

To a solution of $3(53.0 \mathrm{mg}, 0.063 \mathrm{mmol})$ in thf- $\mathrm{d}_{8}(0.6 \mathrm{~mL})$ in a NMR tube, $\mathrm{CsF}(125 \mathrm{mg}$, 1.001 mmol) was added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 16 h . The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra revealed the formation of trans- $\left[\operatorname{Pd}(\mathrm{F})\left\{3,5-\left(\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 1})$ (7\%). The analytical data are listed below.

Synthesis of trans-[Pd(F)\{3,5-(SF $\left.\left.\mathbf{F}_{\mathbf{5}} \mathbf{C}_{6} \mathbf{H}_{3}\right\}\left(\mathbf{P i P r}_{3}\right)_{2}\right](\mathbf{1 1)}$

Complex 3 ($100 \mathrm{mg}, 0.120 \mathrm{mmol}$) and $\mathrm{AgF}(500 \mathrm{mg}, 3.94 \mathrm{mmol})$ were in a NMR tube suspended in thf $-\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The reaction mixture was exposed in absence of light to ultrasound for 3 h at $60^{\circ} \mathrm{C}$. The NMR spectra confirmed the formation of $\mathbf{1 1}$. The solution was filtered and the filtrate stirred additionally over CsF for 16 h to remove HF impurities. The solution was filtered and the solvent was removed from the filtrate in vacuo. The solid was recrystallized in n-hexane (1 mL) affording $64 \mathrm{mg}(69 \%)$ of $\mathbf{1 1}$.
${ }^{1} \mathbf{H}$ NMR (300.1 MHz , thf- d_{8}): $\delta=8.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 2.22$ (dsept, $\left.\left.{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCHCH}\right)_{3}\right), 1.29\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}=21.0 \mathrm{~Hz}, 36 \mathrm{H}\right.$, $\left.\mathrm{PCHCH}_{3}\right) \mathrm{ppm}$; the ${ }^{3} J_{\mathrm{HH}}$ coupling constant was obtained from a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum.
${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(121.5 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=32.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{P}, \mathrm{F}}=14 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{\mathbf{1}} \mathbf{F} \mathbf{~ N M R}(282.4 \mathrm{MHz}$, thf- d_{8}): $\delta=83.3\left(\mathrm{AB}_{4}, \mathrm{~A}\right.$ part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=150 \mathrm{~Hz}, 1 \mathrm{~F}\right), 62.0\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=150 \mathrm{~Hz}, 4 \mathrm{~F}\right),-316.7\left(\mathrm{t},{ }^{2} J_{\mathrm{PF}}=14 \mathrm{~Hz}, \mathrm{PdF}\right) \mathrm{ppm}$. HR ESI-MS, m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{~F}_{10} \mathrm{P}_{2} \mathrm{PdS}_{2}^{+}[\mathrm{M}]^{+}: 755.1313$, found: 755.1308.

Figure S $\mathbf{2}$ Molecular structure of $\mathbf{1 1}$ (ORTEP; ellipsoids are drawn at the 50\% probability level; hydrogen atoms are omitted for clarity). Selected bond lengths $[\AA]$ and angles [${ }^{\circ}$: $\mathrm{Pd}(1)-\mathrm{C}(1) 1.9879(17) ; \mathrm{Pd}(1)-\mathrm{F}(11)$ 2.0412(12); $\mathrm{Pd}(1)-\mathrm{P}(1)$ 2.3288(6); $\mathrm{Pd}(1)-\mathrm{P}(2) 2.3397(6) ;$ $\mathrm{F}(11)-\mathrm{Pd}(1)-\mathrm{C}(1) 176.35(6) ; \mathrm{F}(11)-\mathrm{Pd}(1)-\mathrm{P}(1) 88.03(04)$.

Synthesis of trans-[Pd(F)(3-SF $\left.\left.\mathbf{S}_{5} \mathbf{C}_{4}\right)\left(\operatorname{PiPr}_{3}\right)_{2}\right](\mathbf{1 2)}$

Complex 5 ($3.5 \mathrm{mg}, 0.005 \mathrm{mmol}$) and $\mathrm{AgF}(22.0 \mathrm{mg}, 0.014 \mathrm{mmol})$ were in a NMR tube suspended in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The reaction mixture was exposed in absence of light to ultrasound for 3 h at $60^{\circ} \mathrm{C}$. The NMR spectra confirmed the formation of $\mathbf{1 2}$. The solution was filtered and the filtrate stirred additionally over CsF for 16 h to remove HF impurities. The solution was filtered and the solvent was removed from the filtrate in vacuo. The solid was recrystallized in n-hexane (1 mL).
${ }^{1} \mathbf{H}$ NMR $\left(300.1 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=7.59\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.39\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $2.27\left(\mathrm{dsept},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCHCH}_{3}\right), 1.10\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HP}}=21.1 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{PCHCH} H_{3}\right) \mathrm{ppm}$; the ${ }^{3} J_{\mathrm{HH}}$ coupling constant was obtained from a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum. ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(121.5 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=32.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{PF}}=13 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{19} \mathbf{F}$ NMR (282.4 MHz, thf- d_{8}): $\delta=82.4\left(\mathrm{AB}_{4}\right.$, A part, apparent coupling $\left.{ }^{2} J_{\mathrm{FF}}=150 \mathrm{~Hz}, 1 \mathrm{~F}\right), 60.0\left(\mathrm{~B}_{4}\right.$ part, d, $\left.{ }^{2} J_{\mathrm{FF}}=150 \mathrm{~Hz}, 4 \mathrm{~F}\right),-311.2-(-311.5)(\mathrm{m}, \mathrm{Pd} F) \mathrm{ppm}$.

Synthesis of trans-[Pd(F)(4-SF $\left.\left.\mathbf{S C}_{6} \mathbf{H}_{4}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](13)$

Complex 7 ($45 \mathrm{mg}, 0.0634 \mathrm{mmol}$) and $\mathrm{AgF}(220 \mathrm{mg}, 1.734 \mathrm{mmol})$ were in a NMR tube suspended in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The reaction mixture was exposed in absence of light to ultrasound for 3 h at $60^{\circ} \mathrm{C}$. The NMR spectra confirmed the formation of $\mathbf{1 3}$. The solution was filtered and the filtrate stirred additionally over CsF for 16 h to remove HF impurities. The solution was filtered and the solvent was removed from the filtrate in vacuo. The solid was recrystallized in n-hexane (1 mL) affording $32 \mathrm{mg}(78 \%)$ of $\mathbf{1 3}$.
${ }^{1} \mathbf{H}$ NMR $\left(300.1 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=7.69\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.29\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $2.27\left(\mathrm{dsept},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCHCH}_{3}\right), 1.33\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{HP}}=20.2 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{PCHCH}_{3}\right) \mathrm{ppm}$; the ${ }^{3} J_{\mathrm{HH}}$ coupling constant was obtained from a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (121.5 MHz , thf- d_{8}): $\delta=34.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{PF}}=13 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{19} \mathbf{F}$ NMR (282.4 MHz , thf- d_{8}): $\delta=86.9\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=149 \mathrm{~Hz}, 1 \mathrm{~F}\right)$, $62.8\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=149 \mathrm{~Hz}, 4 \mathrm{~F}\right),-306.6$ (br s, PdF) ppm.

Treatment of trans $-\left[\mathbf{P d}(\mathbf{F})\left\{\mathbf{3 , 5}-\left(\mathrm{SF}_{5}\right)_{2} \mathbf{C}_{6} \mathbf{H}_{3}\right\}\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (11) with $\mathbf{B}_{2} \mathbf{p i n}_{2}$

Complex $11(11 \mathrm{mg}, 0.0142 \mathrm{mmol})$ and $\mathrm{B}_{2} \mathrm{pin}_{2}(1.8 \mathrm{mg}, 0.0071 \mathrm{mmol})$ were in a NMR tube dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The reaction mixture was then heated to $60{ }^{\circ} \mathrm{C}$. The ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ NMR spectra revealed new datasets in addition to the signals of 11, which corresponded to the borylation product $\mathbf{1 4}$ and traces of the homocoupling product $\mathbf{1 5}$. The borylation product 14 as well as 15 could not be isolated from the reaction mixture. The analytical data are listed below.

Treatment of trans $-\left[\mathbf{P d}(\mathbf{F})\left\{\mathbf{3 , 5}-\left(\mathbf{S F}_{5}\right)_{2} \mathbf{C}_{6} \mathbf{H}_{3}\right\}\left(\mathbf{P i P r}_{3}\right)_{2}\right](\mathbf{1 1})$ with $\mathbf{B}_{2} \mathbf{p i n}_{2}$ and $\mathbf{P i P r}_{3}$

Complex 11 ($20 \mathrm{mg}, 0.026 \mathrm{mmol}$) and $\mathrm{B}_{2} \mathrm{pin}_{2}(7 \mathrm{mg}, 0.026 \mathrm{mmol})$ were in a NMR tube dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \mathrm{PiPr}_{3}(5 \mu \mathrm{~L}, 0.026 \mathrm{mmol})$ was added to the solution. The reaction mixture was first kept for 16 h at room temperature and then warmed to $60^{\circ} \mathrm{C}$ and stirred for another $16 \mathrm{~h} .{ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra revealed no conversion of $\mathbf{1 1}$.

Treatment trans-[Pd(Br)\{3,5-(SF5)2 $\left.\left.\mathbf{C}_{6} \mathbf{H}_{3}\right\}\left(\operatorname{PiPr}_{3}\right)_{2}\right](3)$ with KOAc

In a NMR tube KOAc ($5 \mathrm{mg}, 0.0478 \mathrm{mmol}$) and $\mathbf{3}(41 \mathrm{mg}, 0.049 \mathrm{mmol})$ were suspended in thf $-\mathrm{d}_{8}(0.5 \mathrm{~mL})$. The reaction mixture was first kept for 16 h at room temperature and then warmed to $60^{\circ} \mathrm{C}$ and stirred for another 16 h . The ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra revealed no conversion.

Catalytic reaction of $\mathbf{3 , 5}$-bis(pentafluorosulfanyl)-1-bromobenzene (2), $\mathbf{B}_{2} \mathbf{p i n}_{2}$ in the presence of one eq CsF.

In a Young NMR tube, equipped with a thf- $\mathrm{d}_{8} / \mathrm{TMS}$ capillary as external standard, $\left[\mathrm{Pd}(\mathrm{Me})_{2}(\mathrm{tmeda})\right](3.1 \mathrm{mg}, 0.012 \mathrm{mmol})$ was dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \mathrm{PiPr}_{3}(4.7 \mu \mathrm{~L}$, $0.024 \mathrm{mmol}), 2(50 \mathrm{mg} 0.122 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(31 \mathrm{mg}, 0.122 \mathrm{mmol})$ and $\mathrm{CsF}(19 \mathrm{mg}$, 0.122 mmol) were added to the solution. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 7 d . The ${ }^{1} \mathrm{H}$ NMR spectra revealed a new broad signal for the borylation product 14 and of the homocoupling product 15. The intense overlap of the signals does not allow an assignment of the signals. The solvent was removed from the reaction mixture in vacuo. The residue was sublimed at room temperature for 6 h affording $7 \mathrm{mg}(1 \%)$ of $\mathbf{1 5}$ as white crystals, which were analyzed by X-Ray crystal structure analysis.

Analytical data for $\left(3,5-\left(\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{2}(\mathbf{1 5}):{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300.1 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=8.39$ (broad s, $2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), 8,32 (broad s, $4 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$) ppm. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}\right.$, thf- d_{8}): $\delta=154.5$ (quin, $\left.J_{\mathrm{CF}}=20 \mathrm{~Hz}\right), 141.8(\mathrm{~s}), 130.3-130.1(\mathrm{~m}), 125.0-124.7(\mathrm{~m}) \mathrm{ppm} .{ }^{19}$ F NMR (282.4 MHz , thf$\left.\mathrm{d}_{8}\right): \delta=79.1\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 4 \mathrm{~F}\right), 60.0\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 16 \mathrm{~F}\right) \mathrm{ppm}$. GC-MS, $m / z[\mathrm{M}]: 658$. The analytical data for $\mathbf{1 4}$ are listed below.

Figure S 5 ORTEP diagram of 15. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ 15: C(5)$\mathrm{C}(9) 1.4881(17) ; \mathrm{C}(1)-\mathrm{S}(1) 1.8083(13) ; \mathrm{S}(1)-\mathrm{F}(1) 1.5787(8) ; \mathrm{S}(1)-\mathrm{F}(2) 1.5885(9) ; \mathrm{C}(4)-\mathrm{C}(5)-$ $\mathrm{C}(9)$ 121.97(11); C(1)-S(1)-F(2) 91.84(5); $\mathrm{F}(1)-\mathrm{S}(1)-\mathrm{F}(2) 88.04(5)$.

Catalytic reaction of 3,5-bis(pentafluorosulfanyl)-1-bromobenzene (2), five eq $\mathbf{B}_{2} \mathbf{p i n}_{2}$ in the presence of one eq CsF.

In a Young NMR tube, equipped with a thf- $\mathrm{d}_{8} / \mathrm{TMS}$ capillary as external standard, $\left[\mathrm{Pd}(\mathrm{Me})_{2}(\mathrm{tmeda})\right](3.1 \mathrm{mg}, 0.012 \mathrm{mmol})$ was dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \mathrm{PiPr}_{3}(4.7 \mu \mathrm{~L}$,
$0.024 \mathrm{mmol}), 2(50 \mathrm{mg}, 0.122 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(155 \mathrm{mg}, 0.611 \mathrm{mmol})$ and $\mathrm{CsF}(19 \mathrm{mg}$, 0.122 mmol) were added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$. After 7 d the NMR spectroscopic analysis of the reaction solution indicated a complete conversion of $\mathbf{2}$. The ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra revealed a new dataset corresponding to the borylated product $\mathbf{1 4}$ Yield: 80% (according to the ${ }^{1} \mathrm{H}$ NMR spectrum).

Analytical data for 1-Bpin-3,5-($\left.\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 4}):{ }^{\mathbf{1}} \mathbf{H}$ NMR (300.1 MHz , thf- d_{8}): $\delta=8.37$ (s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$), $8.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, the signals corresponding to the methyl group of the Bpin unit are covered by the resonances for $\mathrm{B}_{2} \mathrm{pin}_{2}{ }^{19} \mathbf{F}$ NMR (282.4 MHz , thf- d_{8}): $\delta=81.1\left(\mathrm{AB}_{4}, \mathrm{~A}\right.$ part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 1 \mathrm{~F}\right), 62.0\left(\mathrm{AB}_{4}, \mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 4 \mathrm{~F}\right) \mathrm{ppm} .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(96.3 \mathrm{MHz}\right.$, thf- d_{8}): $\delta=32(\mathrm{~s}, \mathrm{br}) \mathrm{ppm}$. EI-MS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BF}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}]^{+}: 456.0447$, found: 456.0446; GC-MS, m / z [M]: 456, [MCH_{3}]: 441 .

Catalytic reaction of 3-pentafluorosulfanyl-1-iodobenzene (4), $\mathbf{B}_{2} \mathbf{p i n}_{2}$ in the presence of $\mathbf{P i P r}_{3}$

In a NMR tube, equipped with a thf- $\mathrm{d}_{8} / \mathrm{TMS}$ capillary as external standard, $\left[\mathrm{Pd}(\mathrm{Me})_{2}(\right.$ tmeda $\left.)\right]$ $(4 \mathrm{mg}, 0.015 \mathrm{mmol})$ was dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \operatorname{PiPr}_{3}(5.8 \mu \mathrm{~L}, 0.030 \mathrm{mmol})$, 3-pentafluorsulfanyl-1-iodobenzene (4) ($18.5 \mu \mathrm{~L}, 0.151 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(38.4 \mathrm{mg}, 0.151 \mathrm{mmol})$ and $\mathrm{CsF}\left(23 \mathrm{mg}, 0.151 \mathrm{mmol}\right.$) were added. The reaction mixture was heated to $60^{\circ} \mathrm{C}$. The NMR spectroscopic data of the reaction mixture revealed that $\mathbf{4}$ was converted into (3$\left.\mathrm{SF}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}(9)$ as the main product. The solvent was removed from the reaction mixture in vacuo. The residue was sublimed at room temperature for 6 h affording 6 mg (10%) of 9 . $\mathrm{B}_{2} \mathrm{pin}_{2}$ as colourless crystals, which were analyzed by X-Ray crystal structure analysis.

Analytical data for $\left(3-\mathrm{SF}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}(\mathbf{9}):{ }^{1} \mathbf{H}$ NMR $\left(300.1 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=8.09-8.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{ar}}$), 7.94-7.89 (m, 2H, CH $\mathrm{ar}_{\mathrm{ar}}$), 7.73-7.68 (m, 1H, CH arar) ppm. ${ }^{19}$ F NMR (282.4 MHz , thf- d_{8}): $\delta=82.3\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 1 \mathrm{~F}\right), 60.3\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 4 \mathrm{~F}\right) \mathrm{ppm}$. GC-MS, $m / z[\mathrm{M}]: 406$.

Figure S 6 ORTEP diagram of 9. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ 9: C(5)-C(7) $1.4832(14) ; \mathrm{C}(1)-\mathrm{S}(1) 1.8026(11) ; \mathrm{S}(1)-\mathrm{F}(1) 1.5904(8) ; \mathrm{S}(1)-\mathrm{F}(2) 1.5909$ (8); C(6)-C(5)-C(7) 120.12(9); C(1)-S(1)-F(2) 92.60(4); F(1)-S(1)-F(2) 87.73(4).

Catalytic reaction of 3-pentafluorosulfanyl-1-iodobenzene (4) and $B_{2} \mathbf{p i n}_{2}$ in the presence of $\mathbf{P t B u}$

In a Young NMR tube, equipped with a thf- $\mathrm{d}_{8} / \mathrm{TMS}$ capillary as external standard, $\left[\mathrm{Pd}(\mathrm{Me})_{2}(\right.$ tmeda $\left.)\right](4 \mathrm{mg}, 0.015 \mathrm{mmol})$ was dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \mathrm{P} t \mathrm{Bu}_{3}(7.3 \mu \mathrm{~L}$, $0.030 \mathrm{mmol})$, 3-pentafluorsulfanyl-1-iodobenzene (4) ($18.5 \mu \mathrm{~L}, \quad 0.151 \mathrm{mmol}), \quad \mathrm{B}_{2} \mathrm{pin}_{2}$ ($38.4 \mathrm{mg}, 0.151 \mathrm{mmol}$) and CsF $(46 \mathrm{mg}, 0.303 \mathrm{mmol})$ were added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$. After 48 h at $80^{\circ} \mathrm{C}$ the ${ }^{1} \mathrm{H}$ NMR spectra revealed a conversion to the borylation product $\mathbf{8}$ of 71% and for the homocoupling product $\mathbf{9} 21 \%$.

Analytical data of 8: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300.1 MHz , thf- d_{8}): $\delta=8.12$ (broad s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}$) ppm. The other signals corresponding to the aromatic protons could not be assigned, because of overlapping signals. ${ }^{19}$ F NMR (282.4 MHz , thf- d_{8}): $\delta=82.4\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 1 \mathrm{~F}\right), 60.0\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=152 \mathrm{~Hz}, 4 \mathrm{~F}\right) \mathrm{ppm}$. ${ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (96.3 MHz, thf- d_{8}): $\delta=33$ (s, br) ppm. EI-MS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BF}_{5} \mathrm{O}_{2} \mathrm{~S}^{+}$ $[\mathrm{M}]^{+}: 330.0884$, found: 330.0884. GC-MS, $m / z[\mathrm{M}]: 330,\left[\mathrm{M}-\mathrm{CH}_{3}\right]: 315$.

Catalytic reaction of 4-pentafluorosulfanyl-1-bromobenzene (6) and $\mathbf{B}_{2} \mathbf{p i n}_{2}$

In a Young NMR tube, equipped with a thf- $\mathrm{d}_{8} / T M S$ capillary as external standard, $\left[\mathrm{Pd}(\mathrm{Me})_{2}(\mathrm{tmeda})\right](4.5 \mathrm{mg}, 0,017 \mathrm{mmol})$ was dissolved in thf- $\mathrm{d}_{8}(0.5 \mathrm{~mL}) . \mathrm{P} t \mathrm{Bu}_{3}(8.6 \mu \mathrm{~L}$, 0.035 mmol), 4-pentafluorsulfanyl-1-bromobenzene (6) ($27 \mu \mathrm{~L}, \quad 0.177 \mathrm{mmol}$), B_{2} pin $_{2}$ $(44.8 \mathrm{mg}, 0.177 \mathrm{mmol})$ and $\mathrm{CsF}(27 \mathrm{mg}, 0.177 \mathrm{mmol})$ were added. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 7 d . The NMR spectroscopic data of the reaction mixture revealed 80% conversion and the formation of 1-Bpin- $\left(4-\mathrm{SF}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\right)(\mathbf{1 0})$ as well as of $\left(3-\mathrm{SF}_{5} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}(\mathbf{1 6})$. The ratio of the borylation product $\mathbf{1 0}$ and the homocoupling product $\mathbf{1 6}$ could not be determined, because of the intense overlap of the signals in the reaction mixture. The borylation product $\mathbf{1 0}$ as well as $\mathbf{1 6}$ could not be isolated from the reaction mixture.

Analytical data of $\mathbf{1 0}$ and $\mathbf{1 6}:{ }^{1} \mathbf{H}$ NMR (300.1 MHz, thf- d_{8}): $\delta=7.95\left(\mathrm{br}, \mathrm{CH}_{\mathrm{ar}}\right), 7.90$ (br, $\mathrm{CH}_{\mathrm{ar}}$), $7.81\left(\mathrm{br}, \mathrm{CH}_{\mathrm{ar}}\right), 7.71\left(\mathrm{br}, \mathrm{CH}_{\mathrm{ar}}\right), 1.12\left(\mathrm{br}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. GC-MS, $m / z[\mathrm{M}]$ 10: 330 , [MCH_{3}]: 315, m/z [M] 16: 406.

Additional analytical data of $\mathbf{1 0}:{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(282.4 \mathrm{MHz}\right.$, thf $\left.-\mathrm{d}_{8}\right): \delta=81.8\left(\mathrm{AB}_{4}\right.$, A part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=151 \mathrm{~Hz}, 1 \mathrm{~F}\right), 81.7\left(\mathrm{AB}_{4}, \mathrm{~A}\right.$ part, apparent quin coupling $\left.{ }^{2} J_{\mathrm{FF}}=151 \mathrm{~Hz}, 1 \mathrm{~F}\right), 60.1\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=151 \mathrm{~Hz}, 4 \mathrm{~F}\right), 60.0\left(\mathrm{~B}_{4}\right.$ part, apparent d coupling $\left.{ }^{2} J_{\mathrm{FF}}=151 \mathrm{~Hz}, 4 \mathrm{~F}\right) \mathrm{ppm} .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(96.3 \mathrm{MHz}\right.$, thf- $\left.\mathrm{d}_{8}\right): \delta=33$ (s, br) ppm.

Table S1 Crystallographic data.

Compound	3	5	7	11	9	15
emperical formulae	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{BrF}_{10} \mathrm{P}_{2} \mathrm{PdSS}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{IF}_{5} \mathrm{P}_{2} \mathrm{PdS}$	$\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{BrF}_{5} \mathrm{P}_{2} \mathrm{PdS}$	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~F}_{11} \mathrm{P}_{2} \mathrm{PdS}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{10} \mathrm{~S}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~B}_{1} \mathrm{~F}_{20} \mathrm{O}_{2} \mathrm{~S}_{2}$
molecular weight [g/mol]	834.96	756.91	709.92	775.06	406.30	392.69
cryst. system	triclinic, $P \overline{1}$	monoclinic, $P 2_{1} / m$	monoclinic, $P 2_{1} / c$	triclinic, $P \overline{1}$	monoclinic, $P 2{ }_{1} / n$	triclinic, $P \overline{1}$
a [A]	10.6334(7)	14.4952(5)	9.3877(5)	10.779(2)	12.1389(18)	9.9552(9)
b [\AA]	12.3442(8)	12.5053(4)	12.7766(5)	12.164(3)	8.7547(12)	11.1590(9)
c [A]	12.6391(8)	18.0453(6)	$26.0735(15)$	12.241(3)	13.5608(19)	13.6383(11)
$\alpha\left[{ }^{\circ}\right]$	102.884(3)			80.079(8)		73.775(3)
$\beta\left[{ }^{\circ}\right]$	91.323(2)	112.2440(10)	108.762(4)	89.555(7)	100.440(5)	71.961(3)
$\gamma\left[{ }^{\circ}\right]$	90.704(2)			88.284(8)		76.711(3)
$\mathrm{V}\left[\AA^{3}\right]$	161.56(18)	3027.58(18)	2961.2(8)	1580.3(6)	1417.3(3)	1366.1(2)
Z	2	4	4	2	4	4
density [g/cm ${ }^{3}$]	1.715	1.661	1.592	1.629	1.904	1.909
$\mathrm{F}(000)$	842	1520	1448	792	808	782
$\mathrm{R}_{\text {int }}$	0.0370	0.0428	0.1608	0.0328	0.0335	0.0338
Total nr. of refl.	79663	27669	37275	76927	33804	62428
indep. refl.	8102	8842	6024	9266	6217	7382
refl. with I>2 ${ }^{\text {(l) }}$	7638	7332	5223	8632	5049	6460
parameters	374	319	319	373	217	410
θ-range [${ }^{\circ}$]	2.50-28.42	2.44-31.44	3.189-26.483	2.53-30.08	2.49-34.98	2.67-29.15
R_{1}	0.0272	0.0317	0.0490	0.0299	0.0394	0.0283
$w R_{2}$	0.0651	0.0743	0.1427	0.0749	0.0957	0.0692
R_{1} (all data)	0.0293	0.0432	0.0584	0.0328	0.0536	0.0356
wR_{2} (all data)	0.0661	0.0805	0.1536	0.0769	0.1022	0.0727
GoF	1.035	1.009	1.022	1.063	1.059	1.042
completeness	0.997	0.997	0.997	0.997	0.994	0.997
largest diff. peak / hole [eÅ]	1.802/-1.102	2.110/-1.160	1.084/-1.030	2.675/-1.174	0.699/-0.323	0.514/-0.308
CCDC	1439131	1439132	1439133	1439135	1439134	1439136

REFERENCES

1. (a) A. H. Cowley and J. L. Mills, J. Am. Chem. Soc., 1969, 91, 2915-2919; (b) W. Degraaf, J. Boersma, W. J. J. Smeets, A. L. Spek and G. Vankoten, Organometallics, 1989, 8, 2907-2917; (c) W. Kuran and A. Musco, Inorg. Chim. Acta, 1975, 12, 187193; (d) B. E. Mann and A. Musco, J. Chem. Soc., Dalton Trans., 1975, 1673-1677.
2. G. M. Sheldrick, SADABS. Program for Empirical Absorption Correction, University of Gottingen, Germany, 1996.
3. G. M. Sheldrick, SHELXL2013, Program of Crystal Structure Solution, University of Göttingen, 2013.
4. G. M. Sheldrick, SHELXL2013, Program of Crystal Structure Refinement, University of Göttingen, 2013.
5. G. M. Sheldrick, SHELXS-97, Program of Crystal Structure Solution, Universität Göttingen, 1997.
6. G. M. Sheldrick, SHELXS-97, Program of Crystal Structure Refinement, University of Göttingen, 1997.
