Supporting Information

Synthesis of Ni^{II} and Al^{III} 10-azacorroles through coordination-induced cyclisation involving 1,2-migration

Hiroto Omori, Satoru Hiroto* and Hiroshi Shinokubo*

Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

E-mail: hshino@apchem.nagoya-u.ac.jp; hiroto@apchem.nagoya-u.ac.jp

Table of Contents

S2
514
533
534
51 53

Instrumentation and Materials

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were recorded on a Bruker AVANCE III HD spectrometer, and chemical shifts were reported as the delta scale in ppm relative to CHCl₃ ($\delta = 7.260$ ppm), acetone- d_6 ($\delta = 2.050$ ppm) for ¹H NMR and CDCl₃ ($\delta = 77.16$ ppm), acetone- d_6 ($\delta = 29.84$ ppm) for ¹³C NMR. UV/vis/NIR absorption spectra were recorded on a Shimadzu UV-2550 or JASCO V670 spectrometer. Mass spectra were recorded on a Bruker microTOF using positive mode ESI-TOF method for acetonitrile solutions. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Compounds **1a** was prepared according to the previous report.¹

Synthesis and Compound Data

meso-Mesityl-a,a'-dichlorodipyrrin 1b

A two-necked flask containing *meso*-mesityl-dipyrromethane (1.32 g, 5.00 mmol) was evacuated and then refilled with N₂. To the flask, dry THF (75.0 mL) was added and the solution was cooled to -78 °C. After *N*-chlorosuccinimide (1.34 g, 10.0 mmol) was added to the solution, the mixture was stirred for 1 h. Then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1.14 g, 5.02 mmol) was added. The resulting mixture was stirred at -78 °C for 10 min then warmed to room temperature. After stirring for additional 20 min, the reaction mixture was filtered through a short pad of alumina column (EtOAc as an eluent) and then evaporated. Purification by silica-gel column chromatography with CH₂Cl₂/hexane afforded the title compound in 57% (946 mg, 2.86 mmol) as a yellow solid. ¹H NMR (CDCl₃): δ 12.1 (br s, 1H, NH), 6.91 (s, 2H, Mes), 6.32 (d, J = 4.0 Hz, 2H, pyrrole- β), 6.18 (d, J = 4.0 Hz, 2H, pyrrole- β) 2.34 (s, 3H, *p*-Me), 2.07 (s, 6H, *o*-Me) ppm; ¹³C NMR (CDCl₃): δ 141.4, 139.0, 138.5, 138.1, 137.0, 131.6, 128.8, 128.1, 117.2, 21.3, 20.0 ppm; HR-MS (ESI-MS): m/z = 331.0771, calcd for (C₁₈H₁₇N₂Cl₂)⁺ = 331.0763 [(M + H)⁺].

N,N-Bis(meso-mesityl-1-bromodipyrrin-9-yl)-N-benzylamine 2a

A Schlenk tube containing 1a (104 mg, 248 µmol), Pd₂(dba)₃•CHCl₃ (6.51 mg, 6.29 µmol), Xantphos (7.53mg, 12.8 µmol), and KO'Bu (71.3 mg, 635 µmol) was evacuated and then refilled with N₂. To the tube, benzylamine (68.0 µL, 624 µmol), and dry and degassed toluene (3.50 mL) were added. The mixture was stirred at 80 °C for 12 h. The reaction mixture was passed through a short plug of silica (CHCl₃ as an eluent) and evaporated. Purification by silica-gel column chromatography with CHCl₃/hexane afforded the title compound in 64% (62.5 mg, 79.6 μ mol) as a black solid. ¹H NMR (acetone- d_6): δ 12.8 (br s, 2H, NH), 7.49 (d, J = 7.0 Hz, 2H, Ph), 7.40 (dd, $J^{1} = J^{2} = 7.8$ Hz, 2H, Ph), 7.29 (t, J = 7.5 Hz, 1H, Ph), 6.98 (s, 4H, Mes), 6.72 (d, J = 4.5 Hz, 2H, pyrrole- β), 6.53 (d, J = 4.5 Hz, 2H, pyrrole- β), 6.23 (d, J = 4.0Hz, 2H, pyrrole-β), 5.93 (d, J = 4.0 Hz, 2H, pyrrole-β), 5.48 (s, 2H, CH₂), 2.33 (s, 6H, *p*-Me), 2.12 (s, 12H, o-Me) ppm; ¹H NMR (CDCl₃): δ 12.6 (br s, 2H, NH), 7.47 (d, J = 7.0 Hz, 2H, Ph), 7.39 (dd, $J^{1} = J^{2} = 7.8$ Hz, 2H, Ph), 7.29 (t, J = 7.5 Hz, 1H, Ph), 6.90 (s, 4H, Mes), 6.55 $(d, J = 4.5 \text{ Hz}, 2H, \text{ pyrrole-}\beta), 6.53 (d, J = 4.5 \text{ Hz}, 2H, \text{ pyrrole-}\beta), 6.14 (d, J = 3.5 \text{ Hz}, 2H,$ pyrrole- β), 5.94 (d, J = 4.0 Hz, 2H, pyrrole- β), 5.36 (s, 2H, CH₂), 2.34 (s, 6H, *p*-Me), 2.12 (s, 12H, o-Me) ppm; ¹³C NMR (acetone- d_6): δ 160.2, 142.5, 138.8, 138.4, 137.8, 137.6, 134.1, 133.9, 133.6, 129.8, 128.7, 128.2, 127.3, 122.2, 116.8, 116.3, 116.0, 54.1, 21.2, 20.2 ppm; HR-MS (ESI-MS): m/z = 786.1627, calcd for $(C_{43}H_{40}N_5Br_2)^+ = 786.1629 [(M + H)^+]$.

N,*N*-Bis(*meso*-mesityl-1-chlorodipyrrin-9-yl)-*N*-benzylamine 2b

A Schlenk tube containing **1b** (133 mg, 402 µmol), Pd₂(dba)₃•CHCl₃ (10.8 mg, 10.4 µmol), Xantphos (12.1 mg, 20.6 µmol), and KO'Bu (113 mg, 1.00 mmol) was evacuated and then refilled with N₂. To the tube, benzylamine (37.0 µL, 340 µmol) and dry and degassed toluene (6.00 mL) were added. The mixture was stirred at 75 °C for 11 h. The reaction mixture was passed through a short plug of silica (CHCl₃ as an eluent) and evaporated. Purification by silica-gel column chromatography with EtOAc/hexane afforded **2b** in 29% (40.0 mg, 57.4 µmol) as a black solid. ¹H NMR (CDCl₃): δ 12.7 (br s, 2H, NH), 7.43 (d, *J* = 7.0 Hz, 2H, Ph), 7.38 (dd, *J*^{*i*} = *J*² = 7.8 Hz, 2H, Ph), 7.29 (t, *J* = 7.3 Hz, 1H, Ph), 6.91 (s, 4H, Mes), 6.49 (d, *J* = 5.0 Hz, 2H, pyrrole- β), 6.37 (d, *J* = 4.5 Hz, 2H, pyrrole- β), 6.07 (d, *J* = 4.0 Hz, 2H, pyrrole- β), 6.03 (d, *J* = 4.0 Hz, 2H, pyrrole- β), 5.27 (s, 2H, CH₂), 2.34 (s, 6H, *p*-Me), 2.13 (s, 12H, *o*-Me) ppm; ¹³C NMR (CDCl₃): δ 158.2, 140.7, 137.5, 137.4, 135.5, 134.2, 132.9, 132.8, 131.5, 129.1, 127.9, 127.6, 126.5, 122.3, 113.5, 112.9, 53.8, 21.3, 20.1 ppm; HR-MS (ESI-MS): *m*/*z* = 696.2686, calcd for (C₄₁H₄₀N₅Cl₅)⁺ = 696.2655 [(M + H)⁺].

N,*N*-Bis(*meso*-phenyl-1-bromodipyrrin-9-yl)-1'-bromo-1''-phenyl-*N*-benzylamine 2c

A Schlenk tube containing **2a** (32.9 mg, 41.9 μ mol) and Pd(PPh₃)₄ (6.33 mg, 5.48 μ mol) was evacuated and then refilled with N₂. To the tube, PhSnBu₃ (14.0 μ L, 42.4 μ mol) and dry and degassed toluene (4.00 mL) were added. The mixture was stirred at 110 °C for 15 h. The reaction mixture was passed through a short plug of silica (CHCl₃ as an eluent) and evaporated. Purification by silica-gel column chromatography with CHCl₃/hexane afforded **2c** in 16% (5.30 mg, 6.77 μ mol) as a black solid. ¹H NMR (CDCl₃): δ 12.6 (br s, 1H, NH), 12.4

(br s, 1H, NH), 7.60 (d, J = 7.0 Hz, 2H, Bn), 7.42 (dd, $J^{l} = J^{2} = 7.8$ Hz, 2H, Bn), 7.36-7.38 (m, 2H, Ph), 7.30 (t, J = 7.3 Hz, 1H, Bn), 7.09-7.15 (m, 3H, Ph), 6.94 (s, 2H, Mes), 6.93 (d, J = 5.0 Hz, 1H, pyrrole- β), 6.91 (s, 2H, Mes), 6.84 (d, J = 4.5 Hz, 1H, pyrrole- β), 6.70 (d, J = 4.5 Hz, 1H, pyrrole- β), 6.58 (d, J = 4.5 Hz, 1H, pyrrole- β), 6.49 (dd, $J^{1} = 4.0$ Hz, $J^{2} = 2.5$ Hz, 1H, pyrrole- β), 6.08 (d, J = 3.5 Hz, 1H, pyrrole- β), 6.05 (dd, $J^{1} = 3.5$ Hz, $J^{2} = 1.5$ Hz, 1H, pyrrole- β), 5.86 (d, J = 4.0 Hz, 1H, pyrrole- β), 5.63 (s, 2H, CH₂), 2.37 (s, 3H, *p*-Me), 2.35 (s, 3H, *p*-Me), 2.17 (s, 6H, *o*-Me) 2.08 (s, 6H, *o*-Me) ppm; ¹³C NMR (acetone- d_{6}): δ 165.2, 164.3, 146.9, 146.8, 139.8, 139.4, 138.5, 138.3, 137.9, 137.8, 136.3, 135.9, 134.9, 134.4, 134.2, 133.7, 133.4, 132.2, 131.9, 129.9, 129.8, 128.8, 128.7, 128.2, 128.1, 127.5, 127.5, 125.0, 121.1, 120.2, 120.2, 118.7, 114.0, 109.8, 53.8, 21.2, 21.2, 20.2, 20.2 ppm; HR-MS (ESI-MS): m/z = 784.2873, calcd for ($C_{40}H_{45}N_5Br)^+ = 784.2844$ [(M + H)⁺].

N,*N*-Bis(*meso*-mesityl-1-bromodipyrrin-9-yl)-*N*-benzylamine Zn^{II} complex 3Zn

A flask containing **2a** (119 mg, 151 µmol), NaOAc (62.5 mg, 762 µmol), and $Zn(OAc)_2 \cdot 2H_2O$ (166 mg, 756 µmol) was charged with MeOH (60 mL). The mixture was stirred at reflux for 3 h. The reaction mixture was extracted with EtOAc. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification by silica-gel column chromatography with EtOAc/hexane afforded **3a** in 98% (126 mg, 148 µmol) as a green solid. ¹H NMR (CDCl₃): δ 7.28–7.38 (m, 5H, Bn), 6.91 (s, 4H, Mes), 6.61 (d, *J* = 4.0 Hz, 2H, pyrrole- β), 6.41 (d, *J* = 4.0 Hz, 2H, pyrrole- β), 6.22–6.24 (m, 4H, pyrrole- β), 5.29 (d, *J* = 18 Hz, 1H, CH₂), 5.15 (d, *J* = 18 Hz, 1H, CH₂), 2.35 (s, 6H, Me), 2.22 (s, 6H, Me), 2.07 (s, 6H, Me) ppm; ¹³C NMR (CDCl₃): δ 158.1, 141.0, 139.6, 138.7,

137.6, 137.4, 137.2, 136.4, 134.1, 133.7, 129.2, 129.0, 128.0, 127.8, 127.2, 126.0, 118.3, 110.9, 54.3, 21.3, 20.3, 19.8 ppm; HR-MS (ESI-MS): m/z = 850.0725, calcd for $(C_{43}H_{38}N_5Br_2Zn)^+ = 850.0744 [(M + H)^+].$

N,*N*-Bis(*meso*-mesityl-1-bromodipyrrin-9-yl)-*N*-benzylamine Cu^{II} complex 3Cu

A flask containing **2a** (118 mg, 150 µmol), NaOAc (62.1 mg, 757 µmol), and Cu(OAc)₂•H₂O (150 mg, 751 µmol) was charged with MeOH (50 mL). The mixture was stirred at reflux for 3 h. The reaction mixture was extracted with CHCl₃. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification by silica-gel column chromatography with CHCl₃/hexane afforded **3Cu** in 96% (122 mg, 144 µmol) as a green solid. HR-MS (ESI-MS): m/z = 847.0769, calcd for (C₄₃H₃₈N₅Br₂Cu)⁺ = 847.0768 [(M + H)⁺].

N-Benzyl-2-bromo-5,15-dimesityl-10-azacorrole 4 and *N*-benzyl-5,15-dimesityl-10azacorrole 5

A flask containing **2a** (39.1 mg, 49.8 µmol), NaOAc (20.5 mg, 250 µmol), and NiCl₂•6H₂O (59.4 mg, 250 µmol) was charged with MeOH (20 mL). The mixture was stirred at reflux for 3 h. The reaction mixture was extracted with CHCl₃. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification by silica-gel column chromatography with CHCl₃/hexane afforded **4** in 67% (25.4 mg, 33.4 µmol) and **5** in 32% (11.0 mg, 16.1 µmol) as black solids. ¹H NMR (acetone- d_6) of **4**: δ 8.42 (d, *J* = 5.0 Hz, 1H, pyrrole- β), 8.38 (d, *J* = 5.0 Hz, 1H, pyrrole- β), 8.35 (d, *J* = 4.5 Hz, 1H, pyrrole- β), 8.18 (d, *J* = 5.0 Hz, 1H, pyrrole- β), 8.15 (d, *J* = 4.5 Hz, 1H, pyrrole- β), 7.81 (d, *J* = 4.5 Hz, 1H, 1H, 1H)

pyrrole-β), 7.73 (s, 1H, pyrrole-β), 7.25–7.31 (m, 7H), 7.21 (s, 4H, Mes), 2.51 (s, 6H, *p*-Me), 1.91 (s, 12H, *o*-Me) ppm; ¹³C NMR (CDCl₃): δ 144.5, 144.0, 142.3, 138.5, 137.9, 137.7, 137.7, 135.0, 134.7, 133.5, 133.4, 133.3, 133.1, 132.9, 132.6, 129.3, 129.0, 128.3, 127.9, 127.9, 127.9, 127.8, 125.5, 125.2, 124.9, 117.8, 112.6, 111.9, 104.4, 57.2, 21.5, 21.1 ppm; HR-MS (ESI-MS): m/z = 762.1541, calcd for (C₄₃H₃₇N₅BrNi)⁺ = 762.1560 [(M + H)⁺].

N-Benzyl-5,15-dimesityl-2-phenyl-10-azacorrole 6

A flask containing 2c (5.30 mg, 6.77 µmol), NaOAc (3.05 mg, 37.2 µmol), and NiCl₂•6H₂O (8.86 mg, 37.3 µmol) was charged with MeOH (3 mL). The mixture was stirred at reflux for 4 h. The reaction mixture was extracted with CHCl₃. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification by silica-gel column chromatography with CHCl₃/hexane afforded **6** in 99% (5.08 mg, 6.70 µmol) as a black solid. ¹H NMR (CDCl₃): δ 8.30 (d, J = 4.5 Hz, 1H, pyrrole- β), 8.24 (dd, J¹ = 8.5 Hz, J² = 1.5 Hz, 2H), 8.14 (d, J = 4.5 Hz, 1H, pyrrole- β), 8.13 (d, J = 5.0 Hz, 1H, pyrrole- β), 7.97 (d, J = 5.0Hz, 1H, pyrrole- β), 7.96 (d, J = 4.5 Hz, 1H, pyrrole- β), 7.91 (s, 1H, pyrrole- β), 7.84 (d, J =4.0 Hz, 1H, pyrrole-β), 7.59–7.62 (m, 2H), 7.41–7.44 (m, 1H), 7.28–7.30 (m, 3H), 7.17–7.19 (m, 2H), 7.15 (s, 2H, Mes), 7.14 (s, 2H, Mes), 6.98 (s, 2H, CH₂), 2.53 (s, 3H, *p*-Me), 2.53 (s, 3H, *p*-Me), 1.96 (s, 6H, *o*-Me) 1.93 (s, 6H, *o*-Me) ppm; ¹³C NMR (CDCl₃): δ 144.7, 143.9, 143.8, 142.5, 138.7, 138.6, 137.9, 137.7, 137.6, 137.1, 135.3, 135.0, 133.4, 133.3, 133.1, 132.6, 129.6, 129.2, 128.9, 128.3, 128.1, 127.8, 127.8, 127.7, 126.9, 125.5, 125.0, 122.5, 118.7, 111.9, 111.8, 57.2, 21.5, 21.1, 21.1 ppm; HR-MS (ESI-MS): *m*/*z* = 758.2792, calcd for $(C_{49}H_{42}N_5Ni)^+ = 758.2788 [(M + H)^+].$

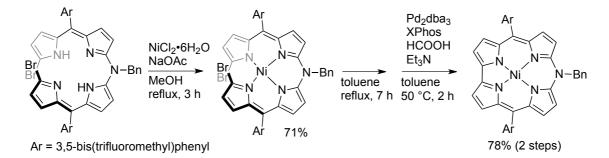
Al^{III} 10-azacorrole 7

A two-necked flask containing 2a (137 mg, 174 µmol) and AlCl₃ (239 mg, 1.80 mmol) was evacuated and then refilled with N₂. To the flask, dry pyridine (50 mL) was added. The mixture was stirred at reflux for 4 h. The reaction mixture was extracted with CHCl₂. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. A Schlenk tube containing the residue, Pd₂(dba)₃•CHCl₃ (50.4 mg, 48.8 µmol), and Xphos (101 mg, 212 µmol) was evacuated and then refilled with N₂. To the tube, dry and degassed toluene (10.5 mL), Et₃N (1.5 mL), and HCOOH (500 µL, 13.2 mmol) were added. The mixture was stirred at 65 °C for 4 h. The reaction mixture was extracted with CHCl₃. The organic layer was washed with water, dried over anhydrous Na2SO4, and concentrated in vacuo. Purification by silica-gel column chromatography with CHCl₃/MeOH followed by recrystallization with MeOH/H₂O afforded the title compound 7 in 67% (78.3 mg, 117 µmol) as a purple solid. ¹H NMR (CD₃OD): δ 8.57 (d, J = 4.0 Hz, 2H, pyrrole- β), 8.42 (d, J = 5.0 Hz, 2H, pyrrole-β), 8.32 (d, 2H, J = 4.5 Hz pyrrole-β), 8.15 (d, J = 4.0 Hz, 2H, pyrrole-β), 7.22–7.28 (m, 11H), 2.54 (s, 6H, Mes-*p*-Me), 1.91 (s, 12H, Mes-*o*-Me) ppm; ¹³C NMR (CD₃OD): δ 149.9, 144.0, 139.7, 139.6, 139.4, 139.1, 138.2, 136.2, 133.1, 131.2, 130.0, 129.6, 129.0, 128.9, 126.6, 118.4, 113.7, 58.1, 21.5, 21.1 ppm; HR-MS (ESI-MS): *m*/*z* = 690.2753, calcd for $(C_{43}H_{38}N_5OAINa)^+ = 690.2784 [(M + Na)^+].$

2-Boryl-5,15-dimesityl-10-azacorrole 8

A Schlenk tube containing bromoazacorrole **4** (38.0 mg, 49.9 μmol), Pd₂(dba)₃•CHCl₃ (2.61 mg, 2.52 μmol), Xphos (4.86 mg, 10.2 μmol), B₂pin₂ (39.2 mg, 154 μmol), and KOAc (14.7

mg, 150 μmol) was evacuated and then refilled with N₂. To the tube, dry 1,4-dioxane (2.00 mL) was added. The mixture was stirred at 110 °C for 2 h. The reaction mixture was filtered over a pad of Celite (CH₂Cl₂ as an eluent) and evaporated in vacuo. Purification by silica-gel column chromatography with CH₂Cl₂/hexane afforded **8** in 52% (20.8 mg, 25.7 μmol) as a black solid. ¹H NMR (acetone-*d*₆): δ 8.65 (d, *J* = 4.5 Hz, 1H, pyrrole-β), 8.34 (d, *J* = 5.0 Hz, 1H, pyrrole-β), 8.29 (d, *J* = 4.5 Hz, 1H, pyrrole-β), 8.16 (d, *J* = 5.0 Hz, 1H, pyrrole-β), 8.09 (d, *J* = 4.5 Hz, 1H, pyrrole-β), 7.76 (d, *J* = 4.5 Hz, 1H, pyrrole-β), 7.27–7.30 (m, 5H), 7.21 (s, 2H), 7.20 (s, 2H), 7.19 (s, 2H), 2.52 (s, 3H, *p*-Me), 2.51 (s, 3H, *p*-Me), 1.92 (s, 6H, *o*-Me), 1.52 (s, 12H, Bpin) ppm; ¹³C NMR (acetone-*d*₆): δ 149.9, 146.8, 145.8, 145.2, 139.6, 138.8, 138.6, 138.4, 136.0, 135.9, 134.5, 133.9, 133.8, 133.7, 133.4, 133.1, 129.8, 129.1, 128.7, 128.6, 128.6, 126.7, 126.4, 125.7, 125.0, 120.6, 118.8, 114.8, 113.7, 84.4, 57.6, 31.8, 25.5, 21.4, 21.1, 21.0 ppm; HR-MS (ESI-MS): *m*/*z* = 808.3345, calcd for (C₄₉H₄₉N₃BO₂Ni)* = 808.3336 [(M + H)*].


2,2'-Bridged 10-azacorrole dimer 9

A Schlenk tube containing bromoazacorrole **4** (22.3 mg, 29.2 μ mol), 2,2'-bipyridyl (21.6 mg, 128 μ mol), and Ni(cod)₂ (41.6 mg, 151 μ mol) was evacuated and then refilled with N₂. To the tube, 1,5-dicyclooctadiene (15 μ L, 143 μ mol) and dry DMF (2.00 mL) was added. The mixture was stirred at 60 °C for 4 h. The reaction mixture was extracted with EtOAc. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. Purification by silica-gel column chromatography with CHCl₃/hexane followed by recrystallization with CHCl₃/MeOH afforded **9** in 62% (12.4 mg, 9.10 μ mol) as a green solid.

¹H NMR (CDCl₃): δ 8.62 (s, 2H, pyrrole-β), 8.22 (d, J = 4.5 Hz, 2H, pyrrole-β), 8.19 (d, J = 5.0 Hz, 2H, pyrrole-β), 8.14 (d, J = 4.5 Hz, 2H, pyrrole-β), 8.00 (d, J = 5.0 Hz, 2H, pyrrole-β), 7.98 (d, J = 4.5 Hz, 2H, pyrrole-β), 7.78 (d, J = 4.0 Hz, 2H, pyrrole-β), 7.29–7.32 (m, 6H, Bn), 7.23–7.25 (m, 4H, Bn), 7.18 (s, 4H, Mes), 7.13 (s, 4H, Mes-*m*), 7.01 (s, 4H, Bn), 2.52 (s, 12H, *p*-Me), 2.10 (s, 12H, *o*-Me), 1.93 (s, 12H, *o*-Me) ppm; ¹³C NMR (CDCl₃): δ 143.8, 138.7, 138.6, 138.0, 137.7, 135.5, 135.4, 133.8, 133.5, 133.0, 132.4, 129.5, 129.2, 128.2, 127.9, 127.8, 127.7, 125.6, 124.9, 124.5, 118.8, 111.6, 57.2, 21.5, 21.5, 21.2, 21.1 ppm; HR-MS (ESI-MS): m/z = 1363.4749, calcd for (C₈₆H₇₃N₁₀Ni₂)⁺ = 1363.4717 [(M + H)⁺].

Isolation of nitrogen-bridged dipyrrin dimer Ni^{II} complex 3Ni

The nitrogen-bridged dipyrrin dimer Ni^{II} complex **3Ni** was isolated by using 3,5-bis(trifluoromethyl)phenyl substituents at the *meso*-positions. This Ni^{II} complex was converted into the corresponding azacorrole only by heating. The synthetic details and compound data were described below.

Scheme S1. Synthesis of *meso*-3,5-bis(trifluoromethyl)phenylazacorrole through isolation of Ni^{II} dipyrrin complex intermediate 3Ni.

meso-3,5-Bis(trifluoromethyl)phenyl-a,a'-dibromodipyrrin

A two-necked flask containing *meso*-3,5-bis(trifluoromethyl)phenyldipyrromethane (537 mg, 1.50 mmol) was evacuated and then refilled with N₂. To the flask, dry THF (22.5 mL) was added and cool to -78 °C. NBS (530 mg, 2.98 mmol) was added to the solution in three portions every 15 min. After addition of all NBS, the solution was stirred for 1 h. Then DDQ (340 mg, 1.50 mmol) was added and stirred at -78 °C for 10 min and at room temperature for 20 min. The reaction mixture was subjected to alumina column chromatography (EtOAc as an eluent) and evaporated. Purification by silica-gel column chromatography with CH₂Cl₂/hexane afforded the title compound in 71% (545 mg, 1.06 mmol) as an orange solid. ¹H NMR (CDCl₃): δ 12.4 (br s, 1H, NH), 8.02 (s, 1H, Ar-*p*), 7.90 (s, 2H, Ar-*o*), 6.40 (d, *J* = 4.5 Hz, 2H, pyrrole- β), 6.32 (d, *J* = 4.0 Hz, 2H, pyrrole- β) ppm; ¹³C NMR (CDCl₃): δ 140.0, 137.8, 134.9, 131.8 (q, CF₃), 131.4, 130.6, 129.5, 126.4, 124.2, 123.3, 123.3, 123.3, 122.0, 121.8 ppm; ¹⁹F NMR (CDCl₃): δ -66.0 ppm; HR-MS (ESI-MS): *m/z* = 514.9024, calcd for (C₁₇H₉N₂Br₂F₆)⁺ = 514.9011 [(M + H)⁺].

N,N-Bis(meso-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-N-benzylamine

A Schlenk tube containing *meso*-3,5-bis(trifluoromethyl)phenyl- α , α -dibromodipyrrin (307 mg, 597 µmol), Pd₂(dba)₃•CHCl₃ (15.8 mg, 15.3 µmol), Xantphos (21.4 mg, 36.4 µmol), and 'BuOK (167 mg, 1.49 mmol) was evacuated and then refilled with N₂. To the tube, benzylamine (60.0 µL, 552 µmol) and dry and degassed toluene (9.00 mL) were added. The mixture was stirred at 75 °C for 11 h. The reaction mixture was passed through a short plug of silica (CHCl₃ as an eluent) and evaporated. Purification by silica-gel column chromatography

with CHCl₃/hexane afforded the title compound in 37% (107 mg, 110 μmol) as a brown solid. ¹H NMR (acetone-*d*₆): δ 12.7 (br s, 2H, NH), 8.21 (s, 2H, Ar-*p*), 8.12 (s, 4H, Ar-*o*), 7.56 (d, *J* = 7.5 Hz, 2H, Ph), 7.44 (dd, $J^{l} = J^{2} = 7.8$ Hz, 2H, Ph), 7.32 (t, J = 7.5 Hz, 1H, Ph), 7.10 (d, *J* = 5.0 Hz, 2H, pyrrole-β), 6.87 (d, J = 5.0 Hz, 2H, pyrrole-β), 6.28 (d, J = 4.0 Hz, 2H, pyrrole-β), 6.14 (d, J = 4.0 Hz, 2H, pyrrole-β), 5.63 (s, 2H, CH₂) ppm; ¹³C NMR (CDCl₃): δ 163.9, 145.5, 138.8, 137.2, 135.9, 134.0, 131.6 (q, CF₃), 130.9, 130.0, 129.3, 127.8, 126.6, 126.5, 124.4, 122.7, 122.2, 120.3, 120.0, 114.4, 110.9, 53.6 ppm; ¹⁹F NMR (CDCl₃): δ –66.0 ppm; HR-MS (ESI-MS): m/z = 974.0209, calcd for (C₄₁H₂₄N₅Br₂F₁₂)⁺ = 974.0185 [(M + H)⁺].

N,N-Bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-*N*-benzylamine Ni complex

A flask containing *N,N*-bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-*N*-benzylamine (11.6 mg, 11.9 µmol), AcONa (4.43 mg, 54.0 µmol), and NiCl₂•6H₂O (13.7 mg, 57.7 µmol) was charged with MeOH (4 mL). The mixture was stirred at reflux for 3 h. After the precipitated solid was washed with MeOH, the title compound was obtained in 71% (8.72 mg, 8.46 µmol) as a black solid. ¹H NMR (acetone- d_6): δ 8.26 (br s, 2H, Ar), 8.21 (s, 2H, Ar) 7.90 (br s, 2H, Ar) 7.38 (t, *J* = 7.3 Hz, 2H, Bn), 7.26–7.31 (m, 3H, Bn), 6.94 (d, *J* = 5.0 Hz, 2H, pyrrole- β), 6.62 (d, *J* = 5.0 Hz, 2H, pyrrole- β), 6.40 (d, *J* = 4.0 Hz, 2H, pyrrole- β), 6.08 (d, *J* = 4.0 Hz, 2H, pyrrole- β), 5.52 (d, *J* = 18 Hz, 1H, CH₂), 5.28 (d, *J* = 18 Hz, 1H, CH₂) ppm; ¹³C NMR (acetone- d_6): δ 156.1, 139.8, 139.1, 137.2, 136.1, 135.5, 133.9, 132.0, 131.8, 129.9, 128.7, 127.0, 125.6, 125.4, 123.6, 112.5, 54.3 ppm; ¹⁹F NMR (CDCl₃): δ -65.8, -65.9 ppm; HR-MS (ESI-MS): m/z = 1029.9383, calcd for (C₄₁H₂₂N₅Br₂F₁₂Ni)⁺ = $1029.9377 [(M + H)^+].$

5,15-(3,5-Bis(trifluoromethyl)phenyl)-10-azacorrole.

A flask containing meso-3,5-bis(trifluoromethyl)phenyl Ni^{II} complex (10.1 mg, 9.80 µmol), was charged with toluene (7.00 mL). The mixture was stirred at reflux for 7 h. The reaction mixture was extracted with CHCl₃. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The reaction mixture was passed through a short plug of silica (CHCl₃ as an eluent) and evaporated. A Schlenk tube containing the residue, Pd₂(dba)₃•CHCl₃ (2.42 mg, 2.34 µmol), and Xphos (5.56 mg, 11.7 µmol) was evacuated and then refilled with N₂. To the tube, dry and degassed toluene (3.50 mL), Et₃N (500 µL), and HCOOH (20 µL, 529 µmol) were added. The mixture was stirred at 50 °C for 2 h. The reaction mixture was evaporated. Purification by silica-gel column chromatography with CHCl₃/hexane afforded the title compound in 78% (6.69 mg, 7.69 µmol) as a black solid. ¹H NMR (acetone- d_6): δ 8.66 (s, 4H, Ar-o), 8.60 (d, J = 5.0 Hz, 2H, pyrrole- β), 8.60 (d, J =4.5 Hz, 2H, pyrrole- β), 8.50 (d, 2H, J = 5.0 Hz pyrrole- β), 8.43 (s, 2H, Ar-p), 8.12 (d, J = 4.5Hz, 2H, pyrrole-β), 7.33 (s, 2H, Bn) 7.26–7.27 (m, 3H, Bn), 7.15–7.17 (m, 2H, Bn) ppm; ¹³C NMR (acetone- d_6): δ 145.7, 145.0, 142.4, 139.5, 134.0, 134.0, 133.6, 131.5, 131.3, 129.7, 128.8, 126.7, 126.3, 125.8, 125.3, 122.8, 119.2, 115.4, 58.1 ppm; ¹⁹F NMR (CDCl₃): δ –65.7 ppm; HR-MS (ESI-MS): m/z = 870.1034, calcd for $(C_{41}H_{22}N_5F_{12}Ni)^+ = 870.1032 [(M + H)^+]$.

Synthesis of Ni[#] and Al[#] 10-azacorroles through coordination-induced cyclisation

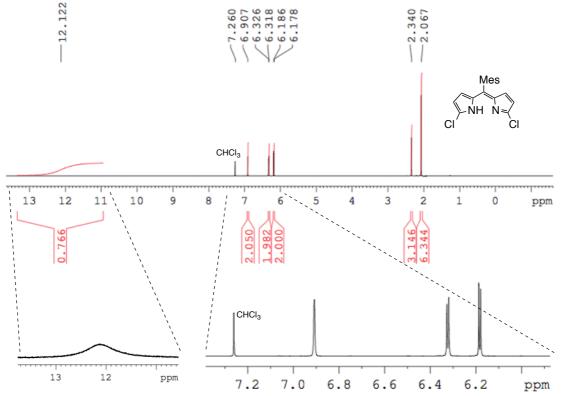


Fig S1. ¹H NMR spectrum of 1b in CDCl₃.

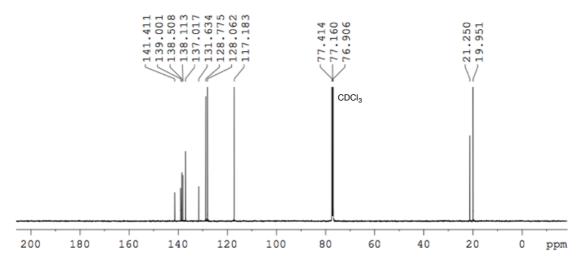
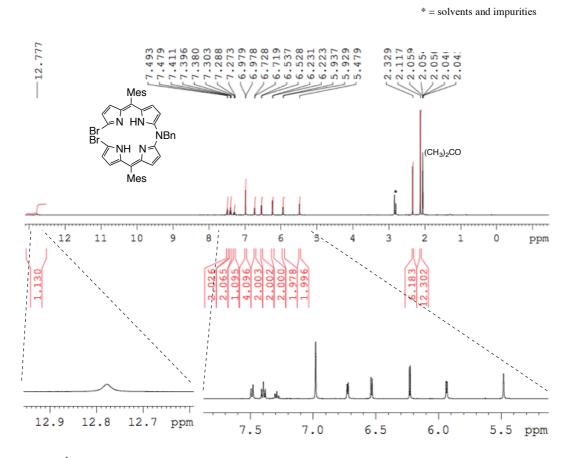



Fig S2. ¹³C NMR spectrum of 1b in CDCl₃.

Synthesis of Ni^{II} and Al^{III} 10-azacorroles through coordination-induced cyclisation

Fig S3. ¹H NMR spectrum of 2a in acetone- d_6 .

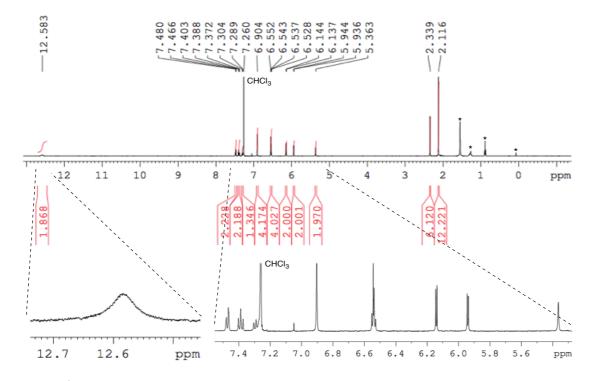
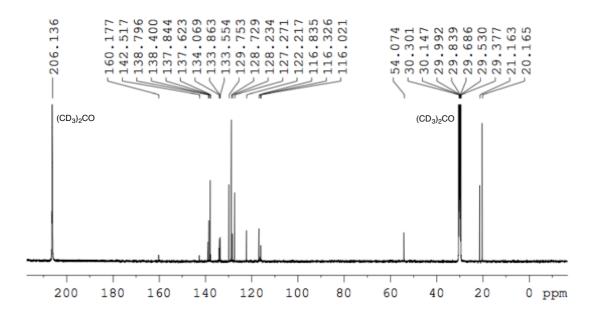
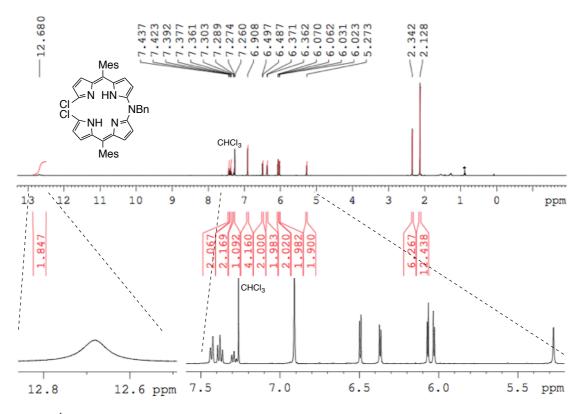
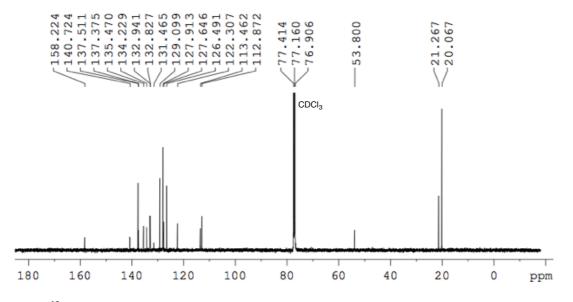
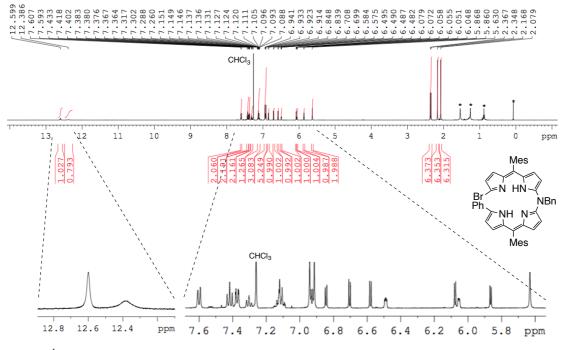



Fig S4. ¹H NMR spectrum of 2a in CDCl₃.

Fig S5. ¹³C NMR spectrum of **2a** in acetone- d_6 .

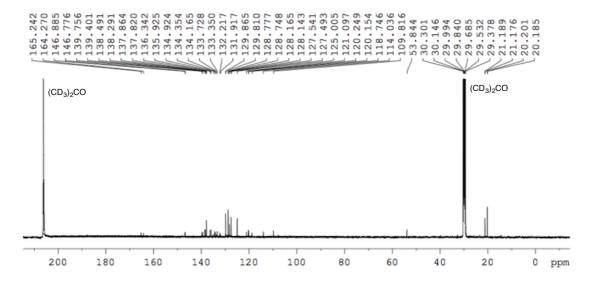

Fig S6. ¹H NMR spectrum of **2b** in CDCl₃.

Fig S7. ¹³C NMR spectrum of **2b** in CDCl₃.

Fig S8. ¹H NMR spectrum of **2c** in CDCl₃.

Fig S9. ¹³C NMR spectrum of 2c in acetone- d_6 .

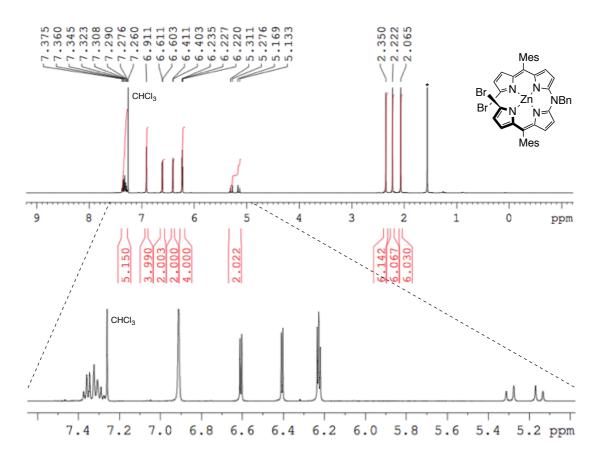


Fig S10. ¹H NMR spectrum of **3Zn** in CDCl₃.

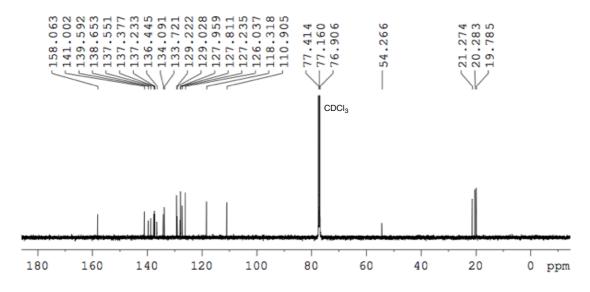
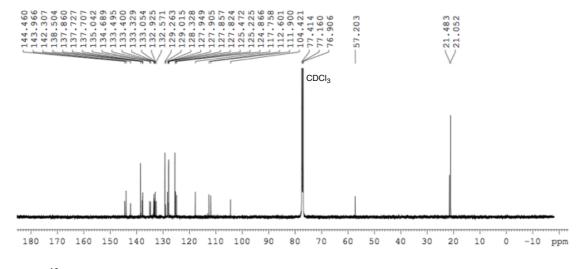



Fig S11. ¹³C NMR spectrum of **3Zn** in CDCl₃.

Fig S12. ¹H NMR spectrum of **4** in acetone- d_6 .

Fig S13. ¹³C NMR spectrum of **4** in CDCl₃.

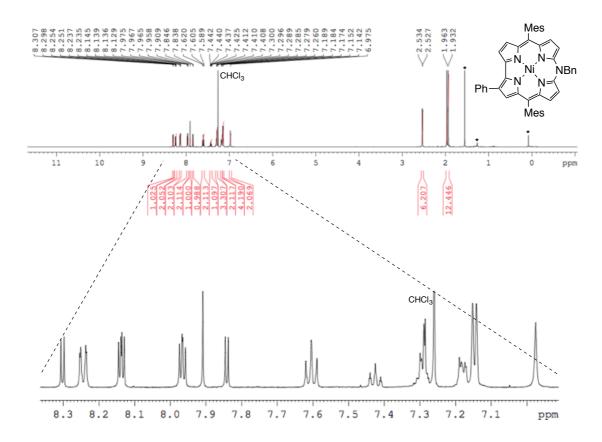
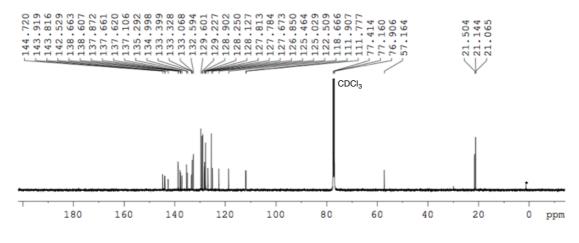
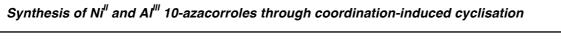
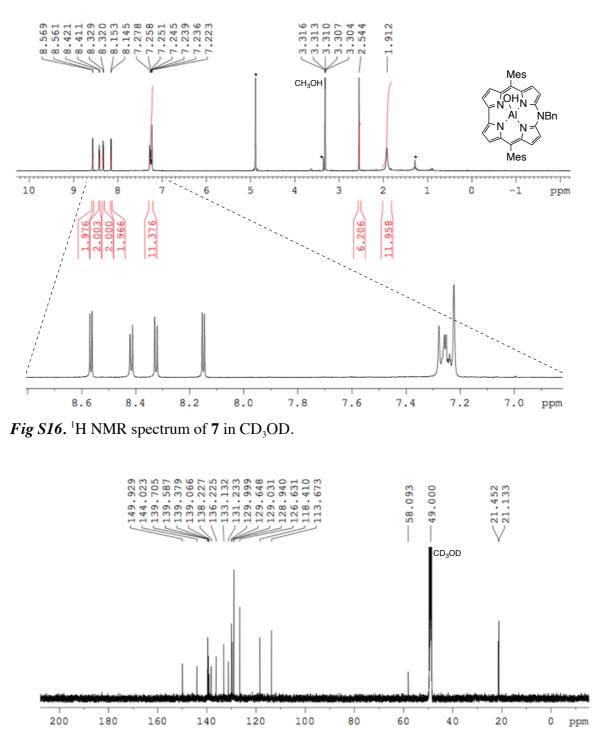
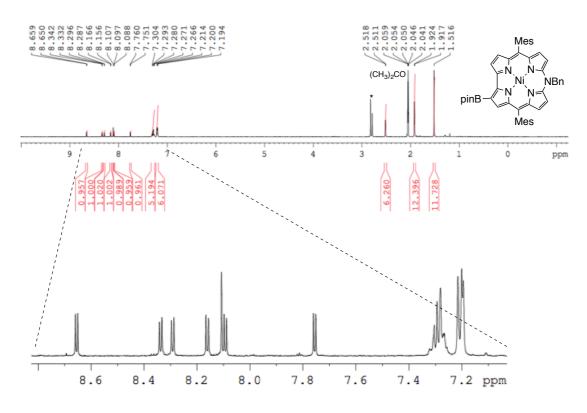
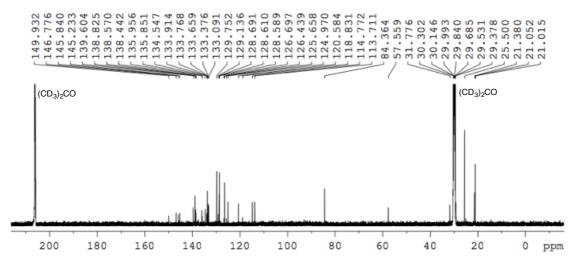
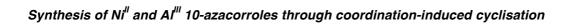





Fig S14. ¹H NMR spectrum of 6 in CDCl₃.



*Fig S15.*¹³C NMR spectrum of **6** in CDCl₃.




Fig S17. ¹³C NMR spectrum of 7 in CD_3OD .

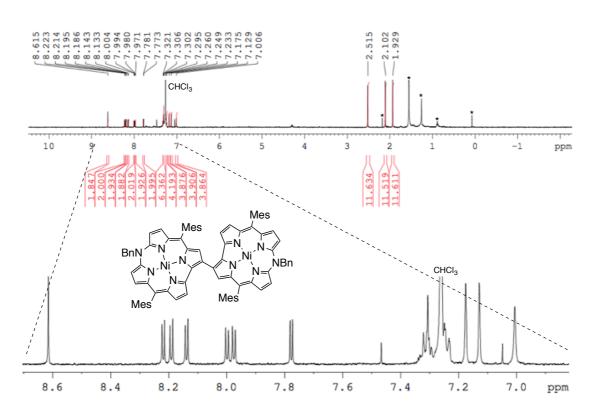
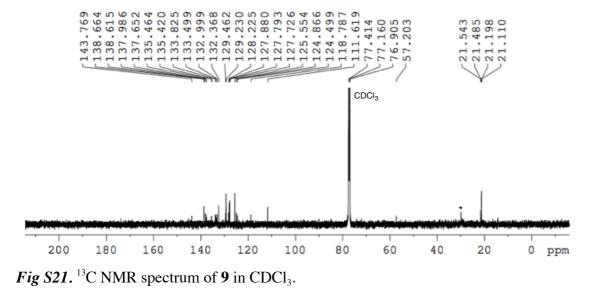
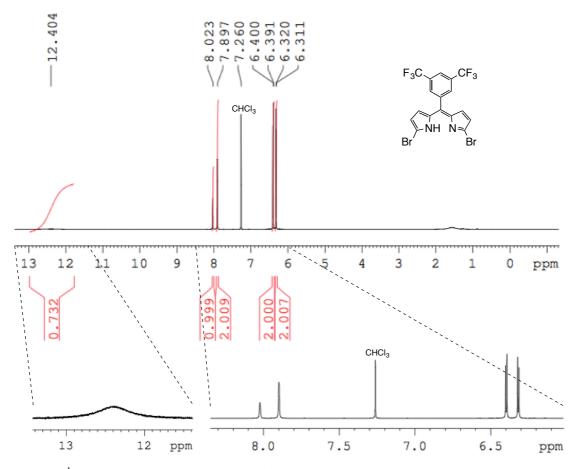


Fig S18. ¹H NMR spectrum of **8** in acetone- d_6 .




Fig S19. ¹³C NMR spectrum of 8 in acetone- d_6 .

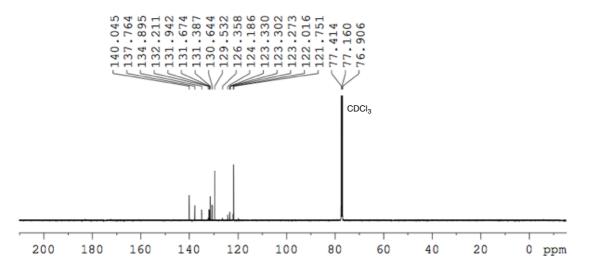
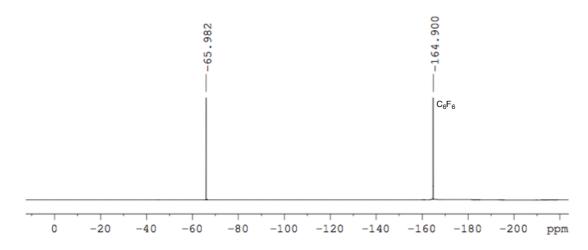
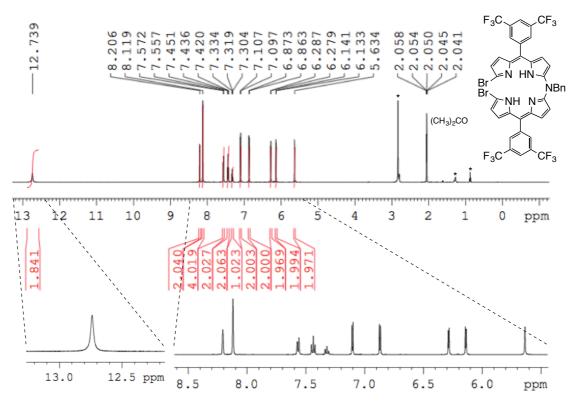
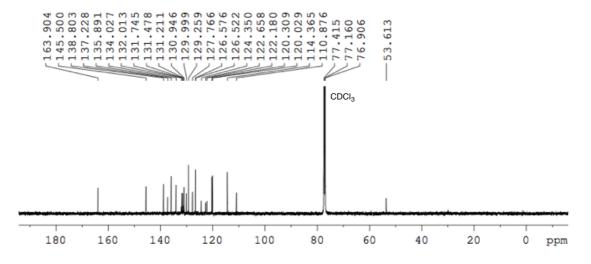
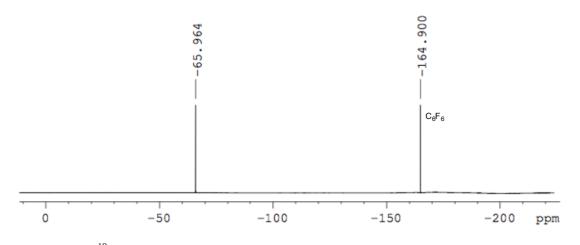


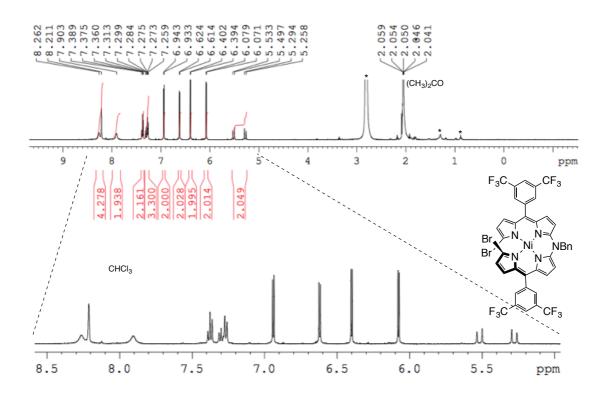
Fig S20. ¹H NMR spectrum of **9** in CDCl₃.

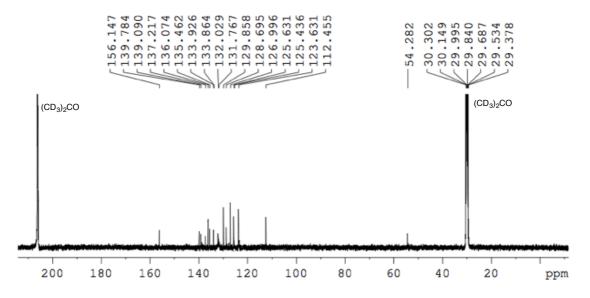


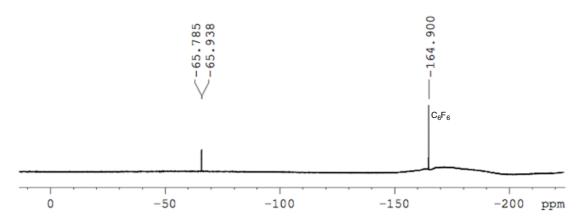

Fig S22. ¹H NMR spectrum of *meso-*3,5-bis(trifluoromethyl)phenyl- α , α '-dibromodipyrrin in CDCl₃.

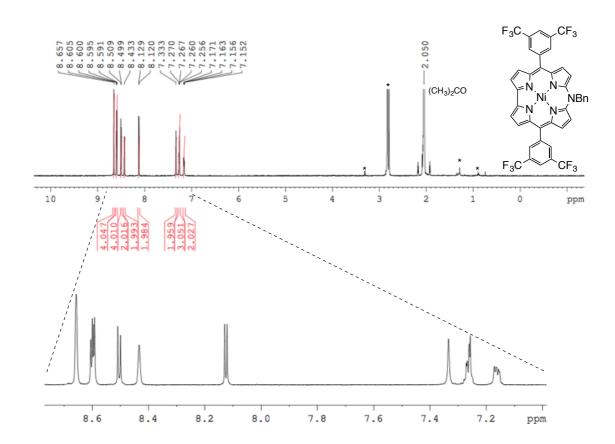

Fig S23. ¹³C NMR spectrum of *meso-*3,5-bis(trifluoromethyl)phenyl- α , α '-dibromodipyrrin in CDCl₃.


Fig S24. ¹⁹F NMR spectrum of *meso-*3,5-bis(trifluoromethyl)phenyl- α , α '-dibromodipyrrin in CDCl₃.


Fig S25. ¹H NMR spectrum of N_*N -bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-N-benzylamine in acetone- d_6 .


Fig S26. ¹³C NMR spectrum of N,N-bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-N-benzylamine in CDCl₃.


Fig S27. ¹⁹F NMR spectrum of N,N-bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-N-benzylamine in CDCl₃.


Fig S28. ¹H NMR spectrum of N,N-Bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-N-benzylamine Ni complex in acetone- d_6 .

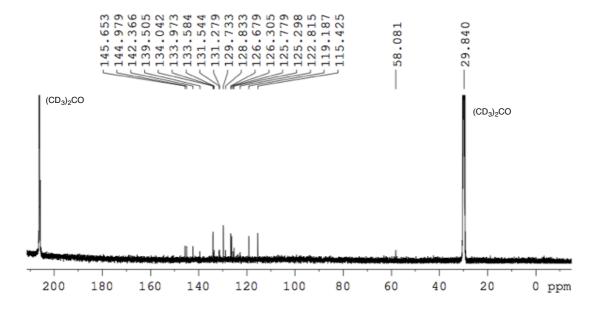

Fig S29. ¹³C NMR spectrum of N,N-Bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)-N-benzylamine Ni complex in acetone- d_6 .

Fig S30. ¹⁹F NMR spectrum of N_*N -bis(*meso*-3,5-bis(trifluoromethyl)phenyl-1-bromodipyrrin-9-yl)- N-benzylamine Ni complex in CDCl₃.

Fig S31. ¹H NMR spectrum of 5,15-(3,5-bis(trifluoromethyl)phenyl)-10-azacorrole in acetone- d_6 .

Fig S32. ¹³C NMR spectrum of 5,15-(3,5-bis(trifluoromethyl)phenyl)-10-azacorrole in acetone- d_6 .

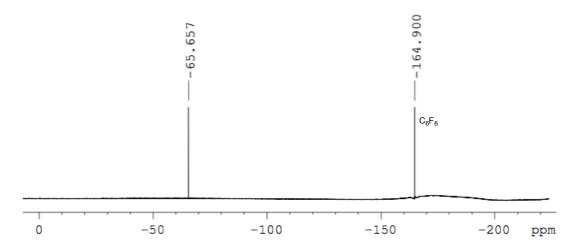
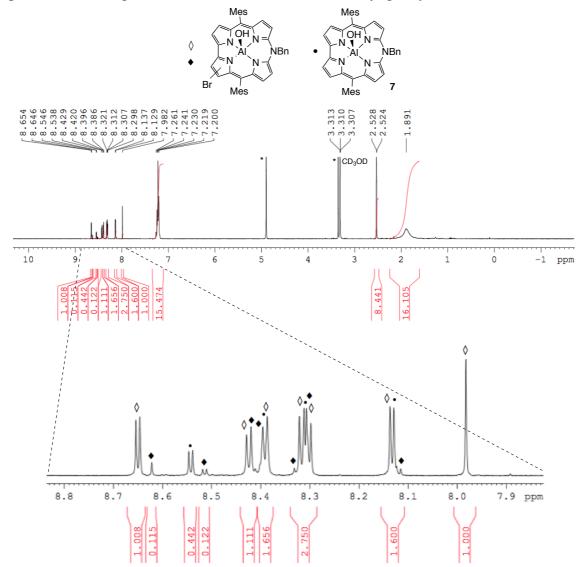



Fig S33. ¹⁹F NMR spectrum of 5,15-(3,5-bis(trifluoromethyl)phenyl)-10-azacorrole in CDCl₃.

Fig S34. ¹H NMR spectra of the mixture obtained by the reaction with $AlCl_3$ in CD_2Cl_2 .

Cyclic Voltammetry

The cyclic voltammogram and differential-pulse voltammogram of **5** and **7** were recorded on ALS electrochemical analyser 612C. Measurements were performed in freshly distilled dichloromethane with tetrabutylammonium hexafluorophosphate as electrolyte. A three-electrode system was used and consisted of a platinum working electrode, a platinum wire and Ag/AgClO₄ as the reference electrode. The scan rate was 100 mVs⁻¹. The measurement was performed under nitrogen atmosphere. All potentials are referenced to the potential of ferrocene/ferrocenium cation couple.

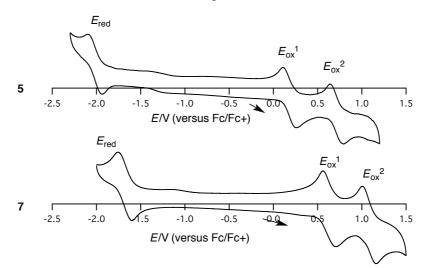
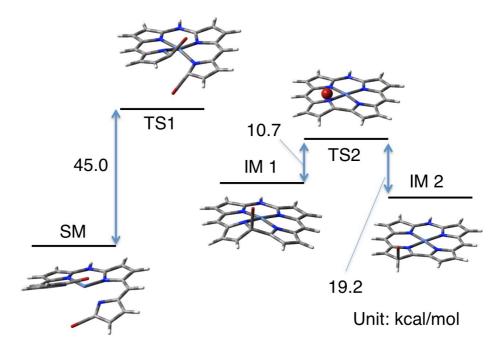


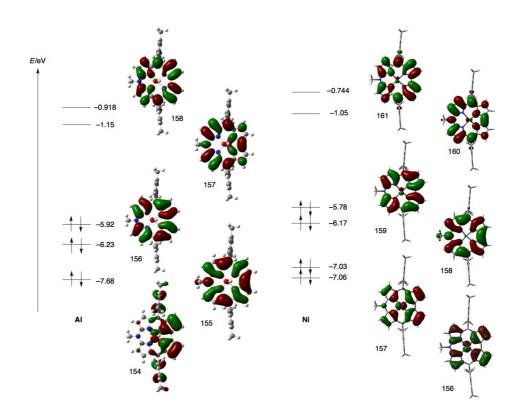
Fig. S35 Cyclic voltammograms of 5 and 7.


Table S1. Results of electrochemical measurement for **5** and **7**.^{*a*}

Compound	$E_{ m red}$	$E_{ m ox}^{-1}$	$E_{\rm ox}^{2}$	ΔE^b
5	-2.01	0.181	0.718	2.19
7	-1.89	0.426	0.871	2.33

a: unit: V, *b*: $\Delta E = E_{ox}^{1} - E_{red}$

Theoretical Calculations


All calculations were carried out using the Gaussian 09 program.² The geometries of all compounds for the mechanistic investigations were optimized by the DFT method with Zhao's M06-2X functional³ and the 6-31G(d) basis set for C, H, N, and Br atoms and SDD for Ni. Mesityl substituents were replaced with hydrogen to reduce the calculation cost. The structures of the intermediates and transition states were obtained by hand-guesses. Full optimizations were performed without any symmetry restriction with the M06-2X/631SDD method. Zero-point energy and thermal energy corrections were conducted for all optimized structures, and the sums of electronic and thermal free energies were obtained. The zero-point energies were not scaled, and the enthalpic corrections were made at 298.150 K. Each transition state gave single imaginary frequency and IRC calculations supported the transition structure.

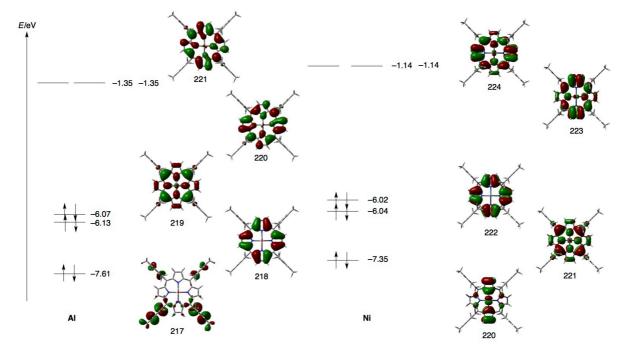

Fig S36. Energy profile for electrocyclization and 1,2-migration by DFT calculations. The calculations were performed at the M06-2X/6-31G(d) level.

Table S2. Summary of calculations on the electroncyclization/1,2-migration process of 3Ni.

	3Ni	TS1	
Energy (au)	-6279.613308	-6279.542662	_
Total Energy (au)	-6279.662114	-6279.590389	
$E_{\rm a}$ (kcal/mol)		45.0	
	IM I	TS2	IM II
Energy (au)	IM I -3707.917140	TS2 -3707.900435	
Energy (au) Total Energy (au)			IM II -3707.930149 -3707.975947

Fig S37. MO diagrams of Al^{III} azacorrole 7 and Ni^{II} azacorrole 5.

Fig S38. MO diagrams of Al^{III} TPP and Ni^{II} TPP.

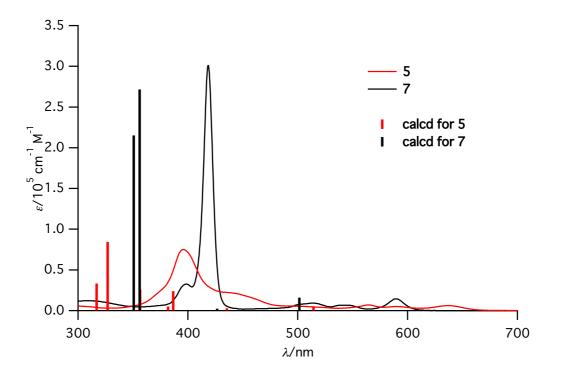


Fig S39. Calculated oscillator strengths of 5 and 7.

Table S3. Summary of calculated oscillator strengths for compounds **5** and **7**.

compound	wavelength	oscillator	component	population
-	(nm)	strength	-	
5	514.26	0.0542	$158 \rightarrow 161$	-0.27757
			$159 \rightarrow 160$	0.63241
	435.36	0.0313	$157 \rightarrow 160$	0.19131
			$158 \rightarrow 160$	0.30206
			$159 \rightarrow 161$	0.59289
	386.53	0.2394	$157 \rightarrow 160$	-0.41823
			$158 \rightarrow 160$	0.52008
			$159 \rightarrow 161$	-0.10831
	326.93	0.8454	$156 \rightarrow 160$	-0.44106
			$158 \rightarrow 161$	0.45884
			$159 \rightarrow 160$	0.27599
7	501.39	0.0535	$155 \rightarrow 158$	-0.36015
			$156 \rightarrow 158$	0.60061
	426.54	0.0084	$155 \rightarrow 157$	0.44108
			$156 \rightarrow 158$	0.54352
	356.06	0.9053	$155 \rightarrow 157$	0.54688
			$156 \rightarrow 158$	-0.43930
	350.61	0.7176	$154 \rightarrow 157$	0.13544
			$155 \rightarrow 158$	0.57919
			$156 \rightarrow 157$	0.35471

¹ Matano, Y.; Shibano, T.; Nakano, H.; Imahori, H. Chem. Eur. J. 2012, 18, 6208.

² Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

³ Zhao, Y.; Truhlar, D. G., *Theor. Chem. Acc.* **2008**, *120*, 215.