Enantioselective Construction of Chiral Thiazolidine: the

asymmetric catalytic [3+2] Annulation of 1,4-dithiane-2,5-diol

and ketimines

Ping Cheng, Wengang Guo, Ping Chen, Yan Liu,* Xin Du* and Can Li*

Department of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China

Supporting Information

Table of Contents

General Information	. S2
Experimental Procedures	. S2
X-ray Crystal Structure of 6e	. S6
X-ray Crystal Structure of 8	S29
Compound Characterization Data	S46

General Information

Reactions were monitored by thin layer chromatography (TLC), and column chromatography purifications were carried out using silica gel. ¹H and ¹³C spectra were recorded on a 400 MHz spectrometer (100 MHz for ¹³C). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartert, m = multiplet, br = broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Column chromatography was performed on silica gel (300-400 mesh). HPLC analysis was performed on Agilent HPLC 1100 equipped with Daicel chiral AS-H column or OD-H column. High resolution mass spectra for all the new compounds were done by an LTQ-Orbitrap instrument (ESI) (Thermo Fisher Scientific, USA). Catalysts were purchased from Daicel Chiral Technologies (China) Co., LTD. Substrates 1 were synthesized by following the published procedures. 2,5-Dihydroxy-1,4-dithiane, 2 was purchased from J&K Scientific Company.

Experimental Procedures

1.Genera experimental procedure for the synthesis, of indoline -

3,2'-thiazolidine:

To a 10-mL test-tube were sequentially added catalyst **E** (8.6 mg, 0.02 mmol), CH_2Cl_2 (2.0 mL), and the imine **4** (0.2 mmol). The mixture was cooled to -20°C and stirred for 10 min. Dithiane **5** (18.24 mg, 0.12 mmol) was then added. The reaction mixture was stirred at -20°C and monitored by TLC. Upon completion (2~10h), the residual was purified by silica gel flash chromatography (petroleum ether:ethyl acetate, 5:1) to afford the desired product **6**. The yield reported here is the major diasteromer. The pure diastereomers were obtained for characterization purpose. The racemic examples were prepared by the catalysis of the mixture quinine and quindine. The ratio of diastereomer were determined based on the ¹HNMR analysis of the crude with CDCl₃ as solvent. Two diasteromers were separated from crude examples to obtain the ¹HNMR, ¹³CNMR and HPLC of major diastereomer.

2.Prepare 2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carboxy-

late 7.¹

To a solution of **6** (86 mg, 0.2 mmol) in CH_2Cl_2 (1.0 mL) was added pyridinium chlorochromate (129 mg, 0.6 mmol) at room temperature . The solution was allowed to stir overnight at room temperature. The reaction mixture was then filtered through celite, washed thoroughly with EtOAc, and concentrated. The crude material was purified by silica gel column chromatography (petroleum ether:ethyl acetate, 5:1) to give product **7** as a white solid (yield:95%).

Oxidation of tert-butyl 1-(3-fluorobenzyl)-2,4'-dioxospiro[indoline-3,2'-thiazo lidine]-3'-carboxylate into sulfoxide 8 and sulfones (+)-3²:

8 (sulfoxide): To a cooled (0 °C) solution of the sulfide **7p** (0.1 mmol,42mg) in 2 mL of CH₂Cl₂ was added m-CPBA (19 mg, 0.11 mmol, 1.1 equiv.). The mixture was stirred for 0.5 h until the reaction was completed at 0°C (minitored by TLC). The reaction mixture was diluted with 15 mL of EtOAc, washed with 15% NaHSO₃ solution (2×20 mL), saturated NaHCO₃ solution (2×20 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (petroleum ether:ethyl acetate, 3:1) to provide the corresponding sulfoxide **8** as an white solid (yield:90%).

(+)-3 (sulfone): To a cooled (0 °C) solution of the sulfide 7p (0.1 mmol,42mg) in 2 mL of CH_2Cl_2 was added m-CPBA (86 mg, 0. 5 mmol, 5 equiv.). The resulting solution was allowed to reach room temperature and stirred for 48 h. The reaction mixture was diluted with 15 mL of EtOAc, washed with 15% NaHSO₃ solution (2×20)

mL), saturated NaHCO₃ solution (2×20 mL), dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (petroleum ether:ethyl acetate, 3:1) to provide the corresponding sulfone as an white solid (yield:92%).

References

1. M. G. Nilson and R. L. Funk, Org. Lett., 2006, 8, 3833.

2. V. V. Vintonyak, K. Warburg, B. Over, K. Hübel, D. Rauh and H. Waldmann, *Tetrahedron*, 2011, **67**, 6713.

X-ray Crystal Structure of 6e

Table 1. Crystal data and structure refinement for cd15013.

cd15013	
C22 H23 Br N2 O4 S	
491.39	
293(2) K	
0.71073 Å	
Monoclinic	
P 21	
a = 10.3517(8) Å	α= 90°.
b = 17.5995(15) Å	β=103.504(2)°.
c = 13.2555(11) Å	$\gamma = 90^{\circ}$.
2348.2(3) Å ³	
4	
1.390 Mg/m ³	
1.868 mm ⁻¹	
1008	
0.180 x 0.160 x 0.110 mm ³	
1.958 to 25.492°.	
-11<=h<=12, -21<=k<=21, -14<=l<=16	
13809	
	cd15013 C22 H23 Br N2 O4 S 491.39 293(2) K 0.71073 Å Monoclinic P 21 a = 10.3517(8) Å b = 17.5995(15) Å c = 13.2555(11) Å 2348.2(3) Å ³ 4 1.390 Mg/m ³ 1.868 mm ⁻¹ 1008 0.180 x 0.160 x 0.110 mm ³ 1.958 to 25.492°. -11<=h<=12, -21<=k<=21, -14 13809

Independent reflections 8545 [R(int) = 0.0589] Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents 0.7456 and 0.5838 Max. and min. transmission Refinement method Full-matrix least-squares on F² 8545 / 82 / 587 Data / restraints / parameters Goodness-of-fit on F² 0.947 Final R indices [I>2sigma(I)] R1 = 0.0613, wR2 = 0.1187R indices (all data) R1 = 0.1506, wR2 = 0.15280.037(12) Absolute structure parameter Extinction coefficient n/a Largest diff. peak and hole 0.332 and -0.224 e.Å-3

	Х	у	Z	U(eq)
Br(1)	9917(1)	9313(2)	1048(2)	154(1)
Br(2)	7102(1)	10978(1)	4213(1)	101(1)
S(1)	4779(3)	7598(2)	603(2)	60(1)
S(2)	5764(3)	7648(2)	3469(2)	69(1)
N(1)	4030(8)	9560(5)	595(6)	51(2)
N(2)	4568(8)	8215(4)	-1213(6)	44(2)
N(3)	9257(8)	7793(5)	4286(7)	64(3)
N(4)	6550(7)	7774(5)	5471(6)	49(2)
O(1)	2380(7)	8827(4)	-373(6)	65(2)
O(2)	5396(8)	7009(4)	-1498(7)	78(2)
O(3)	4033(7)	8523(4)	-2919(6)	58(2)
O(4)	4565(7)	9417(4)	-1675(5)	58(2)
O(5)	8373(8)	6692(5)	4753(6)	70(2)
O(6)	4213(7)	7906(5)	5240(6)	74(2)
O(7)	6835(7)	7746(5)	7218(5)	67(2)
O(8)	8507(7)	8065(4)	6455(5)	64(2)
C(1)	3538(11)	8952(6)	-20(8)	48(3)
C(2)	4735(9)	8480(6)	-144(7)	43(2)
C(3)	5882(9)	8962(6)	337(8)	45(3)
C(4)	5419(10)	9581(6)	799(8)	49(3)
C(5)	6283(12)	10108(7)	1373(8)	69(3)
C(6)	7648(12)	10007(9)	1412(10)	82(4)
C(7)	8074(11)	9399(10)	933(11)	82(4)
C(8)	7225(11)	8845(8)	412(9)	70(3)
C(9)	3796(10)	7125(6)	-520(8)	59(3)
C(10)	4273(11)	7425(6)	-1417(8)	53(3)
C(11)	4366(10)	8711(6)	-2021(9)	47(3)
C(12)	4451(14)	10086(6)	-2379(9)	73(4)
C(13)	3035(15)	10173(8)	-2990(11)	99(4)
C(14)	5424(14)	9962(8)	-3083(12)	104(5)
C(15)	4878(19)	10722(7)	-1631(11)	126(6)
C(16)	3205(10)	10153(6)	874(8)	58(3)
C(17)	3117(9)	10135(7)	1984(9)	54(3)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for cd15013. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(18)	2543(11)	10772(6)	2351(11)	73(4)
C(19)	2376(16)	10781(10)	3321(14)	100(5)
C(20)	2753(14)	10191(13)	3960(11)	98(5)
C(21)	3296(11)	9544(10)	3610(11)	90(4)
C(22)	3477(10)	9530(8)	2610(9)	68(3)
C(23)	8316(11)	7369(8)	4564(9)	60(3)
C(24)	7099(9)	7892(6)	4575(8)	51(3)
C(25)	7653(10)	8651(6)	4425(8)	50(3)
C(26)	8891(10)	8574(7)	4225(9)	63(3)
C(27)	9609(11)	9188(7)	4036(9)	73(3)
C(28)	9084(12)	9903(7)	4063(10)	70(3)
C(29)	7834(12)	9989(6)	4255(9)	65(3)
C(30)	7091(10)	9368(8)	4418(8)	62(3)
C(31)	5071(11)	7016(6)	4246(8)	65(3)
C(32)	5259(10)	7385(6)	5291(8)	54(3)
C(33)	7289(11)	7854(6)	6458(9)	53(3)
C(34)	9500(11)	8264(9)	7424(10)	74(4)
C(35)	9757(16)	7628(12)	8176(15)	164(9)
C(36)	8997(14)	8949(10)	7894(14)	143(8)
C(37)	10712(12)	8431(12)	7037(12)	143(8)
C(38)	10474(14)	7473(9)	4103(13)	91(5)
C(39)	10660(20)	7220(12)	3163(14)	153(6)
C(40)	11374(19)	7651(10)	2604(16)	157(6)
C(41)	11530(19)	7394(11)	1647(15)	162(6)
C(42)	10970(20)	6707(12)	1251(14)	164(6)
C(43)	10250(20)	6277(10)	1811(19)	160(6)
C(44)	10100(20)	6533(12)	2767(18)	156(6)
C(39')	10270(40)	7300(20)	2972(17)	141(9)
C(40')	11460(30)	7250(30)	2660(30)	143(9)
C(41')	11460(30)	7030(30)	1650(30)	146(9)
C(42')	10270(30)	6850(20)	960(19)	146(9)
C(43')	9080(30)	6903(18)	1273(17)	145(8)
C(44')	9080(30)	7128(18)	2279(19)	143(8)

Br(1)-C(7)	1.884(11)
Br(2)-C(29)	1.895(11)
S(1)-C(9)	1.798(11)
S(1)-C(2)	1.837(10)
S(2)-C(31)	1.779(11)
S(2)-C(24)	1.816(10)
N(1)-C(1)	1.370(12)
N(1)-C(4)	1.400(12)
N(1)-C(16)	1.450(12)
N(2)-C(11)	1.360(12)
N(2)-C(10)	1.435(13)
N(2)-C(2)	1.463(12)
N(3)-C(23)	1.345(13)
N(3)-C(26)	1.424(14)
N(3)-C(38)	1.451(15)
N(4)-C(33)	1.360(13)
N(4)-C(24)	1.446(11)
N(4)-C(32)	1.470(12)
O(1)-C(1)	1.201(11)
O(2)-C(10)	1.399(11)
O(2)-H(2)	0.8200
O(3)-C(11)	1.206(12)
O(4)-C(11)	1.323(12)
O(4)-C(12)	1.491(12)
O(5)-C(23)	1.216(13)
O(6)-C(32)	1.408(12)
O(6)-H(6)	0.8200
O(7)-C(33)	1.222(11)
O(8)-C(33)	1.316(11)
O(8)-C(34)	1.487(13)
C(1)-C(2)	1.531(13)
C(2)-C(3)	1.476(13)
C(3)-C(8)	1.385(14)
C(3)-C(4)	1.389(13)
C(4)-C(5)	1.386(14)
C(5)-C(6)	1.413(16)

Table 3.Bond lengths [Å] and angles [°] forcd15013.

C(5)-H(5)	0.9300
C(6)-C(7)	1.370(18)
C(6)-H(6A)	0.9300
C(7)-C(8)	1.384(18)
C(8)-H(8)	0.9300
C(9)-C(10)	1.488(13)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
С(10)-Н(10)	0.9800
C(12)-C(15)	1.493(17)
C(12)-C(13)	1.508(17)
C(12)-C(14)	1.540(17)
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
С(13)-Н(13С)	0.9600
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-C(17)	1.496(14)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-C(22)	1.349(15)
C(17)-C(18)	1.407(15)
C(18)-C(19)	1.336(17)
C(18)-H(18)	0.9300
C(19)-C(20)	1.34(2)
C(19)-H(19)	0.9300
C(20)-C(21)	1.40(2)
C(20)-H(20)	0.9300
C(21)-C(22)	1.381(16)
С(21)-Н(21)	0.9300
С(22)-Н(22)	0.9300
C(23)-C(24)	1.564(15)
C(24)-C(25)	1.484(14)
C(25)-C(26)	1.375(13)

C(25)-C(30)	1.389(15)
C(26)-C(27)	1.367(14)
C(27)-C(28)	1.376(15)
С(27)-Н(27)	0.9300
C(28)-C(29)	1.384(15)
C(28)-H(28)	0.9300
C(29)-C(30)	1.381(15)
C(30)-H(30)	0.9300
C(31)-C(32)	1.501(13)
C(31)-H(31A)	0.9700
C(31)-H(31B)	0.9700
С(32)-Н(32)	0.9800
C(34)-C(35)	1.48(2)
C(34)-C(37)	1.491(16)
C(34)-C(36)	1.506(18)
C(35)-H(35A)	0.9600
C(35)-H(35B)	0.9600
C(35)-H(35C)	0.9600
C(36)-H(36A)	0.9600
C(36)-H(36B)	0.9600
C(36)-H(36C)	0.9600
C(37)-H(37A)	0.9600
C(37)-H(37B)	0.9600
C(37)-H(37C)	0.9600
C(38)-C(39)	1.38(2)
C(38)-C(39')	1.49(2)
C(38)-H(38B)	0.93(3)
C(38)-H(38A)	0.94(3)
C(39)-C(40)	1.3900
C(39)-C(44)	1.3900
C(40)-C(41)	1.3900
C(40)-H(40)	0.9300
C(41)-C(42)	1.3900
C(41)-H(41)	0.9300
C(42)-C(43)	1.3900
C(42)-H(42)	0.9300
C(43)-C(44)	1.3900
C(43)-H(43)	0.9300

C(44)-H(44)	0.9300
C(39')-C(40')	1.3900
C(39')-C(44')	1.3900
C(40')-C(41')	1.3900
C(40')-H(40')	0.9300
C(41')-C(42')	1.3900
C(41')-H(41')	0.9300
C(42')-C(43')	1.3900
C(42')-H(42')	0.9300
C(43')-C(44')	1.3900
C(43')-H(43')	0.9300
C(44')-H(44')	0.9300
C(9)-S(1)-C(2)	90.4(5)
C(31)-S(2)-C(24)	90.8(5)
C(1)-N(1)-C(4)	110.9(8)
C(1)-N(1)-C(16)	123.7(8)
C(4)-N(1)-C(16)	124.9(9)
C(11)-N(2)-C(10)	119.1(9)
C(11)-N(2)-C(2)	121.3(8)
C(10)-N(2)-C(2)	117.6(8)
C(23)-N(3)-C(26)	110.6(9)
C(23)-N(3)-C(38)	122.9(11)
C(26)-N(3)-C(38)	126.5(10)
C(33)-N(4)-C(24)	122.3(8)
C(33)-N(4)-C(32)	119.4(8)
C(24)-N(4)-C(32)	116.8(8)
C(10)-O(2)-H(2)	109.5
C(11)-O(4)-C(12)	122.8(8)
C(32)-O(6)-H(6)	109.5
C(33)-O(8)-C(34)	122.2(8)
O(1)-C(1)-N(1)	125.0(9)
O(1)-C(1)-C(2)	128.2(9)
N(1)-C(1)-C(2)	106.8(8)
N(2)-C(2)-C(3)	120.1(8)
N(2)-C(2)-C(1)	111.2(8)
C(3)-C(2)-C(1)	103.4(8)
N(2)-C(2)-S(1)	103.5(6)

C(3)-C(2)-S(1)	109.7(7)
C(1)-C(2)-S(1)	108.6(7)
C(8)-C(3)-C(4)	121.9(10)
C(8)-C(3)-C(2)	129.7(10)
C(4)-C(3)-C(2)	108.3(8)
C(5)-C(4)-C(3)	121.5(10)
C(5)-C(4)-N(1)	128.7(10)
C(3)-C(4)-N(1)	109.8(8)
C(4)-C(5)-C(6)	116.6(12)
C(4)-C(5)-H(5)	121.7
C(6)-C(5)-H(5)	121.7
C(7)-C(6)-C(5)	120.5(12)
C(7)-C(6)-H(6A)	119.7
C(5)-C(6)-H(6A)	119.7
C(6)-C(7)-C(8)	123.1(11)
C(6)-C(7)-Br(1)	117.0(11)
C(8)-C(7)-Br(1)	119.8(12)
C(3)-C(8)-C(7)	116.2(12)
C(3)-C(8)-H(8)	121.9
C(7)-C(8)-H(8)	121.9
C(10)-C(9)-S(1)	105.6(7)
C(10)-C(9)-H(9A)	110.6
S(1)-C(9)-H(9A)	110.6
C(10)-C(9)-H(9B)	110.6
S(1)-C(9)-H(9B)	110.6
H(9A)-C(9)-H(9B)	108.8
O(2)-C(10)-N(2)	112.2(9)
O(2)-C(10)-C(9)	108.2(8)
N(2)-C(10)-C(9)	106.8(8)
O(2)-C(10)-H(10)	109.9
N(2)-C(10)-H(10)	109.9
C(9)-C(10)-H(10)	109.9
O(3)-C(11)-O(4)	125.8(10)
O(3)-C(11)-N(2)	123.9(10)
O(4)-C(11)-N(2)	110.3(9)
O(4)-C(12)-C(15)	102.0(9)
O(4)-C(12)-C(13)	109.9(10)
C(15)-C(12)-C(13)	112.4(13)

O(4)-C(12)-C(14)	107.5(10)
C(15)-C(12)-C(14)	112.1(12)
C(13)-C(12)-C(14)	112.3(11)
C(12)-C(13)-H(13A)	109.5
С(12)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(12)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
С(12)-С(15)-Н(15А)	109.5
C(12)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
С(12)-С(15)-Н(15С)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
N(1)-C(16)-C(17)	114.3(9)
N(1)-C(16)-H(16A)	108.7
C(17)-C(16)-H(16A)	108.7
N(1)-C(16)-H(16B)	108.7
С(17)-С(16)-Н(16В)	108.7
H(16A)-C(16)-H(16B)	107.6
C(22)-C(17)-C(18)	119.6(11)
C(22)-C(17)-C(16)	123.4(10)
C(18)-C(17)-C(16)	116.8(11)
C(19)-C(18)-C(17)	120.1(13)
C(19)-C(18)-H(18)	119.9
C(17)-C(18)-H(18)	119.9
C(18)-C(19)-C(20)	121.0(15)
С(18)-С(19)-Н(19)	119.5
С(20)-С(19)-Н(19)	119.5
C(19)-C(20)-C(21)	120.2(14)
C(19)-C(20)-H(20)	119.9

C(21)-C(20)-H(20)	119.9
C(22)-C(21)-C(20)	119.3(15)
С(22)-С(21)-Н(21)	120.4
С(20)-С(21)-Н(21)	120.4
C(17)-C(22)-C(21)	119.8(13)
С(17)-С(22)-Н(22)	120.1
С(21)-С(22)-Н(22)	120.1
O(5)-C(23)-N(3)	126.7(11)
O(5)-C(23)-C(24)	125.1(10)
N(3)-C(23)-C(24)	108.2(10)
N(4)-C(24)-C(25)	118.6(8)
N(4)-C(24)-C(23)	113.2(9)
C(25)-C(24)-C(23)	101.0(8)
N(4)-C(24)-S(2)	105.0(6)
C(25)-C(24)-S(2)	110.4(7)
C(23)-C(24)-S(2)	108.4(7)
C(26)-C(25)-C(30)	119.7(10)
C(26)-C(25)-C(24)	110.2(9)
C(30)-C(25)-C(24)	130.1(9)
C(27)-C(26)-C(25)	121.9(11)
C(27)-C(26)-N(3)	128.7(10)
C(25)-C(26)-N(3)	109.3(9)
C(26)-C(27)-C(28)	118.9(10)
С(26)-С(27)-Н(27)	120.5
С(28)-С(27)-Н(27)	120.5
C(27)-C(28)-C(29)	119.7(11)
C(27)-C(28)-H(28)	120.1
C(29)-C(28)-H(28)	120.1
C(28)-C(29)-C(30)	121.4(11)
C(28)-C(29)-Br(2)	118.6(9)
C(30)-C(29)-Br(2)	119.9(9)
C(29)-C(30)-C(25)	118.2(9)
C(29)-C(30)-H(30)	120.9
C(25)-C(30)-H(30)	120.9
C(32)-C(31)-S(2)	106.3(7)
C(32)-C(31)-H(31A)	110.5
S(2)-C(31)-H(31A)	110.5
C(32)-C(31)-H(31B)	110.5

S(2)-C(31)-H(31B)	110.5
H(31A)-C(31)-H(31B)	108.7
O(6)-C(32)-N(4)	111.4(9)
O(6)-C(32)-C(31)	107.8(8)
N(4)-C(32)-C(31)	105.6(8)
O(6)-C(32)-H(32)	110.6
N(4)-C(32)-H(32)	110.6
C(31)-C(32)-H(32)	110.6
O(7)-C(33)-O(8)	126.9(10)
O(7)-C(33)-N(4)	122.6(9)
O(8)-C(33)-N(4)	110.5(9)
C(35)-C(34)-C(37)	110.3(14)
C(35)-C(34)-O(8)	112.5(12)
C(37)-C(34)-O(8)	102.5(10)
C(35)-C(34)-C(36)	110.6(14)
C(37)-C(34)-C(36)	112.6(14)
O(8)-C(34)-C(36)	108.1(10)
C(34)-C(35)-H(35A)	109.5
C(34)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
C(34)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(34)-C(36)-H(36A)	109.5
C(34)-C(36)-H(36B)	109.5
H(36A)-C(36)-H(36B)	109.5
С(34)-С(36)-Н(36С)	109.5
H(36A)-C(36)-H(36C)	109.5
H(36B)-C(36)-H(36C)	109.5
C(34)-C(37)-H(37A)	109.5
C(34)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37B)	109.5
С(34)-С(37)-Н(37С)	109.5
H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5
C(39)-C(38)-N(3)	125.8(16)
N(3)-C(38)-C(39')	108.9(18)
C(39)-C(38)-H(38B)	114(4)

N(3)-C(38)-H(38B)	106(4)
C(39')-C(38)-H(38B)	123(5)
C(39)-C(38)-H(38A)	110(5)
N(3)-C(38)-H(38A)	109(5)
C(39')-C(38)-H(38A)	123(6)
H(38B)-C(38)-H(38A)	84(7)
C(38)-C(39)-C(40)	120.6(16)
C(38)-C(39)-C(44)	119.4(16)
C(40)-C(39)-C(44)	120.0
C(39)-C(40)-C(41)	120.0
C(39)-C(40)-H(40)	120.0
C(41)-C(40)-H(40)	120.0
C(42)-C(41)-C(40)	120.0
C(42)-C(41)-H(41)	120.0
C(40)-C(41)-H(41)	120.0
C(41)-C(42)-C(43)	120.0
C(41)-C(42)-H(42)	120.0
C(43)-C(42)-H(42)	120.0
C(44)-C(43)-C(42)	120.0
C(44)-C(43)-H(43)	120.0
C(42)-C(43)-H(43)	120.0
C(43)-C(44)-C(39)	120.0
C(43)-C(44)-H(44)	120.0
C(39)-C(44)-H(44)	120.0
C(40')-C(39')-C(44')	120.0
C(40')-C(39')-C(38)	113(2)
C(44')-C(39')-C(38)	127(2)
C(41')-C(40')-C(39')	120.0
С(41')-С(40')-Н(40')	120.0
С(39')-С(40')-Н(40')	120.0
C(40')-C(41')-C(42')	120.0
C(40')-C(41')-H(41')	120.0
С(42')-С(41')-Н(41')	120.0
C(41')-C(42')-C(43')	120.0
С(41')-С(42')-Н(42')	120.0
С(43')-С(42')-Н(42')	120.0
C(44')-C(43')-C(42')	120.0
C(44')-C(43')-H(43')	120.0

C(42')-C(43')-H(43')	120.0
C(43')-C(44')-C(39')	120.0
C(43')-C(44')-H(44')	120.0
C(39')-C(44')-H(44')	120.0

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	46(1)	239(3)	170(2)	-2(2)	15(1)	-19(1)
Br(2)	104(1)	62(1)	136(1)	-8(1)	25(1)	10(1)
S(1)	82(2)	51(2)	51(2)	11(2)	21(2)	2(2)
S(2)	73(2)	86(2)	46(2)	-19(2)	9(2)	-7(2)
N(1)	52(5)	49(6)	56(6)	-14(5)	24(4)	4(4)
N(2)	60(5)	37(5)	39(5)	-1(4)	20(4)	1(4)
N(3)	56(6)	67(7)	75(7)	12(5)	27(5)	6(5)
N(4)	45(5)	64(6)	40(5)	-7(4)	17(4)	-12(4)
O(1)	39(4)	75(6)	80(6)	-20(4)	10(4)	4(4)
O(2)	94(6)	58(5)	94(7)	0(4)	47(5)	15(5)
O(3)	90(5)	54(5)	35(4)	3(4)	22(4)	7(4)
O(4)	96(5)	36(4)	43(4)	4(4)	16(4)	-6(4)
O(5)	79(5)	66(6)	71(6)	7(5)	29(4)	-3(4)
O(6)	53(4)	111(7)	57(5)	-22(5)	12(4)	3(5)
O(7)	60(5)	95(6)	47(5)	0(4)	15(4)	-12(4)
O(8)	46(4)	102(6)	48(5)	-4(4)	16(4)	-20(4)
C(1)	53(7)	47(7)	44(7)	0(5)	9(5)	0(6)
C(2)	57(6)	40(5)	31(6)	-4(5)	7(5)	0(5)
C(3)	38(6)	54(7)	42(6)	-8(5)	12(5)	-1(5)
C(4)	49(6)	57(8)	37(6)	2(6)	4(5)	-6(6)
C(5)	81(9)	73(8)	47(7)	-8(7)	3(6)	-8(7)
C(6)	59(8)	114(12)	62(9)	15(9)	-9(7)	-39(8)
C(7)	55(8)	97(11)	92(10)	6(9)	14(7)	4(9)
C(8)	51(7)	91(10)	65(8)	-3(7)	7(6)	-3(7)
C(9)	78(8)	48(7)	63(8)	-3(6)	39(7)	-5(6)
C(10)	66(7)	45(7)	48(7)	2(5)	16(6)	6(6)
C(11)	57(7)	40(7)	45(7)	0(6)	16(6)	-1(5)
C(12)	120(11)	40(7)	56(8)	7(6)	15(8)	-15(7)
C(13)	126(12)	89(10)	83(10)	32(9)	25(9)	24(10)
C(14)	125(12)	76(10)	125(13)	33(9)	55(11)	-1(8)
C(15)	250(20)	45(10)	80(10)	1(7)	34(12)	-18(9)
C(16)	69(7)	43(6)	65(8)	-11(6)	22(6)	5(6)
C(17)	44(6)	70(8)	52(7)	-17(7)	18(5)	-9(6)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cd15013. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(18)	86(9)	50(9)	90(11)	-18(7)	34(8)	-6(6)
C(19)	131(13)	93(14)	91(12)	-27(11)	54(11)	-21(10)
C(20)	93(11)	154(17)	53(9)	-40(11)	28(8)	-30(11)
C(21)	62(8)	137(15)	69(10)	14(10)	9(7)	-21(9)
C(22)	72(7)	79(9)	55(8)	8(7)	21(6)	25(7)
C(23)	67(8)	66(9)	52(7)	6(6)	23(6)	-3(7)
C(24)	47(6)	62(7)	47(6)	-9(5)	19(5)	-9(5)
C(25)	48(6)	60(8)	43(6)	0(6)	15(5)	-2(6)
C(26)	56(7)	65(8)	73(8)	5(7)	26(7)	0(6)
C(27)	64(7)	74(9)	89(10)	20(8)	35(7)	-2(7)
C(28)	66(8)	64(9)	83(10)	7(7)	22(7)	-8(7)
C(29)	65(8)	51(8)	74(9)	-2(6)	9(7)	1(6)
C(30)	58(6)	80(9)	49(7)	-9(7)	10(5)	-10(7)
C(31)	74(8)	59(8)	66(8)	-26(6)	21(6)	-18(6)
C(32)	53(7)	68(8)	42(6)	-16(6)	13(5)	-15(6)
C(33)	59(7)	58(7)	46(7)	-1(6)	22(6)	-6(6)
C(34)	48(7)	114(11)	57(8)	-19(8)	5(6)	-15(7)
C(35)	107(13)	190(20)	157(17)	74(17)	-42(12)	-59(13)
C(36)	87(10)	168(19)	162(17)	-91(15)	5(10)	-18(11)
C(37)	61(9)	280(20)	86(11)	-6(13)	14(8)	-48(12)
C(38)	57(9)	91(11)	137(14)	21(11)	46(10)	6(8)
C(39)	187(13)	129(12)	191(16)	-26(11)	145(12)	-15(10)
C(40)	192(13)	130(12)	195(16)	-26(11)	141(11)	-14(10)
C(41)	197(13)	133(12)	199(16)	-28(11)	137(12)	-13(10)
C(42)	199(13)	136(12)	200(16)	-32(11)	133(12)	-13(10)
C(43)	195(13)	133(12)	198(16)	-30(11)	138(12)	-16(10)
C(44)	191(13)	131(12)	194(16)	-28(11)	141(12)	-17(10)
C(39')	155(19)	210(20)	80(14)	21(16)	69(14)	5(18)
C(40')	157(19)	210(20)	83(14)	20(16)	67(14)	7(18)
C(41')	159(19)	210(20)	86(14)	19(16)	66(14)	7(18)
C(42')	159(19)	210(20)	85(14)	18(16)	66(14)	7(18)
C(43')	158(18)	210(20)	85(14)	20(16)	66(13)	5(18)
C(44')	157(18)	210(20)	82(14)	20(16)	68(13)	4(17)

	Х	у	Z	U(eq)
H(2)	6064	7216	1153	117
H(6)	4285	8107	-1155	111
H(5)	4285 5980	10508	1714	83
H(5)	9262	10308	1714	00
H(0A)	7527	8410	120	93 84
$H(0\Lambda)$	3023	6579	-461	71
H(9R)	2860	7236	-401	71
H(10)	2800	7230	-597	63
H(13A)	2815	9762	-2055	149
H(13R)	2015	10647	-3358	149
H(13C)	2939	10164	-3538	149
H(14A)	6207	0863	-2525	143
H(14R)	5446	10409	-2003	156
H(14C)	5125	0536	-3494	156
H(14C)	J135 4266	9550	-3532	190
H(15R)	4200	11100	-1190	189
H(15C)	5752	10610	-2000	189
H(15C)	2217	10107	-1213	70
H(10A)	2517	10642	433	70
П(10Б)	3330	10042	1018	70
H(10)	1002	11202	2555	00
H(19)	2652	10212	4638	118
H(20)	2032	0127	4038	108
H(22)	3554	9127	2370	108 81
H(22)	10/20	9104	2370	87
H(27)	0567	9123	3052	07 94
H(20)	9307 6238	0420	3933	04 75
H(31A)	0238	7427 6025	4520	15 70
$\Pi(31A)$ $\Pi(21D)$	4134	6520	3741 1207	/0 70
п(этв)	5522	0029	4307	/ð
H(32)	5261	7003	585U	00
H(35A)	9840	/163	/81/	246
н(35В)	9033	/586	8512	246

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for cd15013.

H(35C)	10566	7723	8686	246
H(36A)	8242	8808	8158	214
H(36B)	8741	9335	7375	214
H(36C)	9686	9141	8451	214
H(37A)	11402	8615	7599	214
H(37B)	10508	8810	6503	214
H(37C)	11005	7976	6760	214
H(40)	11749	8110	2869	188
H(41)	12010	7683	1273	194
H(42)	11075	6536	611	197
H(43)	9879	5817	1545	192
H(44)	9619	6245	3141	188
H(40')	12261	7372	3122	172
H(41')	12255	6996	1444	175
H(42')	10266	6703	287	175
H(43')	8282	6786	810	175
H(44')	8287	7162	2489	171
H(38B)	11150(50)	7780(30)	4460(40)	4(19)
H(38A)	10810(80)	7120(40)	4630(50)	30(30)

C(4)-N(1)-C(1)-O(1)	-174.5(10)
C(16)-N(1)-C(1)-O(1)	-2.1(15)
C(4)-N(1)-C(1)-C(2)	6.1(10)
C(16)-N(1)-C(1)-C(2)	178.5(9)
C(11)-N(2)-C(2)-C(3)	-63.5(12)
C(10)-N(2)-C(2)-C(3)	132.6(10)
C(11)-N(2)-C(2)-C(1)	57.3(12)
C(10)-N(2)-C(2)-C(1)	-106.5(10)
C(11)-N(2)-C(2)-S(1)	173.7(7)
C(10)-N(2)-C(2)-S(1)	9.9(9)
O(1)-C(1)-C(2)-N(2)	42.5(14)
N(1)-C(1)-C(2)-N(2)	-138.1(8)
O(1)-C(1)-C(2)-C(3)	172.8(10)
N(1)-C(1)-C(2)-C(3)	-7.9(10)
O(1)-C(1)-C(2)-S(1)	-70.8(12)
N(1)-C(1)-C(2)-S(1)	108.6(8)
C(9)-S(1)-C(2)-N(2)	-26.9(7)
C(9)-S(1)-C(2)-C(3)	-156.3(7)
C(9)-S(1)-C(2)-C(1)	91.3(7)
N(2)-C(2)-C(3)-C(8)	-52.2(15)
C(1)-C(2)-C(3)-C(8)	-176.8(10)
S(1)-C(2)-C(3)-C(8)	67.5(13)
N(2)-C(2)-C(3)-C(4)	131.6(9)
C(1)-C(2)-C(3)-C(4)	7.0(10)
S(1)-C(2)-C(3)-C(4)	-108.8(8)
C(8)-C(3)-C(4)-C(5)	-0.9(16)
C(2)-C(3)-C(4)-C(5)	175.7(9)
C(8)-C(3)-C(4)-N(1)	179.7(9)
C(2)-C(3)-C(4)-N(1)	-3.7(11)
C(1)-N(1)-C(4)-C(5)	178.9(10)
C(16)-N(1)-C(4)-C(5)	6.7(16)
C(1)-N(1)-C(4)-C(3)	-1.7(11)
C(16)-N(1)-C(4)-C(3)	-173.9(9)
C(3)-C(4)-C(5)-C(6)	3.5(15)
N(1)-C(4)-C(5)-C(6)	-177.2(10)
C(4)-C(5)-C(6)-C(7)	-2.3(17)

C(5)-C(6)-C(7)-C(8)	-2(2)
C(5)-C(6)-C(7)-Br(1)	-179.3(9)
C(4)-C(3)-C(8)-C(7)	-2.9(16)
C(2)-C(3)-C(8)-C(7)	-178.7(11)
C(6)-C(7)-C(8)-C(3)	4.2(19)
Br(1)-C(7)-C(8)-C(3)	-178.2(8)
C(2)-S(1)-C(9)-C(10)	37.7(7)
C(11)-N(2)-C(10)-O(2)	95.0(11)
C(2)-N(2)-C(10)-O(2)	-100.8(10)
C(11)-N(2)-C(10)-C(9)	-146.7(9)
C(2)-N(2)-C(10)-C(9)	17.5(11)
S(1)-C(9)-C(10)-O(2)	83.9(9)
S(1)-C(9)-C(10)-N(2)	-37.0(9)
C(12)-O(4)-C(11)-O(3)	-2.6(15)
C(12)-O(4)-C(11)-N(2)	178.4(9)
C(10)-N(2)-C(11)-O(3)	-5.2(15)
C(2)-N(2)-C(11)-O(3)	-168.8(9)
C(10)-N(2)-C(11)-O(4)	173.8(8)
C(2)-N(2)-C(11)-O(4)	10.1(12)
C(11)-O(4)-C(12)-C(15)	-175.2(11)
C(11)-O(4)-C(12)-C(13)	65.4(13)
C(11)-O(4)-C(12)-C(14)	-57.2(13)
C(1)-N(1)-C(16)-C(17)	108.6(11)
C(4)-N(1)-C(16)-C(17)	-80.1(12)
N(1)-C(16)-C(17)-C(22)	-15.8(15)
N(1)-C(16)-C(17)-C(18)	168.4(9)
C(22)-C(17)-C(18)-C(19)	1.0(17)
C(16)-C(17)-C(18)-C(19)	177.0(11)
C(17)-C(18)-C(19)-C(20)	0(2)
C(18)-C(19)-C(20)-C(21)	-2(2)
C(19)-C(20)-C(21)-C(22)	2(2)
C(18)-C(17)-C(22)-C(21)	-0.8(16)
C(16)-C(17)-C(22)-C(21)	-176.5(10)
C(20)-C(21)-C(22)-C(17)	-0.6(17)
C(26)-N(3)-C(23)-O(5)	-174.5(12)
C(38)-N(3)-C(23)-O(5)	4(2)
C(26)-N(3)-C(23)-C(24)	7.0(12)
C(38)-N(3)-C(23)-C(24)	-174.1(11)

C(33)-N(4)-C(24)-C(25)	-60.3(13)
C(32)-N(4)-C(24)-C(25)	134.1(10)
C(33)-N(4)-C(24)-C(23)	57.8(13)
C(32)-N(4)-C(24)-C(23)	-107.8(10)
C(33)-N(4)-C(24)-S(2)	175.9(8)
C(32)-N(4)-C(24)-S(2)	10.3(11)
O(5)-C(23)-C(24)-N(4)	45.3(15)
N(3)-C(23)-C(24)-N(4)	-136.2(9)
O(5)-C(23)-C(24)-C(25)	173.2(11)
N(3)-C(23)-C(24)-C(25)	-8.3(11)
O(5)-C(23)-C(24)-S(2)	-70.8(13)
N(3)-C(23)-C(24)-S(2)	107.7(9)
C(31)-S(2)-C(24)-N(4)	-27.2(7)
C(31)-S(2)-C(24)-C(25)	-156.1(7)
C(31)-S(2)-C(24)-C(23)	94.1(8)
N(4)-C(24)-C(25)-C(26)	131.1(10)
C(23)-C(24)-C(25)-C(26)	6.8(11)
S(2)-C(24)-C(25)-C(26)	-107.8(9)
N(4)-C(24)-C(25)-C(30)	-51.8(15)
C(23)-C(24)-C(25)-C(30)	-176.2(11)
S(2)-C(24)-C(25)-C(30)	69.3(12)
C(30)-C(25)-C(26)-C(27)	1.3(17)
C(24)-C(25)-C(26)-C(27)	178.7(11)
C(30)-C(25)-C(26)-N(3)	179.4(9)
C(24)-C(25)-C(26)-N(3)	-3.2(12)
C(23)-N(3)-C(26)-C(27)	175.3(12)
C(38)-N(3)-C(26)-C(27)	-4(2)
C(23)-N(3)-C(26)-C(25)	-2.7(13)
C(38)-N(3)-C(26)-C(25)	178.5(12)
C(25)-C(26)-C(27)-C(28)	1.0(18)
N(3)-C(26)-C(27)-C(28)	-176.7(12)
C(26)-C(27)-C(28)-C(29)	-1.5(18)
C(27)-C(28)-C(29)-C(30)	-0.3(19)
C(27)-C(28)-C(29)-Br(2)	-176.6(10)
C(28)-C(29)-C(30)-C(25)	2.5(17)
Br(2)-C(29)-C(30)-C(25)	178.8(8)
C(26)-C(25)-C(30)-C(29)	-3.0(15)
C(24)-C(25)-C(30)-C(29)	-179.8(11)

C(24)-S(2)-C(31)-C(32)	37.5(8)
C(33)-N(4)-C(32)-O(6)	93.8(11)
C(24)-N(4)-C(32)-O(6)	-100.2(10)
C(33)-N(4)-C(32)-C(31)	-149.5(9)
C(24)-N(4)-C(32)-C(31)	16.5(12)
S(2)-C(31)-C(32)-O(6)	83.0(9)
S(2)-C(31)-C(32)-N(4)	-36.1(10)
C(34)-O(8)-C(33)-O(7)	-5.0(17)
C(34)-O(8)-C(33)-N(4)	174.3(10)
C(24)-N(4)-C(33)-O(7)	-179.2(10)
C(32)-N(4)-C(33)-O(7)	-14.0(15)
C(24)-N(4)-C(33)-O(8)	1.5(14)
C(32)-N(4)-C(33)-O(8)	166.8(9)
C(33)-O(8)-C(34)-C(35)	59.4(16)
C(33)-O(8)-C(34)-C(37)	177.9(12)
C(33)-O(8)-C(34)-C(36)	-62.9(15)
C(23)-N(3)-C(38)-C(39)	91(2)
C(26)-N(3)-C(38)-C(39)	-90(2)
C(23)-N(3)-C(38)-C(39')	94(2)
C(26)-N(3)-C(38)-C(39')	-88(2)
N(3)-C(38)-C(39)-C(40)	104.3(19)
C(39')-C(38)-C(39)-C(40)	96(7)
N(3)-C(38)-C(39)-C(44)	-75(2)
C(39')-C(38)-C(39)-C(44)	-83(7)
C(38)-C(39)-C(40)-C(41)	-178.8(19)
C(44)-C(39)-C(40)-C(41)	0.0
C(39)-C(40)-C(41)-C(42)	0.0
C(40)-C(41)-C(42)-C(43)	0.0
C(41)-C(42)-C(43)-C(44)	0.0
C(42)-C(43)-C(44)-C(39)	0.0
C(38)-C(39)-C(44)-C(43)	178.8(19)
C(40)-C(39)-C(44)-C(43)	0.0
C(39)-C(38)-C(39')-C(40')	-28(6)
N(3)-C(38)-C(39')-C(40')	158.7(16)
C(39)-C(38)-C(39')-C(44')	145(9)
N(3)-C(38)-C(39')-C(44')	-28(3)
C(44')-C(39')-C(40')-C(41')	0.0
C(38)-C(39')-C(40')-C(41')	174(3)

C(39')-C(40')-C(41')-C(42')	0.0
C(40')-C(41')-C(42')-C(43')	0.0
C(41')-C(42')-C(43')-C(44')	0.0
C(42')-C(43')-C(44')-C(39')	0.0
C(40')-C(39')-C(44')-C(43')	0.0
C(38)-C(39')-C(44')-C(43')	-173(4)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for cd15013 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

X-ray Crystal Structure of 8

 Table 1.
 Crystal data and structure refinement for cd16057.

Identification code	cd16057	
Empirical formula	C22 H21 F N2 O5 S	
Formula weight	444.47	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.0059(11) Å	α= 90°.
	b = 12.9439(15) Å	β= 90°.
	c = 18.305(2) Å	γ = 90°.
Volume	2133.9(4) Å ³	
Z	4	
Density (calculated)	1.383 Mg/m ³	
Absorption coefficient	0.197 mm ⁻¹	
F(000)	928	
Crystal size	0.180 x 0.150 x 0.130 mm ³	
Theta range for data collection	1.927 to 25.995°.	
Index ranges	-11<=h<=11, -15<=k<=14, -16<=l<=22	
Reflections collected	12095	
Independent reflections	4187 [R(int) = 0.0348]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6286	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4187 / 0 / 283	
Goodness-of-fit on F ²	1.022	
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.1033	
R indices (all data)	R1 = 0.0491, $wR2 = 0.1081$	
Absolute structure parameter	-0.03(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.281 and -0.160 e.Å ⁻³	

	Х	у	Z	U(eq)
S(1)	4910(1)	1781(1)	712(1)	46(1)
F(1)	13433(3)	1255(2)	2212(2)	104(1)
N(1)	7483(3)	1062(2)	2030(1)	44(1)
N(2)	7200(3)	821(2)	121(1)	40(1)
O(1)	8252(3)	2325(2)	1240(1)	55(1)
O(2)	3770(3)	1126(2)	380(2)	61(1)
O(3)	7337(3)	1648(2)	-982(1)	66(1)
O(4)	8422(4)	-314(3)	-622(1)	82(1)
O(5)	8974(2)	-172(2)	569(1)	47(1)
C(1)	6681(3)	133(2)	1972(2)	43(1)
C(2)	6410(4)	-587(3)	2500(2)	61(1)
C(3)	5605(5)	-1447(3)	2294(3)	74(1)
C(4)	5079(5)	-1575(3)	1598(3)	71(1)
C(5)	5352(4)	-830(3)	1070(2)	55(1)
C(6)	6154(3)	19(2)	1266(2)	41(1)
C(7)	6600(3)	947(2)	848(2)	37(1)
C(8)	7581(3)	1544(2)	1381(2)	40(1)
C(9)	5859(4)	2378(3)	-36(2)	51(1)
C(10)	6858(3)	1596(3)	-376(2)	45(1)
C(11)	8262(3)	54(3)	-32(2)	46(1)
C(12)	10026(4)	-1048(2)	603(2)	55(1)
C(13)	11281(5)	-874(5)	81(3)	100(2)
C(14)	10527(9)	-1009(5)	1378(3)	133(3)
C(15)	9190(7)	-2027(4)	456(4)	103(2)
C(16)	8173(4)	1477(3)	2689(2)	54(1)
C(17)	9681(4)	1061(3)	2842(2)	47(1)
C(18)	10905(4)	1380(3)	2446(2)	56(1)
C(19)	12249(4)	960(3)	2605(2)	62(1)
C(20)	12468(5)	250(4)	3132(3)	76(1)
C(21)	11268(5)	-58(4)	3535(3)	81(1)
C(22)	9885(4)	347(3)	3385(2)	64(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for cd16057. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(2)	1.464(3)
S(1)-C(9)	1.789(4)
S(1)-C(7)	1.883(3)
F(1)-C(19)	1.343(4)
N(1)-C(8)	1.345(4)
N(1)-C(1)	1.407(4)
N(1)-C(16)	1.459(4)
N(2)-C(10)	1.389(4)
N(2)-C(11)	1.407(4)
N(2)-C(7)	1.445(4)
O(1)-C(8)	1.205(4)
O(3)-C(10)	1.192(4)
O(4)-C(11)	1.188(4)
O(5)-C(11)	1.306(4)
O(5)-C(12)	1.479(4)
C(1)-C(2)	1.364(5)
C(1)-C(6)	1.385(4)
C(2)-C(3)	1.381(6)
C(2)-H(2)	0.9300
C(3)-C(4)	1.368(6)
C(3)-H(3)	0.9300
C(4)-C(5)	1.387(5)
C(4)-H(4)	0.9300
C(5)-C(6)	1.363(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.480(4)
C(7)-C(8)	1.527(4)
C(9)-C(10)	1.490(5)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(12)-C(14)	1.489(6)
C(12)-C(13)	1.497(6)
C(12)-C(15)	1.499(6)
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600

Table 3. Bond lengths [Å] and angles $[\circ]$ for cd16057.

C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-C(17)	1.488(5)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-C(22)	1.369(5)
C(17)-C(18)	1.383(5)
C(18)-C(19)	1.359(5)
C(18)-H(18)	0.9300
C(19)-C(20)	1.346(6)
C(20)-C(21)	1.368(6)
С(20)-Н(20)	0.9300
C(21)-C(22)	1.379(6)
С(21)-Н(21)	0.9300
C(22)-H(22)	0.9300
O(2)-S(1)-C(9)	105.52(16)
O(2)-S(1)-C(7)	106.81(14)
C(9)-S(1)-C(7)	87.84(14)
C(8)-N(1)-C(1)	111.3(2)
C(8)-N(1)-C(16)	122.1(3)
C(1)-N(1)-C(16)	126.6(3)
C(10)-N(2)-C(11)	122.0(3)
C(10)-N(2)-C(7)	116.0(2)
C(11)-N(2)-C(7)	121.1(2)
C(11)-O(5)-C(12)	121.5(2)
C(2)-C(1)-C(6)	121.8(3)
C(2)-C(1)-N(1)	128.5(3)
C(6)-C(1)-N(1)	109.7(2)
C(1)-C(2)-C(3)	116.8(4)
C(1)-C(2)-H(2)	121.6
C(3)-C(2)-H(2)	121.6
C(4)-C(3)-C(2)	122.2(3)
C(4)-C(3)-H(3)	118.9

C(2)-C(3)-H(3)	118.9
C(3)-C(4)-C(5)	120.2(4)
C(3)-C(4)-H(4)	119.9
C(5)-C(4)-H(4)	119.9
C(6)-C(5)-C(4)	118.1(4)
C(6)-C(5)-H(5)	120.9
C(4)-C(5)-H(5)	120.9
C(5)-C(6)-C(1)	120.8(3)
C(5)-C(6)-C(7)	131.5(3)
C(1)-C(6)-C(7)	107.7(3)
N(2)-C(7)-C(6)	119.1(3)
N(2)-C(7)-C(8)	115.4(2)
C(6)-C(7)-C(8)	103.7(2)
N(2)-C(7)-S(1)	104.18(18)
C(6)-C(7)-S(1)	108.3(2)
C(8)-C(7)-S(1)	105.16(19)
O(1)-C(8)-N(1)	127.7(3)
O(1)-C(8)-C(7)	125.3(3)
N(1)-C(8)-C(7)	107.0(3)
C(10)-C(9)-S(1)	108.4(2)
C(10)-C(9)-H(9A)	110.0
S(1)-C(9)-H(9A)	110.0
C(10)-C(9)-H(9B)	110.0
S(1)-C(9)-H(9B)	110.0
H(9A)-C(9)-H(9B)	108.4
O(3)-C(10)-N(2)	124.7(3)
O(3)-C(10)-C(9)	124.7(3)
N(2)-C(10)-C(9)	110.5(3)
O(4)-C(11)-O(5)	128.0(3)
O(4)-C(11)-N(2)	123.1(3)
O(5)-C(11)-N(2)	108.9(3)
O(5)-C(12)-C(14)	102.1(3)
O(5)-C(12)-C(13)	109.9(3)
C(14)-C(12)-C(13)	112.0(5)
O(5)-C(12)-C(15)	108.6(3)
C(14)-C(12)-C(15)	110.6(4)
C(13)-C(12)-C(15)	113.0(4)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
---------------------	----------
H(13A)-C(13)-H(13B)	109.5
С(12)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(12)-C(15)-H(15A)	109.5
C(12)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
С(12)-С(15)-Н(15С)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
N(1)-C(16)-C(17)	114.3(3)
N(1)-C(16)-H(16A)	108.7
C(17)-C(16)-H(16A)	108.7
N(1)-C(16)-H(16B)	108.7
C(17)-C(16)-H(16B)	108.7
H(16A)-C(16)-H(16B)	107.6
C(22)-C(17)-C(18)	118.4(3)
C(22)-C(17)-C(16)	120.2(3)
C(18)-C(17)-C(16)	121.4(3)
C(19)-C(18)-C(17)	118.5(3)
C(19)-C(18)-H(18)	120.8
C(17)-C(18)-H(18)	120.8
F(1)-C(19)-C(20)	117.5(4)
F(1)-C(19)-C(18)	118.6(4)
C(20)-C(19)-C(18)	123.9(4)
C(19)-C(20)-C(21)	118.0(4)
С(19)-С(20)-Н(20)	121.0
С(21)-С(20)-Н(20)	121.0
C(20)-C(21)-C(22)	119.7(4)
С(20)-С(21)-Н(21)	120.2
С(22)-С(21)-Н(21)	120.2

C(17)-C(22)-C(21)	121.5(4)
С(17)-С(22)-Н(22)	119.3
С(21)-С(22)-Н(22)	119.3

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	41(1)	52(1)	44(1)	3(1)	-1(1)	8(1)
F(1)	74(2)	132(3)	105(2)	10(2)	29(2)	-15(2)
N(1)	48(1)	55(2)	29(1)	-1(1)	-2(1)	1(1)
N(2)	41(1)	53(1)	27(1)	1(1)	0(1)	2(1)
O(1)	65(1)	51(1)	49(1)	2(1)	-6(1)	-13(1)
O(2)	42(1)	70(2)	70(2)	6(1)	-8(1)	1(1)
O(3)	94(2)	67(2)	36(1)	3(1)	10(1)	-17(2)
O(4)	88(2)	119(2)	41(2)	-23(2)	-9(1)	44(2)
O(5)	51(1)	52(1)	38(1)	-8(1)	-8(1)	11(1)
C(1)	40(2)	53(2)	37(2)	5(1)	3(1)	4(1)
C(2)	61(2)	76(2)	46(2)	21(2)	6(2)	2(2)
C(3)	77(3)	69(2)	76(3)	33(2)	13(2)	-7(2)
C(4)	70(2)	59(2)	84(3)	13(2)	10(2)	-17(2)
C(5)	53(2)	57(2)	55(2)	0(2)	-4(2)	-7(2)
C(6)	37(1)	46(2)	39(2)	3(1)	2(1)	2(1)
C(7)	39(1)	42(2)	31(2)	1(1)	-1(1)	2(1)
C(8)	40(2)	46(2)	35(2)	-2(1)	1(1)	3(1)
C(9)	54(2)	52(2)	47(2)	11(2)	-8(2)	0(2)
C(10)	51(2)	52(2)	32(2)	1(1)	-5(1)	-12(2)
C(11)	39(1)	63(2)	38(2)	-7(2)	-3(1)	4(2)
C(12)	56(2)	46(2)	64(2)	-7(2)	-7(2)	13(2)
C(13)	51(2)	100(4)	149(5)	9(4)	17(3)	18(3)
C(14)	184(6)	122(4)	93(4)	-21(3)	-64(4)	96(5)
C(15)	105(4)	60(3)	145(5)	-11(3)	-8(4)	0(3)
C(16)	60(2)	68(2)	33(2)	-10(2)	-4(2)	7(2)
C(17)	54(2)	54(2)	34(2)	-7(1)	-2(1)	-6(2)
C(18)	66(2)	60(2)	42(2)	1(2)	3(2)	-8(2)
C(19)	51(2)	74(2)	60(2)	-9(2)	9(2)	-10(2)
C(20)	58(2)	85(3)	84(3)	4(2)	-5(2)	9(2)
C(21)	66(3)	90(3)	86(3)	31(3)	-6(2)	3(2)
C(22)	52(2)	86(3)	55(2)	19(2)	-3(2)	-9(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cd16057. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	х	у	Z	U(eq)
H(2)	6752	-503	2975	73
H(3)	5413	-1957	2639	89
H(4)	4538	-2163	1479	85
H(5)	4997	-907	597	66
H(9A)	5147	2626	-393	61
H(9B)	6435	2962	137	61
H(13A)	10889	-725	-396	150
H(13B)	11886	-1484	58	150
H(13C)	11871	-302	245	150
H(14A)	10972	-349	1475	199
H(14B)	11241	-1546	1463	199
H(14C)	9689	-1106	1695	199
H(15A)	8349	-2068	777	155
H(15B)	9829	-2608	539	155
H(15C)	8855	-2031	-42	155
H(16A)	7536	1327	3103	65
H(16B)	8239	2222	2643	65
H(18)	10811	1872	2078	67
H(20)	13406	-23	3219	91
H(21)	11384	-538	3909	97
H(22)	9072	130	3658	77

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for cd16057.

Table 6. Torsion angles [°] for cd16057.

C(8)-N(1)-C(1)-C(2)	176.6(3)
C(16)-N(1)-C(1)-C(2)	-2.0(5)
C(8)-N(1)-C(1)-C(6)	-3.4(4)
C(16)-N(1)-C(1)-C(6)	177.9(3)
C(6)-C(1)-C(2)-C(3)	1.1(5)
N(1)-C(1)-C(2)-C(3)	-179.0(3)
C(1)-C(2)-C(3)-C(4)	-0.8(6)
C(2)-C(3)-C(4)-C(5)	0.2(7)
C(3)-C(4)-C(5)-C(6)	0.3(6)
C(4)-C(5)-C(6)-C(1)	0.0(5)
C(4)-C(5)-C(6)-C(7)	-178.4(3)
C(2)-C(1)-C(6)-C(5)	-0.7(5)
N(1)-C(1)-C(6)-C(5)	179.4(3)
C(2)-C(1)-C(6)-C(7)	178.1(3)
N(1)-C(1)-C(6)-C(7)	-1.9(3)
C(10)-N(2)-C(7)-C(6)	146.1(3)
C(11)-N(2)-C(7)-C(6)	-44.2(4)
C(10)-N(2)-C(7)-C(8)	-89.5(3)
C(11)-N(2)-C(7)-C(8)	80.3(3)
C(10)-N(2)-C(7)-S(1)	25.3(3)
C(11)-N(2)-C(7)-S(1)	-164.9(2)
C(5)-C(6)-C(7)-N(2)	-45.8(5)
C(1)-C(6)-C(7)-N(2)	135.7(3)
C(5)-C(6)-C(7)-C(8)	-175.7(3)
C(1)-C(6)-C(7)-C(8)	5.7(3)
C(5)-C(6)-C(7)-S(1)	72.9(4)
C(1)-C(6)-C(7)-S(1)	-105.6(2)
O(2)-S(1)-C(7)-N(2)	74.0(2)
C(9)-S(1)-C(7)-N(2)	-31.6(2)
O(2)-S(1)-C(7)-C(6)	-53.8(2)
C(9)-S(1)-C(7)-C(6)	-159.3(2)
O(2)-S(1)-C(7)-C(8)	-164.18(19)
C(9)-S(1)-C(7)-C(8)	90.3(2)
C(1)-N(1)-C(8)-O(1)	-176.0(3)
C(16)-N(1)-C(8)-O(1)	2.7(5)
C(1)-N(1)-C(8)-C(7)	7.0(3)

C(16)-N(1)-C(8)-C(7)	-174.3(3)
N(2)-C(7)-C(8)-O(1)	43.1(4)
C(6)-C(7)-C(8)-O(1)	175.2(3)
S(1)-C(7)-C(8)-O(1)	-71.1(3)
N(2)-C(7)-C(8)-N(1)	-139.9(3)
C(6)-C(7)-C(8)-N(1)	-7.7(3)
S(1)-C(7)-C(8)-N(1)	105.9(2)
O(2)-S(1)-C(9)-C(10)	-75.6(2)
C(7)-S(1)-C(9)-C(10)	31.3(2)
C(11)-N(2)-C(10)-O(3)	5.3(5)
C(7)-N(2)-C(10)-O(3)	174.9(3)
C(11)-N(2)-C(10)-C(9)	-172.3(3)
C(7)-N(2)-C(10)-C(9)	-2.6(4)
S(1)-C(9)-C(10)-O(3)	159.3(3)
S(1)-C(9)-C(10)-N(2)	-23.1(3)
C(12)-O(5)-C(11)-O(4)	-6.9(6)
C(12)-O(5)-C(11)-N(2)	172.0(3)
C(10)-N(2)-C(11)-O(4)	-36.9(5)
C(7)-N(2)-C(11)-O(4)	153.9(4)
C(10)-N(2)-C(11)-O(5)	144.2(3)
C(7)-N(2)-C(11)-O(5)	-25.0(4)
C(11)-O(5)-C(12)-C(14)	-179.2(4)
C(11)-O(5)-C(12)-C(13)	61.8(4)
C(11)-O(5)-C(12)-C(15)	-62.3(4)
C(8)-N(1)-C(16)-C(17)	-94.1(4)
C(1)-N(1)-C(16)-C(17)	84.4(4)
N(1)-C(16)-C(17)-C(22)	-104.8(4)
N(1)-C(16)-C(17)-C(18)	75.2(4)
C(22)-C(17)-C(18)-C(19)	1.0(5)
C(16)-C(17)-C(18)-C(19)	-179.0(3)
C(17)-C(18)-C(19)-F(1)	178.8(3)
C(17)-C(18)-C(19)-C(20)	-0.4(6)
F(1)-C(19)-C(20)-C(21)	-179.9(4)
C(18)-C(19)-C(20)-C(21)	-0.7(7)
C(19)-C(20)-C(21)-C(22)	1.1(7)
C(18)-C(17)-C(22)-C(21)	-0.5(6)
C(16)-C(17)-C(22)-C(21)	179.5(4)
C(20)-C(21)-C(22)-C(17)	-0.5(7)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
С(15)-Н(15С)О(4)	0.96	2.49	3.047(7)	116.6
C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(15)-H(15C)O(4)	0.96	2.49	3.047(7)	116.6
C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(15)-H(15C)O(4)	0.96	2.49	3.047(7)	116.6
C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(15)-H(15C)O(4)	0.96	2.49	3.047(7)	116.6
C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(15)-H(15C)O(4)	0.96	2.49	3.047(7)	116.6
C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0

Table 7. Hydrogen bonds for cd16057 [Å and °].

S-44

C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(15)-H(15C)O(4)	0.96	2.49	3.047(7)	116.6
C(2)-H(2)O(3)#4	0.93	2.55	3.299(4)	137.6
C(9)-H(9A)O(1)#3	0.97	2.31	3.244(4)	162.0
C(9)-H(9B)O(2)#2	0.97	2.59	3.320(4)	132.1
C(13)-H(13A)O(4)	0.96	2.32	2.968(6)	124.0
C(13)-H(13C)O(2)#1	0.96	2.53	3.468(6)	165.6
C(15)-H(15C)O(4)	0.96	2.49	3.047(7)	116.6

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x+1/2,-y+1/2,-z #3 x-1/2,-y+1/2,-z

#4 -x+3/2,-y,z+1/2

Compound Characterization Data

tert-butyl (R)-1-benzyl-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carboxylate

White solid, yield 51%, ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.24 (m, 7H), 7.09 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 5.18 (d, J = 15.6 Hz, 1H), 4.60 (d, J = 15.6 Hz, 1H), 4.31 (d, J = 15.7 Hz, 1H), 3.72 (d, J = 15.7 Hz, 1H), 1.09 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.90, 170.67, 147.54, 142.31, 135.25, 130.74, 129.03, 128.06, 127.54, 126.76, 123.93, 123.59, 109.81, 85.08, 66.81, 44.16, 33.18, 27.43.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 20.0 min, t_{minor} = 15.0 min, **96% ee**, [α]_D²⁰ = 26.23 (c = 0.86, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₂H₂₂N₂O₄S, [M+Na]⁺: 433.1192, found: 433.1194.

tert-butyl (R)-1-benzyl-5-methoxy-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

White solid, yield 65%, ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.25 (m, 5H), 6.98 (d, J = 2.5 Hz, 1H), 6.81-6.77 (m, 1H), 6.64 (d, J = 8.6 Hz, 1H), 5.15 (d, J = 15.6 Hz, 1H), 4.59 (d, J = 15.6 Hz, 1H), 4.30 (d, J = 13.5 Hz, 1H), 3.75 (s, 3H), 3.72 (d, J = 13.5 Hz, 1H), 1.13 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.73, 170.64, 156.73, 147.60, 135.49, 135.34, 129.00, 128.01, 127.86, 127.50, 115.94, 110.53, 110.24, 85.14, 66.43, 56.01, 44.22, 33.20, 27.50.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, $\lambda = 254$ nm, t_{major} = 25.8 min, t_{minor} = 23.2 min, **96% ee**, $[\alpha]_D^{20} = 19.60$ (c = 0.50, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₃H₂₄N₂O₅S, [M+Na]⁺: 463.1298, found: 463.1304.

tert-butyl(R)-1-benzyl-5-methyl-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-

carboxylate

White solid, yield 60%, ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.25 (m, 5H), 7.19 (s, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 5.16 (d, J = 15.6 Hz, 1H), 4.57 (d, J = 15.6 Hz, 1H), 4.30 (d, J = 15.6 Hz, 1H), 3.71 (d, J = 15.6 Hz, 1H), 2.30 (s, 3H), 1.10 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.86, 170.70, 147.60, 139.88, 135.36, 133.43, 130.99, 128.98, 127.98, 127.50, 126.73, 124.54, 109.61, 85.02, 44.15, 33.20, 29.78, 27.43, 21.02.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 mL/min, λ = 254 nm, t_{major} = 26.3 min, t_{minor} = 17.5 min, **97% ee**, [α]_D²⁰ =26.60 (c = 0.50, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₃H₂₄N₂O₄S, [M+Na]⁺: 447.1349, found: 447.1354.

tert-butyl (R)-1-benzyl-2,4'-dioxo-5-(trifluoromethoxy)spiro[indoline-3,2'-thiazo-lidine]-3'-carboxylate

7d

White solid, yield 63%, ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.23 (m, 6H), 7.16-7.11 (m, 1H), 6.74 (d, J = 8.6 Hz, 1H), 5.15 (d, J = 15.7 Hz, 1H), 4.65 (d, J = 15.7 Hz, 1H), 4.30 (d, J = 15.7 Hz, 1H), 3.74 (d, J = 15.7 Hz, 1H), 1.15 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.77, 170.05, 147.50, 145.25, 140.88, 134.75, 129.14, 128.41, 128.26, 127.52, 123.86, 121.77, 117.81, 110.46, 85.54, 68.96, 44.39, 33.07, 27.45.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 9.9 min, t_{minor} = 8.0 min, **90% ee**, $[\alpha]_D^{20}$ = 14.89 (c = 0.90, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₃H₂₁F₃N₂O₅S, [M+Na]⁺: 517.1015, found: 517.1018.

tert-butyl (R)-1-benzyl-5-bromo-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

White solid, yield 55%, ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 1.9 Hz, 1H), 7.40 - 7.25 (m, 6H), 6.62 (d, J = 8.4 Hz, 1H), 5.13 (d, J = 15.7 Hz, 1H), 4.63 (d, J = 15.7 Hz, 1H), 4.29 (d, J = 15.7 Hz, 1H), 3.74 (d, J = 15.7 Hz, 1H), 1.18 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.38, 170.10, 147.57, 141.25, 134.76, 133.49, 129.11, 128.83, 128.21, 127.45, 127.07, 116.06, 111.35, 85.53, 66.48, 44.27, 33.11, 27.57. Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (n-Hexane/i-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 17.0 min, t_{minor} = 14.5 min, **90% ee**, [α]_D²⁰ = 21.86 (c = 0.89, in CH₃COCH₃).; HRMS (ESI) m/z calcd for C₂₂H₂₁BrN₂O₄S, [M+Na]⁺: 511.0298, found: 511.0303.

tert-butyl (R)-1-benzyl-5-chloro-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

7f

White solid, yield 64%, ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.20 (m, 7H), 6.66 (d, J = 8.4 Hz, 1H), 5.13 (d, J = 15.7 Hz, 1H), 4.64 (d, J = 15.7 Hz, 1H), 4.29 (d, J = 15.7 Hz, 1H), 3.73 (d, J = 15.7 Hz, 1H), 1.18 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.51, 170.09, 147.60, 140.75, 134.80, 130.58, 129.10, 128.53, 128.19, 127.45, 124.30, 110.88, 110.02, 85.50, 44.30, 33.10, 29.78, 27.57.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 14.7 min, t_{minor} = 13.0 min, **90% ee**, [α]_D²⁰ = 18.97 (c = 0.58, in CH₃COCH₃).; HRMS (ESI) m/z calcd for C₂₂H₂₁ClN₂O₄S, [M+Na]⁺: 467.0803, found: 467.0809.

tert-butyl (R)-1-benzyl-6-bromo-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

White solid, yield 57%, ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.21 (m, 7H), 6.90-6.88 (m, 1H), 5.12 (d, J = 15.7 Hz, 1H), 4.61 (d, J = 15.7 Hz, 1H), 4.28 (d, J = 15.7 Hz, 1H), 3.72 (d, J = 15.7 Hz, 1H), 1.18 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.65, 170.16, 147.53, 143.47, 134.61, 129.08, 128.17, 127.36, 126.90, 126.43, 125.05, 124.33, 113.11, 85.40, 66.34, 44.20, 33.05, 27.50.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 22.6 min, t_{minor} = 15.1 min, **98% ee**, [α]_D²⁰ = 21.07 (c = 0.79, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₂H₂₁BrN₂O₄S, [M+Na]⁺: 511.0298, found: 513.0303.

tert-butyl (R)-1-benzyl-6-chloro-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

White solid, yield 63%, ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.23 (m, 6H), 7.13 (dd, J = 8.5, 1.7 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 5.15 (d, J = 15.7 Hz, 1H), 4.65 (d, J = 15.7 Hz, 1H), 4.30 (d, J = 15.7 Hz, 1H), 3.74 (d, J = 15.7 Hz, 1H), 1.15 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.84, 170.22, 147.63, 143.92, 143.48, 136.57, 134.70, 129.15, 128.25, 127.45, 124.84, 123.53, 110.45, 85.44, 66.36, 44.30, 33.13, 27.57.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 20.1 min, t_{minor} = 14.0 min, **96% ee**, [α]_D²⁰ = 25.1 (c = 0.93, in CH₃COCH₃),;HRMS (ESI) m/z calcd for C₂₂H₂₁ClN₂O₄S, [M+Na]⁺: 467.0803, found: 467.0818.

tert-butyl (R)-1-benzyl-7-fluoro-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

White solid, yield 58%, ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.38 (m, 2H), 7.36 - 7.24 (m, 3H), 7.18 -7.14 (m, 1H), 7.08 - 6.99 (m, 2H), 5.18 (d, J = 15.2 Hz, 1H), 4.88 (d, J = 15.2 Hz, 1H), 4.28 (d, J = 15.7 Hz, 1H), 3.71 (d, J = 15.7 Hz, 1H), 1.12 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 175.72, 151.86, 147.46 (d, ¹*J*_{C-F} = 243.0 Hz), 136.61, 131.15, 128.75, 127.94(d, ³*J*_{C-F} = 9.0 Hz), 124.40, 123.93(d, ³*J*_{C-F} = 6.0 Hz), 119.99, 118.80, 117.76(d, ²*J*_{C-F} = 19.0 Hz),109.98(d, ²*J*_{C-F} = 19.0 Hz), 85.54, 82.62, 45.70, 37.34, 27.60.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 mL/min, λ = 254 nm, t_{major} = 17.1 min, t_{minor} = 12.7 min, **92% ee**, [α]_D²⁰ =28.33 (c = 0.35, in CH₃COCH₃),;HRMS (ESI) m/z calcd for C₂₂H₂₁FN₂O₄S, [M+Na]⁺: 451.1098, found: 451.1099.

tert-butyl(R)-1-benzyl-4-chloro-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'carboxylate

White solid, yield 54%, ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.25 (m, 5H), 7.22 - 7.15 (m, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 5.12 (d, J = 15.6 Hz, 1H), 4.67 (d, J = 15.6 Hz, 1H), 4.24 (d, J = 15.6 Hz, 1H), 3.86 (d, J = 15.6 Hz, 1H), 1.17 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.06, 169.68, 147.54, 143.73, 143.47, 134.87, 131.38, 131.18, 129.08, 128.18, 127.51, 124.35, 108.31, 85.10, 44.43, 33.18, 29.78, 27.50. Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 mL/min, λ = 254 nm, t_{major} = 22.8 min, t_{minor} = 14.6 min, **88% ee**, [α]_D²⁰ =28.33 (c = 0.35, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₂H₂₁ClN₂O₄S, [M+Na]⁺: 467.0803, found: 467.0810.

tert-butyl (R)-1-methyl-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carboxylate

7k

White solid, yield 65%, ¹H NMR (400 MHz, CDCl₃) δ 7.42 - 7.34 (m, 2H), 7.15 - 7.08 (m, 1H), 6.85 (d, J = 7.8 Hz, 1H), 4.23 (d, J = 15.7 Hz, 1H), 3.69 (d, J = 15.7 Hz, 1H), 3.22 (s, 3H), 1.09 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) 170.56, 167.71, 147.30, 143.20, 130.80, 126.72, 123.87, 123.48, 108.74, 84.79, 33.04, 29.68, 27.33, 26.54.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 21.0 min, t_{minor} = 16.4 min, **96% ee**, [α]_D²⁰ = -3.90 (c = 0.62 in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₁₆H₁₈N₂O₄S, [M+Na]⁺: 357.0879, found: 357.0885.

tert-butyl (R)-1,5-dimethyl-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carboxylate

White solid, yield 55%, ¹H NMR (400 MHz, CDCl₃) δ 7.22 - 7.17 (m, 2H), 6.75 (d, J = 7.8 Hz, 1H), 4.24 (d, J = 15.7 Hz, 1H), 3.70 (d, J = 15.7 Hz, 1H), 3.21 (s, 3H), 2.34 (s, 3H), 1.11 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.57, 170.67, 147.34, 140.79, 133.34, 131.05, 126.65, 124.49, 108.58, 84.74, 66.69, 33.09, 27.33, 26.57, 20.98. Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, $\lambda = 254$ nm, t_{major} = 22.1 min, t_{minor} = 19.0 min, **97% ee**, $[\alpha]_D^{20} = -7.90$ (c = 0.84, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₁₇H₂₀N₂O₄S, [M+Na]⁺: 371.1036, found: 371.1056.

adamantan-1-yl (R)-1-benzyl-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carbo-xylate

White solid, yield 53%, ¹H NMR (400 MHz, CDCl₃) & 7.41 - 7.25 (m, 7H), 7.12 -

7.06 (m, 1H), 6.78 (d, J = 7.9 Hz, 1H), 5.12 (d, J = 15.6 Hz, 1H), 4.64 (d, J = 15.6 Hz, 1H), 4.30 (d, J = 15.6 Hz, 1H), 3.71 (d, J = 15.6 Hz, 1H), 1.99 (s, 3H), 1.68-1.56 (m, 6H), 1.54-1.39 (m, 6H).; ¹³C NMR (100 MHz, CDCl₃) δ 174.90, 170.66, 146.93, 142.34, 135.31, 130.65, 129.00, 128.05, 127.75, 126.77, 123.98, 123.57, 109.80, 85.07, 66.81, 44.23, 40.58, 35.78, 33.18, 30.86, 29.78.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} =27.2 min, t_{minor} = 20.6 min, **97%** *ee*, [α]_D²⁰ = 33.0 (c = 0.7, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₈H₂₈N₂O₄S, [M+Na]⁺: 511.1662, found: 511.1675.

tert-butyl (R)-2,4'-dioxo-1-phenylspiro[indoline-3,2'-thiazolidine]-3'-carboxylate

White solid, yield 55%, ¹H NMR (400 MHz, CDCl₃) δ 7.58 - 7.51 (m, 2H), 7.49 - 7.40 (m, 4H), 7.36 - 7.30 (m, 1H), 7.20 - 7.14 (m, 1H), 6.92 (d, J = 7.9 Hz, 1H), 4.28 (d, J = 15.7 Hz, 1H), 3.72 (d, J = 15.7 Hz, 1H), 1.19 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 173.86, 170.68, 147.59, 143.01, 133.84, 130.73, 129.81, 128.41, 126.43, 126.02, 124.18, 124.06, 110.22, 85.25, 66.78, 33.15, 27.68.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 26.0 min, t_{minor} = 14.8 min, **94% ee**, [α]_D²⁰ = -1.33 (c = 0.61, in CH₃COCH₃).;HRMS (ESI) mz calcd for C₂₁H₂₀N₂O₄S, [M+Na]⁺: 419.1036, found: 419.1047.

tert-butyl (R)-1-(naphthalen-1-ylmethyl)-2,4'-dioxospiro[indoline-3,2'-thiazolid-ine]-3'-carboxylate

White solid, yield 57%, ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.64 - 7.51 (m, 2H), 7.48 - 7.36 (m, 3H), 7.21 (m, 1H), 7.10 - 7.5(m, 1H), 6.73 (d, J = 7.9 Hz, 1H), 5.72 (d, J = 16.1 Hz, 1H), 5.05 (d, J = 16.1 Hz, 1H), 4.34 (d, J = 15.7 Hz, 1H), 3.75 (d, J = 15.7 Hz, 1H), 1.15 (s,

9H). ;¹³C NMR (100 MHz, CDCl₃) δ 174.94, 170.64, 147.65, 142.67, 133.99, 131.14, 130.76, 130.14, 129.07, 128.82, 126.87, 126.81, 126.22, 125.40, 125.23, 123.85, 123.60, 123.00, 110.29, 85.13, 66.87, 42.55, 33.25, 27.50.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 23.9 min, t_{minor} = 18.4 min, **96% ee**, [α]_D²⁰ = 52.7 (c =0.74, in CH₃COCH₃),;HRMS (ESI) m/z calcd for C₂₆H₂₄N₂O₄S, [M+Na]⁺: 483.1349, found: 483.1359.

tert-butyl(R)-1-(3-fluorobenzyl)-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'car-boxylate

7р

White solid, yield 58%, ¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.25 (m, 3H), 7.17 - 7.04 (m, 3H), 7.02 - 6.94 (m, 1H), 6.75-6.70 (m, 1H), 5.12 (d, J = 15.8 Hz, 1H), 4.65 (d, J = 15.8 Hz, 1H), 4.28 (d, J = 15.7, 1H), 3.72 (d, J = 15.7 Hz, 1H), 1.12 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 175.99, 163.20 (d, ¹J_{C-F} = 245.0 Hz), 151.92, 141.92, 137.78 (d, ³J_{C-F} = 8.0 Hz), 130.63 (d, ³J_{C-F} = 8.0 Hz), 129.77, 128.05, 124.16, 123.45, 123.09, 115.08 (d, ²J_{C-F} = 21.0 Hz), 114.49 (d, ²J_{C-F} = 22.0 Hz), 108.87, 85.39, 82.30, 69.41, 43.43, 27.58. Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 20.1 min, t_{minor} = 18.9 min, **97% ee**, [α]_D²⁰ = 15.72 (c = 3.21, in CH₃COCH₃),;HRMS (ESI) m/z calcd for C₂₂H₂₁FN₂O₄S, [M+Na]⁺: 453.1098, found: 453.1109.

tert-butyl 1-acetyl-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.19 (m, 1H), 7.47-7.41 (m, 2H), 7.31-7.25 (m, 1H), 4.18 (d, J = 15.8 Hz, 1H), 3.75 (d, J = 15.8 Hz, 1H), 2.70 (s, 3H), 1.11 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) 175.08 (s), 170.52 (s), 170.09 (s), 147.11 (s), 139.66 (s), 131.38 (s), 126.21 (s), 125.85 (s), 123.69 (s), 117.20 (s), 85.88 (s), 67.10 (s), 33.30 (s),

27.34 (s), 26.45 (s).; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1 ml/min, $\lambda = 220$ nm, t_{major} = 20.08 min, t_{minor} = 16.98 min, **86% ee**, $[\alpha]_D^{20} = 24.97$ (c = 0.15, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₁₇H₁₈N₂O₅S, [M+Na]⁺: 385.0834, found: 385.0842.

tert-butyl 2,4'-dioxo-1-tritylspiro[indoline-3,2'-thiazolidine]-3'-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.55-7.50 (m, 6H), 7. 30-7.24 (m, 7H), 7.23-7.17 (m, 3H), 7.01-6.96 (m, 2H), 6.40-6.36 (m, 1H), 4.16 (d, J = 15.7 Hz, 1H), 3.65 (d, J = 15.7 Hz, 1H), 0.87 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) 174.81 (s), 170.52 (s), 147.69 (s), 142.34 (s), 141.80 (s), 129.11 (s), 128.81 (s), 127.82 (s), 127.01 (s), 126.76 (s), 122.98 (s), 122.72 (s), 116.25 (s), 84.66 (s), 73.87 (s), 67.42 (s), 32.71 (s), 27.14 (s).; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel OD-H column (*n*-Hexane/*i*-PrOH 95:5 at 0.5 ml/min, λ = 254 nm, t_{major} = 25.3 min, t_{minor} = 21.2 min, **98% ee**, $[\alpha]_D^{20}$ = 62.56 (c = 0.18, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₃₄H₃₀FN₂O₄S, [M+Na]⁺: 595.6736, found: 585.6738.

tert-butyl (1'S,3R)-1-(3-fluorobenzyl)-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-carboxylate 1'-oxide

S-54

White solid, yield 52%,¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.39 (m, 2H), 7.36 -7.29 (m, 1H), 7.21 - 7.10 (m, 2H), 7.07 - 6.97 (m, 2H), 6.90 - 6.86 (m, 1H), 5.06 (d, J = 15.7 Hz, 1H), 4.81 (d, J = 15.7 Hz, 1H) , 4.36 (d, J = 16.6 Hz, 1H), 3.85 (d, J = 16.6 Hz, 1H), 1.12 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ 169.47, 168.21, 163.19(d, ¹*J*_{C-F} = 246.0 Hz), 142.05, 137.14(d, ³*J*_{C-F} = 7.0 Hz), 131.62, 130.79(d, ³*J*_{C-F} = 8.0 Hz), 126.12, 124.12, 123.14, 123.11, 120.54, 115.41(d, ²*J*_{C-F} = 21.0 Hz), 114.62(d, ²*J*_{C-F} = 22.0 Hz), 110.01, 85.77, 82.76, 54.34, 44.10, 27.41.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} = 35.4 min, t_{minor} = 26.7 min, *91% ee*, [α]_D²⁰ = -11.99 (c = 0.33, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₂H₂₁FN₂O₅S, [M+Na]⁺: 467.1047, found: 467.1048

tert-butyl (R)-1-(3-fluorobenzyl)-2,4'-dioxospiro[indoline-3,2'-thiazolidine]-3'-ca-rboxylate 1',1'-dioxide

(+)-3

White solid, yield 53%, ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.46 (m, 1H), 7.43 - 7.37 (m, 1H), 7.35 - 7.28 (m, 1H), 7.22 - 7.14 (m, 2H), 7.13 - 7.07 (m, 1H), 7.02 - 6.95 (m, 1H), 6.82 - 6.77 (m, 1H), 5.20 (d, J = 16.0 Hz, 1H), 4.69 (d, J = 16.0 Hz, 1H), 4.57 (d, J = 16.1 Hz, 1H), 4.08 (d, J = 16.1 Hz, 1H), 1.14 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 169.19, 163.21(d, ¹*J*_{C-F} = 246.00 Hz), 161.19, 146.19, 143.98, 136.77(d, ³*J*_{C-F} = 7.00 Hz), 132.47, 130.77(d, ³*J*_{C-F} = 9.00 Hz), 126.75, 124.10, 122.95, 122.93, 115.29(d, ²*J*_{C-F} = 21.00 Hz), 114. 44(d, ²*J*_{C-F} = 22.00 Hz), 110.51, 86.68, 82.47, 51.24, 44.23, 27.36.; Enantiometric excess of the product was determined by chiral stationary phase HPLC analysis using Daicel AS-H column (*n*-Hexane/*i*-PrOH 90:10 at 1.0 ml/min, λ = 254 nm, t_{major} =31.7 min, t_{minor} = 24.0 min, *97% ee*, [α]_D²⁰ = -1.4 (c = 1.40, in CH₃COCH₃).;HRMS (ESI) m/z calcd for C₂₂H₂₁FN₂O₆S, [M+Na]⁺: 483.0997, found: 483.0987

65% yield, 96% ee

60% yield, 97% ee

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

- 1

Area Percent Report

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=254 nm Peak RetTime Type Width Area Height Area

#	[min]	TAbe	[min]	[mAU*s]	[mAU]	e e	
1	17.148	BB	0.6284	1.05644e4	255.40074	45.9447	
2	26.248	BB	1.1184	1.24293e4	167.12021	54.0553	

63% yield, 90% ee

55% yield, 90% ee

S-66

64% yield, 90% ee

57% yield, 98% ee

Area Percent Report

Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.185	MIM	0.8157	29.95611	6.12088e-1	0.8281
2	22.340	BB	1.2405	3587.53418	41.73580	99.1719

63% yield, 96% ee

58% yield, 92% ee

S-74

54% yield, 88% ee

55% yield, 97% ee

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	20.327	BB	0.8827	608.43445 883.16064	8.97533	40.7909

55% yield, 94% ee

57% yield, 96% ee

7p 54% yield, 97% ee

: 1.0000 : 1.0000 Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

```
--|----|
```


 tak RetTime Type
 Width
 Area
 Height
 Area

 #
 [min]
 [min]
 mAU
 *s
 [mAU]
 %

 --------- --------- --------- --------- ---------- ----------------

 1
 16.955
 BB
 0.5962
 7850.48926
 201.31984
 48.7463

 2
 20.256
 BB
 0.7253
 8254.31055
 175.82668
 51.2537
Peak RetTime Type Width

56% yield, 98% ee

S-92

52% yield, 91% ee

Area Percent Report

Sorted By		:	Sig	nal	
Multiplier:			=		1.0000
Dilution:					1.0000
Use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: VWD1 A, Wavelength=230 nm

Peak RetTime Type # [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	26.665	MIM	2.2539	973.89154	7.20140	4.7167
2	35.422	MIM	1.8405	1.96737e4	178.15707	95.2833

Peak RetTime Type # [min]		[min]	Area [mAU*s]	Height [mAU]	Area	
1	25.732	VB	1.1586	6800.67188	91.35121	49.8015
2	35.433	BB	1.5865	6854.87695	63.99295	50.1985

```
S-93
```


