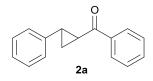
Supporting Information

General information. All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. THF was dried over alumina under N₂ using a Grubbs-type solvent purification system. All α , β -unsaturated carbonyls were prepared according to the literature procedures. Yields refer to chromatographically and spectroscopically (1H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by Agilent GC Series 6890N and GCMS 7890A. Merck silica gel plates (60F-254) using UV light as visualizing agent. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography. NMR spectra were recorded on Bruker DRX-400 calibrated using residual deuterated solvent (CDCl₃: δ H = 7.26 ppm, δ C = 77.10 ppm) as an internal reference. The following abbreviations were used to designate the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad. Infrared (IR) spectra were recorded on a Perkin–Elmer Spectrum 100 FT-IR spectrometer. High resolution mass spectra (HRMS) were recorded on an Agilent 6210 Series 1969A ESI-TOF (time of flight) mass spectrometer using EI (electron ionization) or ESI (electrospray ionization).

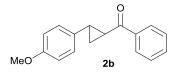
Optimizations for the Nickel-Catalysed Cyclopropanation of Chalcone 1a:

	[Ni] cat.		
Ph \land Ph	CH_2I_2 , Et_2Zn	Ph、 🛧 , Ph	Ph、 Ph
$\downarrow \downarrow \downarrow \downarrow$	>		+ Y ¥
1a 🖔	T , CH_2CI_2	2a Ö	Ét Ö 2a'

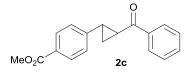

Entry	Ni catalyst (20 mol%)	CH ₂ I ₂ (equiv.)	Et₂Zn (equiv.)	Ligand	Solvent	T (°C)	Conv. (%) ^b	2a (%) ^b
1	None	4	2	none	DCM	0	25	7
2	NiCl ₂	4	2	none	DCM	0	79	58
3	NiCl ₂	4	2	none	DCE	0	84	57
4	NiCl ₂	4	2	none	PhMe	0	61	34
5	NiCl ₂	4	2	none	THF	0	93	25
6	NiCl ₂	4	2	none	Et ₂ O	0	>99	8
7	NiCl ₂	4	2	20 mol% Bipy ^b	DCM	0	88	32
8	NiCl ₂	4	2	20 mol% PPh ₃ ^b	DCM	0	79	26
9	NiCl ₂	4	2	20 mol% Dppf ^b	DCM	0	92	63
10	NiCl ₂	4	2	none	DCM	rt	84	71
11	NiCl ₂	4	2	none	DCM	40	>99	96
12	NiBr ₂	4	2	none	DCM	40	>99	96
13	Nil ₂	4	2	none	DCM	40	>99	97
14	Ni(acac) ₂	4	2	none	DCM	40	>99	41 (27) ^d
15	Ni(COD) ₂	4	2	none	DCM	40	67	41
16 ^c	NiCl ₂	4	2	none	DCM	40	100	0 (98) ^d
17	NiCl ₂	4	1.2	none	DCM	40	56	38
18	NiCl ₂	2	2	none	DCM	40	91	71 (9) ^d
19 ^e	NiCl ₂	4	2	none	DCM	40	94	94
20 ^f	NiCl ₂	4	2	none	DCM	40	98	96
21	none	4	2	none	DCM	40	30	7

^{*a*} A solution of Et₂Zn in hexane was added slowly to a mixture of 1a, and Ni catalyst in CH₂Cl₂. ^{*b*} Determined by GC analysis using dodecane as an internal standard. ^{*c*} CH₂Br₂ was used instead of CH₂I₂. ^{*d*} Yield of **2a**^{*}. ^{*e*} 10 mol% NiCl₂ was employed. ^{*f*} 2 mol% NiCl₂ was employed.

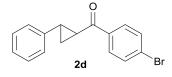
General Procedure A for Ni-catalysed Cyclopropanation of Ketones:


To a mixture of 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.) and 104 mg chalcone **1a** (0.5 mmol) in 2mL DCM at 40 $^{\circ}$ C was added slowly 1mL solution of Et₂Zn in hexane (1M, 1 mmol, 2 equiv.) over 20 min under nitrogen. After the addition, the reaction was stirred for a further 10 min before diluted with EtOAc and quenched with saturated aqueous NH₄Cl solution. Purification by silica gel column chromatography afforded the pure cyclopropane product.

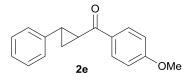
Phenyl(2-phenylcyclopropyl)methanone¹


Purification by silica gel column chromatography (2-5% Et₂O/petroleum ether) afforded **2a** as a white solid (96 mg, 86%). 1H NMR (400 MHz, CDCl3) δ 7.99 (dd, J = 8.2, 1.3 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.46 (s, 2H), 7.35 – 7.29 (m, 2H), 7.27 – 7.17 (m, 3H), 2.93 – 2.88 (m, 1H), 2.74 – 2.68 (m, 1H), 1.96 – 1.90 (m, 1H), 1.59 – 1.53 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 140.5, 137.8, 132.9, 128.5 (4C), 128.1 (2C), 126.6, 126.2 (2C), 30.0, 29.3, 19.2.

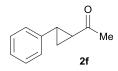
(2-(4-Methoxyphenyl)cyclopropyl)(phenyl)methanone²


A similar procedure was used for 119 mg **1b** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1.5 mL solution Et₂Zn in hexane (1 M, 1.5 mmol, 3 equiv., added over 30 min). Purification by silica gel column chromatography (5-10% Et₂O/petroleum ether) afforded **2b** as a white solid (93 mg, 74%). ¹H NMR (400 MHz, Acetone- d_6) δ 8.05 (dd, J = 8.5, 1.7 Hz, 2H), 7.64 – 7.59 (m, 1H), 7.54 – 7.49 (m, 2H), 7.19 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H), 3.03 (ddd, J = 26.4, 4.1, 2.8 Hz, 1H), 2.55 (ddd, J = 8.9, 6.6, 4.0 Hz, 1H), 1.78 – 1.72 (m, 1H), 1.52 (dd, J = 3.8, 1.5 Hz, 1H). ¹³C NMR (100 MHz, Acetone- d_6) δ 197.4, 158.6, 137.8, 132.7, 132.4, 128.6 (2C), 127.9 (2C), 127.3 (2C), 113.9 (2C), 54.6, 28.9, 28.4, 18.3.

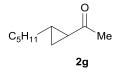
Methyl 4-(2-benzoylcyclopropyl)benzoate


A similar procedure was used for 133 mg **1c** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (10% Et₂O/petroleum ether) afforded **2c** as a white solid (117 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.96 (m, 4H), 7.60 – 7.54 (m, 1H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 3.91 (s, 3H), 2.98 – 2.92 (m, 1H), 2.77 – 2.71 (m, 1H), 2.00 – 1.94 (m, 1H), 1.62 – 1.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 198.0, 166.8, 146.0, 137.5, 133.1, 129.9 (2C), 128.6 (2C), 128.5, 128.1 (2C), 126.0 (2C), 52.0, 29.6, 29.5, 19.6. IR (neat, cm⁻¹) 2955 (w), 2927 (w), 1715 (s), 1708 (s), 1658 (m), 1439 (w), 1277 (s), 1226 (m), 1114 (m), 987 (w), 765 (m), 704 (s). HRMS (ESI-TOF) *m/z*: calc. for C₁₈H₁₆O₃Na [M+Na]⁺: 303.0987, found 303.0992.

(4-Bromophenyl)(2-phenylcyclopropyl)methanone³

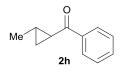

A similar procedure was used for 144 mg **1d** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-15% Et₂O/petroleum ether) afforded **2d** as a white solid (116 mg, 77%). ¹H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.35 – 7.29 (m, 2H), 7.25 (d, J = 7.2 Hz, 1H), 7.20 – 7.16 (m, 2H), 2.86 – 2.80 (m, 1H), 2.71 (ddd, J = 9.1, 6.6, 4.0 Hz, 1H), 1.96 – 1.90 (m, 1H), 1.61 – 1.55 (m, 1H). ¹³C NMR (100 MHz, CDCl3) δ 197.4, 140.2, 136.5, 131.9, 129.6 (2C), 128.6 (2C), 128.1 (2C), 126.7, 126.2 (2C), 30.2, 29.2, 19.3.

(4-Methoxyphenyl)(2-phenylcyclopropyl)methanone⁴

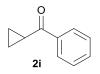

A similar procedure was used for 60 mg **1e** (0.25 mmol), 6.5 mg NiCl₂ (0.05 mmol, 20 mol%), 268 mg CH₂I₂ (1 mmol, 4 equiv), 1 mL DCM at 40 °C and 0.5 mL solution Et₂Zn in hexane (1 M, 0.5 mmol, 2 equiv., added over 10 min). Purification by silica gel column chromatography (5% Et₂O/petroleum ether) afforded **2e** as a white solid (47 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.9 Hz, 2H), 7.34 – 7.28 (m, 2H), 7.25 – 7.16 (m, 3H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.87 (s, 3H), 2.88 – 2.82 (m, 1H), 2.71 – 2.64 (m, 1H), 1.92 – 1.86 (m, 1H), 1.54 – 1.48 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 163.4, 140.7, 130.8, 130.3 (2C), 128.5 (2C), 126.5, 126.2 (2C), 113.7 (2C), 55.5, 29.4, 28.8, 18.8.

1-(2-Phenylcyclopropyl)ethan-1-one⁵

A similar procedure was used for 74 mg **1f** (0.5 mmol), 6.5 mg NiCl₂ (0.05 mmol, 10 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-10% Et₂O/petroleum ether) afforded **2f** as a colourless gum (49 mg, 61%). ¹H NMR (400 MHz, CDCl3) δ 7.31 – 7.25 (m, 3H), 7.21 (d, J = 7.4 Hz, 1H), 7.12 – 7.07 (m, 2H), 2.56 – 2.49 (m, 1H), 2.30 (s, 3H), 2.24 – 2.18 (m, 1H), 1.70 – 1.64 (m, 1H), 1.41 – 1.34 (m, 1H). ¹³C NMR (100 MHz, CDCl3) δ 206.7, 140.3, 128.5 (2C), 126.5, 126.0 (2C), 32.8, 30.8, 29.0, 19.0.


1-(2-Pentylcyclopropyl)ethan-1-one

A similar procedure was used for 70 mg **1g** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 $^{\circ}$ C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-5%


Et₂O/petroleum ether) afforded **2g** as a colourless oil (39 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 2.21 (s, 3H), 1.68 (dt, *J* = 8.1, 4.1 Hz, 1H), 1.45 – 1.17 (m, 10H), 0.88 (d, *J* = 7.5 Hz, 3H), 0.73 (ddd, *J* = 7.9, 6.3, 3.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 33.2, 31.5, 30.1, 29.3, 28.8, 26.0, 22.6, 18.0, 14.0. IR (neat, cm⁻¹) 2960 (m), 2929 (s), 2858 (m), 1700 (s), 1402 (m), 1358 (m), 1173 (s), 1025 (w), 960 (w), 861 (w). HRMS (ESI-TOF) *m/z*: calc. for C₁₀H₁₉O [M+H]⁺: 155.1430, found 155.1428.

(2-Methylcyclopropyl)(phenyl)methanone⁶

A similar procedure was used for 74 mg **1h** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (20-40% DCM/petroleum ether) afforded **2h** as a colourless oil (52 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.45 (m, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 2.35 – 2.29 (m, 1H), 1.58 – 1.49 (m, 2H), 1.45 – 1.39 (m, 1H), 1.16 (d, *J* = 6.3 Hz, 3H), 0.85 – 0.78 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 137.2, 131.5, 127.4 (2C), 126.9 (2C), 25.4, 20.2, 19.1, 17.3.

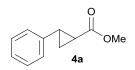
Cyclopropyl(phenyl)methanone⁷

A similar procedure was used for 66 mg **1i** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (1% Et₂O/pentane) afforded **2i** as a colourless oil (39 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.3 Hz, 2H), 7.53 – 7.47 (m, 1H), 7.41 (dd, *J* = 8.0, 7.3 Hz, 2H), 2.65 – 2.57 (m, 1H), 1.21 – 1.16 (m, 2H), 1.01 – 0.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 138.1, 132.7, 128.5 (2C), 128.0 (2C), 17.1, 11.6 (2C).

(1-Methylcyclopropyl)(phenyl)methanone^{5b}

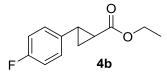
A similar procedure was used for 74 mg **1j** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (1% Et₂O/pentane) afforded **2j** as a colourless oil (48 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.77 (m, 2H), 7.52 – 7.47 (m, 1H), 7.46 – 7.40 (m, 2H), 1.44 (s, 3H), 1.28 (dd, *J* = 6.5, 4.0 Hz, 2H), 0.79 (dd, *J* = 6.5, 4.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 204.3, 137.7, 131.6 (2C), 128.2 (3C), 128.2, 25.5, 21.9, 15.2 (2C).

Bicyclo[4.1.0]heptan-2-one⁸

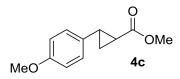

A similar procedure was used for 48 mg **1j** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 536 mg CH₂I₂ (2 mmol, 4 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (10-15% Et₂O/petroleum ether) afforded **2k** as a colourless oil (24 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 2.33 – 2.23 (m, 1H), 2.11 – 1.85 (m, 3H), 1.79 – 1.55 (m, 4H), 1.25 – 1.15 (m, 1H), 1.12 – 1.04 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 36.7, 25.8, 21.3, 17.8, 17.4, 10.2.

General Procedure A for Ni-catalysed Cyclopropanation of Esters and Amides:

A mixture of 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 68 mg ZnCl₂ (0.5 mmol, 1 equiv) and 82 mg ester **2a** (0.5 mmol) in 2mL DCM was stirred at 40 °C for 30 min. 268 mg CH₂I₂ (1 mmol, 2 equiv.) was added followed by a slow addition of 1 ml solution of Et₂Zn in hexane (1M, 1 mmol, 2 equiv.) over 20 min under nitrogen. After the addition, the reaction was stirred for a further 10 min before diluted with EtOAc and quenched with saturated aqueous NH₄Cl solution. The organic layer was dried over anhydrous MgSO₄ and the solvent was removed in vacuo. The residual oil was dissolved in 1mL CHCl₃, and was treated with a few drops of Br₂ for 10 min to


remove residual **2a** left. Purification by silica gel column chromatography afforded the pure product.

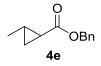
Methyl 2-phenylcyclopropane-1-carboxylate⁹


Purification by silica gel column chromatography (20-40% DCM/petroleum ether) afforded **4a** as a colourless oil (80 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.7 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.35 – 7.29 (m, 2H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.20 – 7.16 (m, 2H), 2.86 – 2.80 (m, 1H), 2.71 (ddd, *J* = 9.1, 6.6, 4.0 Hz, 1H), 1.96 – 1.90 (m, 1H), 1.61 – 1.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 140.2, 136.5, 131.9, 129.6 (2C), 128.6 (2C), 128.1 (2C), 126.7, 126.2 (2C), 30.2, 29.2, 19.3.

Ethyl 2-(4-fluorophenyl)cyclopropane-1-carboxylate¹⁰

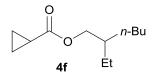

A similar procedure was used for 97 mg **3b** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 68 mg ZnCl₂ (0.5 mmol, 1 equiv), 268 mg CH₂I₂ (1 mmol, 2 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-10% Et₂O/petroleum ether) afforded **4b** as a colourless oil (79 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.07 (dd, *J* = 8.6, 5.3 Hz, 2H), 6.97 (t, *J* = 8.7 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.50 (ddd, *J* = 9.4, 6.5, 4.2 Hz, 1H), 1.84 (ddd, *J* = 8.5, 5.3, 4.2 Hz, 1H), 1.61 – 1.55 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.27 – 1.23 (m, 1H, overlapped). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 161.6 (d, *J* = 244.8 Hz), 135.7 (d, *J* = 3.2 Hz), 127.8 (d, *J* = 8.0 Hz, 2C), 115.2 (d, *J* = 21.5 Hz, 2C), 60.7, 25.4, 23.9, 16.8, 14.2.

Ethyl 2-(4-methoxyphenyl)cyclopropane-1-carboxylate¹¹

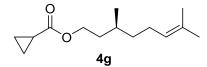

A similar procedure was used for 96 mg **3c** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 68 mg ZnCl₂ (0.5 mmol, 1 equiv), 268 mg CH₂I₂ (1 mmol, 2 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-10% Et₂O/petroleum ether) afforded **4c** as a white solid (61 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.3 Hz, 2H), 6.83 (d, *J* = 8.3 Hz, 2H), 3.78 (s, 3H), 3.71 (s, 3H), 2.49 (ddd, *J* = 9.2, 6.5, 4.1 Hz, 1H), 1.83 (ddd, *J* = 8.3, 5.2, 4.1 Hz, 1H), 1.58 – 1.53 (m, 1H), 1.26 (ddd, *J* = 8.3, 6.5, 4.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 158.4, 131.9, 127.4, 113.9, 55.3, 51.8, 25.7, 23.6, 16.6.

Benzyl 2-phenylcyclopropane-1-carboxylate¹²

A similar procedure was used for 119 mg **3d** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 68 mg ZnCl₂ (0.5 mmol, 1 equiv), 268 mg CH₂I₂ (1 mmol, 2 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-10% Et₂O/petroleum ether) afforded **4d** as a colourless gum (104 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.14 (m, 7H), 7.10 (d, *J* = 7.3 Hz, 1H), 7.02 – 6.97 (m, 2H), 5.07 (d, *J* = 12.4 Hz, 1H, Germinal coupling), 5.04 (d, *J* = 12.4 Hz, 1H, Germinal coupling), 2.49 – 2.43 (m, 1H), 1.89 – 1.84 (m, 0H), 1.56 – 1.50 (m, 1H), 1.26 – 1.20 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 139.9, 136.0, 128.6 (2C), 128.5 (2C), 128.2 (2C), 126.5 (2C), 126.2 (2C), 66.6, 26.4, 24.1, 17.2.

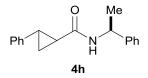

Benzyl 2-methylcyclopropane-1-carboxylate¹³

A similar procedure was used for 86 mg 3e (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 68 mg ZnCl₂ (0.5 mmol, 1 equiv), 268 mg CH₂I₂ (1 mmol, 2 equiv.), 2 mL DCE at 70 °C and 1 mL

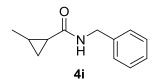

solution Et_2Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (0-10% Et_2O /petroleum ether) afforded **4e** as a colourless oil (34 mg, 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 5.11 (s, 2H), 1.47 – 1.36 (m, 2H), 1.24 – 1.18 (m, 1H), 1.11 (d, *J* = 5.9 Hz, 3H), 0.73 – 0.66 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 136.2, 128.5 (2C), 128.13 (2C), 128.10, 66.2, 21.3, 17.8, 17.4, 16.9.

2-Ethylhexyl cyclopropanecarboxylate

A similar procedure was used for 92 mg **3f** (0.5 mmol), 1.3 mg NiCl₂ (0.01 mmol, 2 mol%), 68 mg ZnCl₂ (0.5 mmol, 1 equiv.), 268 mg CH₂I₂ (1 mmol, 2 equiv.), 2 mL DCM at 40 °C and 1 mL solution Et₂Zn in hexane (1 M, 1 mmol, 2 equiv., added over 20 min). Purification by silica gel column chromatography (2% Et₂O/petroleum ether) afforded **4f** as a colourless oil (81 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 3.99 (d, *J* = 2.2 Hz, 1H), 3.98 (d, *J* = 2.2 Hz, 1H), 1.55 (s, 2H), 1.41 – 1.24 (m, 10H), 1.02 – 0.96 (m, 2H), 0.93 – 0.80 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 66.9, 38.8, 30.4, 28.9, 23.8, 22.9, 14.0, 12.9, 11.0, 8.2 (2C). IR (neat, cm⁻¹) 2962 (m), 2933 (m), 2865 (w), 1732 (s), 1461 (w), 1402 (m), 1175 (s), 1073 (m), 1030 (w), 917 (w), 824 (w). HRMS (ESI-TOF) *m/z*: calc. for C₁₂H₂₂O₂Na [M+Na]⁺: 222.1512, found 221.1507.

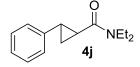

(S)-3,7-Dimethyloct-6-en-1-yl cyclopropanecarboxylate

A mixture of 6.5 mg NiCl₂ (0.05 mmol, 20 mol%), 34 mg ZnCl₂ (0.25 mmol, 1 equiv.) and 53 mg of (*S*)-3,7-dimethyloct-6-en-1-yl acrylate (0.25 mmol) in 1mL DCM was stirred at 40 °C for 10 min. 70 mg CH₂I₂ (0.26 mmol, 1.05 equiv.) was added followed by a slow addition of a solution of Et₂Zn (1M, 0.27 mL, 1.1 equiv.) in hexane over 40 min. After the addition, the reaction was stirred for a further 10 min before diluted with EtOAc and quenched with saturated aqueous NH₄Cl solution. Purification by silica gel column chromatography (0-3% Et₂O/petroleum ether) afforded **4g** as a colourless oil (38 mg, 68%). ¹H NMR (400 MHz, CDCl₃)


δ 5.09 (d, J = 7.3 Hz, 1H), 4.17 – 4.05 (m, 2H), 2.07 – 1.89 (m, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.71 – 1.51 (m, 2H, overlapped), 1.49 – 1.30 (m, 2H), 1.26 – 1.11 (m, 2H), 1.02 – 0.95 (m, 2H), 0.92 (d, J = 6.6 Hz, 3H), 0.88 – 0.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 131.3, 124.6, 63.0, 37.0, 35.5, 29.5, 25.7, 25.4, 19.4, 17.6, 12.9, 8.2 (2C). IR (neat, cm⁻¹) 2960 (w), 2920 (w), 1729 (s), 1456 (w), 1404 (m), 1374 (m), 1173 (s), 1075 (w), 903 (w), 825 (w). HRMS (ESI-TOF) m/z: calc. for C₁₄H₂₅O₂ [M+H]⁺: 225.1849, found 225.1844.

2-Phenyl-N-((S)-1-phenylethyl)cyclopropane-1-carboxamide¹⁴

A similar procedure was used for 3.3 mg NiCl₂ (0.025 mmol, 10 mol%), 134 mg CH₂I₂ (0.5 mmol, 2 equiv), 63 mg **3h** (0.25 mmol) in 1mL DCE at 70 °C and 0.5 mL solution Et₂Zn in hexane (1 M, 0.5 mmol, 2 equiv, added over 30 min). Purification by silica gel column chromatography (0-25% EtOAc/petroleum ether) afforded **4h** as a white solid (40 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.03 (m, 10H), 5.81 (d, *J* = 7.2 Hz, 1H, NH), 5.22 – 5.12 (m, 1H), 1.67 – 1.55 (m, 2H), 1.50 (d, *J* = 6.9 Hz, 3H), 1.28 – 1.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): mixture of two diastereomers, δ 170.8 (2C), 143.3, 143.2, 140.9 (2C), 128.7 (3C), 128.4 (3C), 128.4 (2C), 127.4 (2C), 126.2 (6C), 126.0 (4C), 49.2 (2C), 26.9, 26.8, 25.0 (2C), 21.9, 21.8, 16.1, 16.0.


N-benzyl-2-methylcyclopropane-1-carboxamide¹⁵

A similar procedure was used for 3.3 mg NiCl₂ (0.1 mmol, 10 mol%), 134 mg CH₂I₂ (0.5 mmol, 2 equiv), 44 mg **3i** (0.25 mmol) in 1mL DCE at 70 °C and 0.5 mL solution Et₂Zn in hexane (1 M, 0.5 mmol, 2 equiv, added over 30 min). Purification by silica gel column chromatography (0-25% EtOAc/petroleum ether) afforded **4i** as a colourless gum (17 mg, 36%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.24 (m, 5H), 5.80 (br s, 1H, NH), 4.45 (d, *J* = 2.2 Hz, 1H), 4.44 (d, *J* = 2.2 Hz,

1H), 1.46 – 1.35 (m, 1H), 1.23 – 1.15 (m, 1H), 1.09 (d, J = 6.0 Hz, 3H), 1.08 – 1.02 (m, 1H), 0.61 – 0.54 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 138.5, 128.7 (2C), 127.9 (2C), 127.5, 43.9, 23.6, 17.9, 15.7, 15.7.

N,N-diethyl-2-phenylcyclopropane-1-carboxamide¹⁶

A similar procedure was used for 3.3 mg NiCl₂ (0.1 mmol, 10 mol%), 134 mg CH₂I₂ (0.5 mmol, 2 equiv), 51 mg **3j** (0.25 mmol) in 1mL DCE at 70 °C and 0.5 mL solution Et₂Zn in hexane (1 M, 0.5 mmol, 2 equiv, added over 30 min). Purification by silica gel column chromatography (0-30% Et₂O /petroleum ether) afforded **4j** as a colourless gum (39 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.22 – 7.16 (m, 1H), 7.13 (dd, *J* = 8.7, 0.7 Hz, 2H), 3.43 (q, *J* = 7.1 Hz, 4H), 2.51 – 2.45 (m, 1H), 1.96 – 1.90 (m, 1H), 1.68 – 1.62 (m, 1H), 1.27 – 1.22 (m, 1H), 1.16 (br s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 141.2, 128.4 (2C), 126.1 (3C), 42.1, 41.0, 25.5, 23.2, 16.2, 14.9, 13.3.

Ni(COD)₂-Catalyzed Cyclopropanation of chalcone 1a with Zn(CH₂I)₂¹⁷ (Scheme 3b):

To a solution of Et_2Zn (0.5 mmol) in DCM (1ml) at -78 °C was added 268 mg CH₂I₂ (1.0 mmol) dropwise. The mixture was stirred at -15 °C for 30 min followed by addition of **1a** (52mg, 0.25 mmol) and Ni(COD)₂ (13.5 mg, 0.049 mmol, 20 mol%). The reaction mixture was stirred at 0 °C for 1h. GC analysis using dodecane as an internal standard indicated the formation of **2a** in 79% yield with 2% of **1a** remaining.

Ni(COD)₂-Catalyzed Cyclopropanation of chalcone 1a with EtZnCH₂I¹⁸ (Scheme 3b):

To a solution of $Et_2Zn (0.5 \text{ mmol})$ in DCM (1ml) at -78 °C was added 134 mg $CH_2I_2 (0.5 \text{ mmol})$ dropwise. The mixture was stirred at 0 °C for 5 min followed by addition of **1a** (52mg, 0.25 mmol) and Ni(COD)₂ (13.5 mg, 0.049 mmol, 20 mol%). The reaction mixture was stirred at 0 °C for 1h. GC analysis using dodecane as an internal standard indicated the formation of **2a** in 8% yield with 64% of **1a** remaining.

Ni(COD)₂-Catalyzed Cyclopropanation of chalcone 1a with IZnCH₂I¹⁸ (Scheme 3b):

To a solution of I_2 (0.5 mmol) in DCM (1 ml) at 0 °C was added 0.5 mL solution of Et_2Zn in hexane (1 M, 0.5 mmol). After stirring for 5 min, 134 mg CH₂I₂ (0.5 mmol) was added dropwise. The mixture was stirred at 0 °C for 5 min followed by addition of **1a** (52mg, 0.25 mmol) and Ni(COD)₂ (13.5 mg, 0.049 mmol, 20 mol%). The reaction mixture was stirred at 0 °C for 1h. GC analysis using dodecane as an internal standard indicated the formation of **2a** in 59% yield with 36% of **1a** remaining.

References

1. (a) R. Infante, J. Nieto and C. Andres, *Org. Biomol. Chem.*, 2014, **12**, 345 – 354. (b) X. Wang and Z. D. Wang, *Tetrahedron*, 2011, **67**, 3406 – 3411.

2. I. Nicolas, P. Le Maux and G. Simonneaux, *Tetrahedron Lett.*, 2008, 49, 2111-2113.

3. D. D. Tanner, J. J. Chen, C. Luelo and P. M. Peters, J. Am. Chem. Soc., 1992, 114, 713-717.

4. H. Kakei, T. Sone, Y. Sohtome, S.Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2007, 129, 13410-13411.

5. G. Velegraki and M. Stratakis, J. Org. Chem., 2013, 78, 8880-8884.

6. C. Clarke, S. Foussat, D. J. Fox, D. S. Pedersen and S. Warren, Org. Biomol. Chem., 2009, 7, 1323 – 1328.

7. (a) S. K. Hanson, R. Wu and L. A. P. Silks, Org. Lett., 2011, **13**, 1908–1911. (b) P. Wallace and S. Warren, J. Chem. Soc., Perkin Trans. 1. Org. Bioorg. Chem., 1988, 2971-2978.

8. K. Fujii, T. Misaki and T. Sugimura, Chem. Lett., 2014, 43, 634.

9. M. Davi and H. Lebel, Chem. Commun., 2008, 40, 4974 – 4976.

10. A. Kozikowski, T. Kurome, V. Setola, B. Roth, 2007, WO2007/25144 A1.

11. M. Bordeaux, V. Tyagi and R. Fasan, Angew. Chem., Int. Ed., 2015, 54, 1744-1748.

12. M. P. A. Lyle and P. D. Wilson, Org. Lett., 2004, 6, 855-857.

13. R. T. Backer, M. J. Fisher, S. L. Kuklish, S. P. Hollinshead, E. C. R. Simth and K. Takeuchi, Eli Lilly and Company, WO2008/103185 A2, 2008.

14. X. Zhang, K. Hodgetts, S. Rachwal, H. Zhao, J. W. F. Wasley, K. Craven, R. Brodbeck, A. Kieltyka, D. Hoffman, M. D. Bacolod, B. Girard, J. Tran and A. Thurkauf, *J. Med. Chem.*, 2000, **43**, 3923–3932.

15. M. G. Stanton, S. R. Stauffer, A. R. Gregro, M. Steinbeiser, P. Nantermet, S. Sankaranarayanan, E. A. Price, G. Wu, M.-C. Crouthamel, J. Ellis, M.-T. Lai, A. S. Espeseth, X.-P. Shi, L. Jin, D. Colussi, B. Pietrak, Q. Huang, M. Xu, A. J. Simon, S. L. Graham, J. P. Vacca and H. Selnick, *J. Med. Chem.*, 2007, **50**, 3431–3433.

16. J. M. Concellon, M. Huerta, E. Bardales, *Tetrahedron*, 2004, **60**, 10059 – 10065.

17. A. B. Charette, C. Molinaro, C. Brochu, J. Am. Chem. Soc., 2001, **123**, 12168.

18. S. E. Denmar, S. P. Oconnor, J. Org. Chem., 1997, 62, 3390.