Electronic Supplementary Information

Lithium ion intercalation of 3-D vertical hierarchical TiO₂ nanotubes

on titanium mesh for efficient photoelectrochemical water splitting[†]

Yanmei Xin,^a Yuxiao Cheng,^b Yuyan Zhou,^b Zhenzhen Li,^a Hongjun Wu,^c and Zhonghai Zhang^{*,a}

^aSchool of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China ^bShanghai Entry-Exit Inspection and Quarantine Bureau, 1208 Minsheng Road, Shanghai 200135, China ^cProvincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China. Address correspondence to zhzhang@chem.ecnu.edu.cn

Experimental Section

Chemicals and Materials. Titanium mesh (99.6%, 100 mesh, Strem Chemicals) was cut into pieces of $25 \times 10 \text{ mm}^2$. Ethylene glycol (EG), ammonia fluoride (NH₄F), lithium sulfate (Li₂SO₄), potassium hydroxide (KOH) were purchased from Macklin Chemical and used as received. All aqueous solutions were prepared using deionized water (DI) with a resistivity of 18.2 M Ω cm.

Preparation of hierarchical TiO₂ NTs/mesh. The TiO₂ nanotubes (TiO₂ NTs) were fabricated by a two-step anodization process. Prior to anodization, the Ti meshes were first degreased by sonicating in ethanol and room-temperature DI water, followed by drying in pure nitrogen stream. The anodization was carried out using a conventional two-electrode system with the Ti mesh as an anode and a Pt gauze (Aldrich, 100 mesh) as a cathode respectively. All electrolytes consisted of 0.5 wt% NH₄F in EG solution with 2 vol% water. All the anodization was carried out at room temperature. In the first-step anodization, the Ti mesh was anodized at 60 V for 60 min, and then the as-grown nanotube layer was ultrasonically removed in DI water. The same Ti mesh then underwent the second anodization at 20 V for 60 min. After the two-step anodization, the prepared TiO_2 NT/mesh samples were cleaned with DI water and dried off with N₂ gas. The as-anodized TiO_2 NTs/mesh were annealed in air at 450 °C for 1 h with a heating rate of 5 °C/min.

Intercalation of lithium ions. The electrochemical intercalation of Li⁺ was conducted in a typical three-electrode system, with TiO_2 NTs/mesh, Ag/AgCl electrode, and Pt mesh as working electrode, reference electrode, and counter electrode, respectively, in 1 M Li₂SO₄ aqueous solution. The TiO₂ NTs/mesh was then subject to the electrochemical reduction and ion intercalation process under negative potentials of -0.4 V *vs* RHE (reversible hydrogen electrode). The thus prepared Li/TiO₂ NTs/mesh was finally cleaned with DI water and dried off with N₂ gas.

Characterization of Li/TiO₂ **NTs/mesh**. The morphologies of Li/TiO₂ NTs/mesh was determined by filed-emission scanning electron microscope (FESEM, Hitachi S4800). The crystalline structure of the samples was analyzed by X-ray diffraction (XRD, Bruker D8 Discover diffractometer, using Cu K α radiation, $\lambda = 1.540598$ Å). Photoelectron Spectroscopy (XPS) data were collected by an Axis Ultra instrument (Kratos Analytical) under ultrahigh vacuum (<10⁻⁸ torr) and using a monochromatic Al K α X-ray source operating at 150 W. The survey and high-resolution spectra were collected at fixed analyzer pass energies of 160 and 20 eV, respectively. Binding energies were referenced to the C 1s binding energy of adventitious carbon contamination which was taken to be 285.0 eV. **Photoelectrochemical performance of TiO**₂ **NTs/mesh and Li/TiO**₂ **NTs/mesh.** The photoelectrochemical (PEC) performances of the TiO₂ NTs/mesh and Li/TiO₂ NTs/mesh were evaluated using a three-electrode configuration. The supporting electrolyte used was 1 M KOH solution. The potential of the photoelectrodes were controlled by a potentiostat and were reported against the reversible hydrogen electrode (RHE) following the equation below:

 E_{RHE} = $E_{Ag/AgCl}$ + 0.059pH + $E^{\circ}_{Ag/AgCl}$ with

$$E^{\circ}_{Ag/AgCl} = 0.1976 \text{ V at } 25 \text{ °C}$$
 (1)

The scan rate for the linear sweep voltammetry (LSV) was 5 mV s⁻¹. The photocurrent was measured under an irradiation from a 300 W Xe lamp (PLS-SXE300, PE300BF). The intensity of the light source was calibrated with a Si diode (Model 818, Newport) to simulate AM 1.5 illumination (100 mW cm⁻²). The electrochemical impedance spectra (EIS) were measured using a PGSTAT302N Autolab Potentiostat/Galvanostat (Metrohm) equipped with a frequency analyzer module (FRA2) with an excitation signal of 10 mV amplitude. The impedance *vs* frequency spectra were acquired at the open circular potential of the system under illumination condition. Afterward, impedance *vs* potential measurement at a fixed frequency was performed to determine the carrier density. The IPCE were obtained under illumination through monochromatic system, composed of a monochromator (Model: 74125, Newport) and light source (Model 73404, Newport).

Fig. S1 SEM image of 1-step anodized TiO₂ NTs.

Fig. S2 Li^+ intercalation of TiO_2 NTs/mesh.

Fig. S3 XRD patterns of Li/TiO_2 NTs/mesh.

Fig. S4 (a) XPS survey and (b) core-level XPS of O 1s of TiO_2 NTs/mesh and Li/TiO_2 NTs/mesh.

Fig. S5 Linear sweep voltammograms collected from the TiO_2 NTs/foil and TiO_2 NTs/mesh.