Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Deconstruction of a Metallodrug: Mechanism of Drug Resistance by the 9 Cysteines in β -Metallothionein rh1a

Daisy. L. Wong,^a and Martin. J. Stillman^a

^aDepartment of Chemistry

The University of Western Ontario

London, ON, N6A 5B7, Canada†

E-mail:stillman@uwo.ca

Web: www.stillmangroup.ca

Experimental Procedure

Preparation of recombinant human Metallothionein1a

Preparation of isolated MT domain fragments followed previously reported methods.^[1] The amino acid sequence for the isolated domain used in this study was based on the recombinant human MT1a 38-residue β-MT domain fragment sequence (MGKAAAACSC ATGGSCTCTG SCKCKECKCN SCKKAAAA). Each of the corresponding DNA sequences was inserted as an N-terminal S-tag fusion protein into pET29a plasmids and individually expressed in Escherichia coli BL21- (DE3) with cadmium-supplemented growth medium. The protein was expressed and purified as the cadmium saturated form for stability. All purified protein solutions were evacuated and saturated with argon to impede cysteine oxidation.

Preparation of apo-β-Metallothionein

Cadmium was removed from the purified, isolated MT domains by acidifying the protein solutions to pH 2.7. The protein was desalted and buffer exchanged with argon-saturated deionized water, returned to neutral pH, and concentrated using Millipore Amicon Ultra-4 centrifuge filter units (3 kDa MWCO). Protein concentrations of the final, pH-adjusted apo- β -MT solutions were determined by cadmium remetalation of small fractions of each protein monitored using UV–visible absorption (Cary 50, Varian Canada): ϵ_{250} values of Cd₃- β -MT is 36000 M⁻¹ cm⁻¹. Protein solutions were diluted to a final concentration of 10 μ M.

Preparation of Rh₂(OAc)₄ solutions

Stock solutions of 500 μM dirhodium(II) tetraacetate (Sigma-Aldrich) were freshly prepared in deionized water, evacuated and argon saturated. The MT cysteine concentration was determined and two-fold excess of Rh₂(OAc)₄ was added to the MT solution and mixed immediately prior to MS acquisition. The room-temperature UV-visible and circular dichroism (CD) spectra of the solutions were also measured following Rh₂(OAc)₄ saturation.

Electrospray Ionization Mass Spectrometry, UV- Visible and Circular Dichroism Absorption **Spectroscopy Parameters**

A Bruker Micro-TOF II instrument (Bruker Daltonics, Toronto, ON) operated in positive ion mode was used to collect the data. Nal was used as an external calibrant. The following settings were used: scan, m/z 500-3000; rolling average, 2; nebulizer, 2 bar; dry gas, 80°C at a rate of 8.0 L/min; capillary, 4000 V; end plate offset, -500 V; capillary exit, 175 V; skimmer 1, 30.0 V; skimmer 2, 23.5 V; hexapole RF, 800 V. The spectra were collected continuously over 1 hr and time slices were deconvoluted using the Maximum Entropy algorithm of the Bruker Compass DataAnalysis software package. A Jasco J810 spectropolarimeter was used to collect CD spectral data. The following scan parameters were used: step scan; range, 800–200 nm; data pitch, 1 nm; bandwidth, 0.5 nm; response, 1 s.

Molecular Dynamics Calculations

A minimized structure of the 38-residue Cd₃- β -MT1a domain fragment was used (Scigress MM3/MD method with augmented force field; Fujitsu Poland)^[2] to test if the Rh₂⁴⁺ core could be reasonably coordinated by 8 of the 9 cys of the β -MT1a. The three Cd²⁺ ions were deleted from the original structure and the Rh₂⁴⁺ core inserted using cys thiolate connections that were in close proximity to the 8 x/y ligand positions on the Rh_2^{4+} core. The alignment of the core was locked to stop rotation about the Rh-Rh bond. The molecular dynamics calculation was carried out for 200 ps at an average temperature of 355 K with 2 fs steps using a dielectric of 78.5. The initial structure relaxed immediately then was stable.

References

- T. B. J. Pinter, G. W. Irvine, and M. J. Stillman, *Biochemistry*. 2015, 54, 5006.
 K. E. Rigby, J. Chan, J. Mackie, and M. J. Stillman, *Proteins: Struct., Funct., Bioinf.* 2006, 62, 159.