Supporting Information

Iron-Catalyzed Sequential Reaction toward α-Aminonitriles

from Secondary Amines, Primary Alcohols and

Trimethylsilyl Cyanide

Hang Shen,^a Liangzhen Hu,^a Qing Liu,^a Muhammad Ijaz Hussain,^a Jing Pan,^a

Mingming Huang,^a and Yan Xiong*a,b

^aSchool of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

xiong@cqu.edu.cn

Table of contents

1. General Methods	S2
2. Experimental Procedures	S2
2.1 General procedure for synthesis of 1e, 1f, 1m, 1n and 1o-s	S2
2.2 General procedure for synthesis of 2	S2
3. Optimization of reaction conditions and control experiment	S2
4. ¹ H- and ¹³ C-NMR analytical data	S5
5. References	S9
6. ¹ H- and ¹³ C-NMR spectra	S9

1. General Methods

¹H- and ¹³C-NMR spectra were recorded in CDCl₃ solution on a Bruker Avance 500 spectrometer at 20~25 °C. ¹H NMR spectra were reported in parts per million using tetramethylsilane TMS ($\delta = 0.00$ ppm) as an internal standard. The data of ¹H NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet), coupling constants (*J*, Hz), and integration. ¹³C NMR spectra were reported in parts per million using solvent CDCl₃ ($\delta = 77.2$ ppm) or DMSO ($\delta = 39.5$ ppm) as an internal standard, The data of ¹³C NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet), and coupling constants (*J*, Hz). High resolution mass spectra (HRMS) were obtained with a Q-TOF MS spectrometer. Reactions were monitored by TLC and column chromatography was performed using silica gel. Commercially available reagents were used without further purification unless otherwise specified.

2. Experimental Procedures

2.1 General procedure for synthesis of 1e, 1f, 1m, 1n and 1o-s

Compound **1** were synthesized according to the reported method:¹ To a flask containing a stirred mixture of Ph_3P (0.314 g, 1.2 mmol) and DDQ (0.272 g, 1.2 mmol) in dichloromethane (5 mL) was added aniline (1.2 mmol) at room temperature. Alcohol (1.0 mmol) was then added to the reaction mixture. TLC monitoring showed the completion of the reaction. The solvent was evaporated and the residue was chromatographed on a silica gel colum to give secondary amine.

2.2 General procedure for synthesis of 2

Alcohol (3.75 mmol), TMSCN (0.272 mL, 2 mmol) and ferrous oxalate (0.007 g, 0.05 mmol) were successively added to the stirred solution of secondary amine 1 (0.5 mmol) in a seal tube at room temperature. After addition of TBHP (0.3 mL, 2 mmol, $\geq 65\%$ in *tert*-butanol), the mixture was stirred at room temperature for 4 h or rosed to 90 °C for overnight. Subsequently, the mixture was poured into aqueous NaHCO₃ and Na₂S₂O₃ solution, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated in vacuo. The residue was chromatographed on a silica gel colum to give α -aminonitrile **2**.

3. Optimization of reaction conditions and control experiment

Table 1S. Evaluation of oxidants, catalysts and solvents^{*a*}

	H N +	DH + TMSCN	[Fe]	_CN		
	1a		2a			
Entry	Catalyst	Oxidant	Solvent	Time (h)	Yield $(\%)^b$	
	-					
3	CuI	TBHP	DCE	10	0	
5	$Cu(OAc)_2$	TBHP	DCE	10	0	
1	FeCl ₂ ·6H ₂ O	TBHP	DCE	10	17	
2	FeCl ₃	TBHP	DCE	10	trace	
6	FeCl ₂	TBHP	DCE	10	27	
7	Fe(COO) ₂ •2H ₂ O	TBHP	DCE	10	46	
8	Fe(COO) ₂	TBHP	DCE	10	49	
9	FeSO ₄ •5H ₂ O	TBHP	DCE	10	41	
10	Fe(OAc) ₂	TBHP	DCE	10	0	
11	$Fe(acac)_2$	TBHP	DCE	10	0	
12	FeS	TBHP	DCE	10	0	
13	NiCl ₂ •6H ₂ O	TBHP	DCE	10	0	
14	CoCl ₂ •6H ₂ O	TBHP	DCE	10	0	
15	Fe(COO) ₂	TBHP	DCE	5	52	
16	Fe(COO) ₂	TBHP	DCE	4	60	
17	Fe(COO) ₂	TBHP	DCE	3	47	
18	Fe(COO) ₂	DIB	DCE	4	0	
19	$Fe(COO)_2$	Oxone	DCE	4	0	
20	Fe(COO) ₂	mCPBA	DCE	4	0	
21	Fe(COO) ₂	DDQ	DCE	4	0	
22	Fe(COO) ₂	NIS	DCE	4	0	
23	Fe(COO) ₂	F-TEDA	DCE	4	0	
24	Fe(COO) ₂	H_2O_2	DCE	4	38	
25	Fe(COO) ₂	TBHP	DCM	4	59	
26	Fe(COO) ₂	TBHP	CHCl ₃	4	56	
27	Fe(COO) ₂	TBHP	Toluene	4	63	
28	Fe(COO) ₂	TBHP	THF	4	0	
29	Fe(COO) ₂	TBHP	CH ₃ CN	4	0	
30	Fe(COO) ₂	TBHP	Et ₂ O	4	0	
31	Fe(COO) ₂	TBHP	DMF	4	0	
32	$Fe(COO)_2$	TBHP	1,4-dioxane	4	0	
33	Fe(COO) ₂	TBHP	ethyl acetate	4	0	
34	Fe(COO) ₂	TBHP	DMSO	4	0	
35	Fe(COO) ₂	TBHP	acetone	4	0	
36	Fe(COO) ₂	TBHP	CH ₃ NO ₂	4	0	
37	Fe(COO) ₂	TBHP	hexane	4	30	
^{<i>a</i>} Reaction conditions: 1.2.3.4-tetrahydroquinoline (0.5 mmol). EtOH (2.5 mmol). oxidant (1.5 mmol)						

^{*a*} Reaction conditions: 1,2,3,4-tetrahydroquinoline (0.5 mmol), EtOH (2.5 mmol), oxidant (1.5 mmol), catalyst (0.15 mmol), solvent (4 mL), rt. ^{*b*} Yield determined by ¹H NMR using mesitylene as internal

standard.

Different catalysts, oxidants, solvents and reaction time were screened, the highest yield was obtained when using $Fe(COO)_2$ as catalyst, TBHP as oxidant and toluene as solvent. The best reaction time was 4 h.

Table 2S. Optimization of Reaction Conditions^a

			e] (specified) HP (specified) <u>DH (specified)</u> toluene	CN	
		1a	~	2a	
Entry	TBHP (eq)	EtOH (eq)	TMSCN (eq)	[Fe] (eq)	Yield $(\%)^b$
1	2	5	3	0.3	47
2	4	5	3	0.3	64
3	5	5	3	0.3	62
4	6	5	3	0.3	56
5	3.5	5	3	0.3	56
6	4.5	5	3	0.3	58
7	4	3	3	0.3	55
8	4	6	3	0.3	68
9	4	7	3	0.3	71
10	4	7.5	3	0.3	73
11	4	8	3	0.3	73
12	4	8.5	3	0.3	68
13	4	9	3	0.3	67
14	4	11	3	0.3	70
15	4	7.5	2	0.3	71
16	4	7.5	4	0.3	76
17	4	7.5	5	0.3	70
18	4	7.5	6	0.3	66
19	4	7.5	3.5	0.3	73
20	4	7.5	4.5	0.3	72
21	4	7.5	4	0.2	74
22	4	7.5	4	0.4	72
23	4	7.5	4	0.1	76
24	4	7.5	4	0.05	70
25	4	7.5	4	0.02	53
26	4	7.5	4	0.1	0°
27	4	7.5	4	0.1	0^d
28	4	7.5	4	0.1	Complex ^e

^{*a*} Reaction conditions: 1,2,3,4-tetrahydroquinoline (0.5 mmol), oxidant (specified), EtOH (specified), TMSCN (specified), catalyst (specified), solvent (4 mL), 4 h, rt. ^{*b*} Yield determined by ¹H NMR using mesitylene as internal standard. ^{*c*} 0.2 eq K₂CO₃ was added. ^{*d*} 0.2 wt% 4 Å M. S. was added. ^{*e*} 0.2 eq DBU was added. M. S. = molecular sieve.

Different amounts of TBHP, EtOH, TMSCN and iron salt were evaluated (Table 2S) and the highest yield was obtained when using 4 equivalents of TBHP, 7.5 equivalents of EtOH, 4

equivalents of TMSCN and 0.1 equivalent of iron salt. **Figure 1S.** ¹H NMR spectroscopic analysis of the intermediate aldehyde.

TBHP (0.3 mL, 2 mmol, \geq 65% in *tert*-butanol) was added to the stirred mixture of benzyl alcohol (0.52 mL, 0.5 mmol) and ferrous oxalate (0.007 g, 0.05 mmol) in 4 mL toluene and rosed to 90 °C for 5 h. Subsequently, the mixture was poured into aqueous NaHCO₃ and Na₂S₂O₃ solution, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated in vacuo. The residue was analyzed by ¹H NMR and the chemical shift of aldehyde group of benzaldehyde was the same as reported data.

4. ¹H- and ¹³C-NMR analytical data

2-(3,4-dihydroquinolin-1(2H)-yl)propanenitrile (2a): Yellow oil; 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.12 (td, J = 8.0, 1.5 Hz, 1H), 7.03 (d, J = 7.0 Hz, 1H), 6.75 (td, J = 7.5, 0.5 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 4.83 (q, J = 7.0 Hz, 1H), 3.35-3.31 (m, 1H), 3.26-3.21 (m, 1H), 2.82-2.71 (m, 2H), 2.03-1.98 (m, 2H), 1.62 (d, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 129.8, 127.4, 125.6, 119.1, 119.0, 112.1, 45.7, 43.9, 27.9, 22.3, 17.3. HRMS (ESI) calcd for C₁₂H₁₄N₂ [M+H]⁺ 187.1230, found 187.1221.

2-(indolin-1-yl)propanenitrile (2b): White solid; 69% yield; mp 78-79 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.15-7.12 (m, 2H), 6.82 (td, J = 8.0, 0.5 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 4.56 (q, J = 7.5 Hz, 1H), 3.57 (td, J = 8.5, 3.5 Hz, 1H), 3.23 (dt, J = 11, 8.5 Hz, 1H), 3.05-2.99 (m, 2H), 1.63 (d, J = 7.0 Hz, 3H). ¹³C NMR

(125 MHz, CDCl₃) δ 149.3, 130.7, 127.6, 125.1, 120.6, 118.1, 108.6, 49.1, 45.0, 28.3, 17.8. HRMS (ESI) calcd for C₁₁H₁₂N₂ [M+H]⁺ 173.1073, found 173.1081.

2-(2-methylindolin-1-yl)propanenitrile (2c): Yellow oil; mixture of two diastereoisomers (dr = 2:1); 94% yield. Major isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.13-7.08 (m, 2H), 6.78 (t, *J* = 7.5 Hz, 1H), 6.62 (d, *J* = 7.5 Hz, 1H), 4.37 (q, *J* = 7.5 Hz, 1H), 3.87-3.81 (m, 1H), 3.16 (dd, *J* = 15.5, 8.5 Hz, 1H), 2.64

(dd, J = 15.5, 7.5 Hz, 1H). Two isomers: ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 148.3, 129.7,

129.4, 127.62, 127.56, 125.01, 124.97, 120.3, 119.8, 119.2, 119.0, 109.7, 108.4, 58.9, 58.8, 45.4, 42.7, 37.8, 37.3, 22.2, 19.2, 18.1, 18.0. HRMS (ESI) calcd for C₁₂H₁₄N₂ [M+H]⁺ 187.1230, found 187.1236.

2-(5-nitroindolin-1-yl)propanenitrile (2d): Yellow solid; 76% yield; mp 109-112 °C.. ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, J = 8.0, 2.0 Hz, 1H), 7.37 (d, J = 2.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 4.63 (q, J = 7.0 Hz, 1H), 7.34-3.70 (m, 1H), 3.42 (dt, J = 11.0, 9.0 Hz, 1H), 3.19-3.06 (m, 2H), 1.68 (d,

J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 150.4, 148.6, 138.3, 125.0, 117.4, 116.5, 102.9, 49.3, 44.6, 28.3, 17.6. HRMS (ESI) calcd for $C_{11}H_{11}N_3O_2$ [M+H]⁺ 218.0924, found 218.0930.

.CN

2-(methyl(phenyl)amino)propanenitrile (2e):² Yellow oil; 60% yield. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.30 \text{ (t, } J = 8.0 \text{ Hz}, 2\text{H}), 6.96-6.93 \text{ (m, 3H)}, 4.62 \text{ (q, } J = 7.5 \text{ (m, 3H)})$ Hz, 1H), 2.90 (s, 3H), 1.59 (d, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 129.5, 121.3, 118.6, 117.2, 49.2, 34.5, 18.1. HRMS (ESI) calcd for C₁₀H₁₂N₂ [M+H]⁺ 161.1073, found 161.1068.

2-(ethyl(phenyl)amino)propanenitrile (2f):³ Yellow oil; 42% yield. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.31 \text{ (td}, J = 7.0, 2.0 \text{ Hz}, 2\text{H}), 7.00-6.97 \text{ (m}, 3\text{H}), 4.47 \text{ (q}, J = 7.0, 2.0 \text{ Hz}, 2\text{H})$ 7.0 Hz, 1H), 3.38-3.32 (m, 2H), 1.56 (d, J = 7.0 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H), ¹³C NMR (125 MHz, CDCl₃) δ 147.0, 129.5, 121.9, 119.6, 119.2, 48.4, 43.8, 18.7,

14.0. HRMS (ESI) calcd for C₁₁H₁₄N₂ [M+H]⁺ 175.1230, found 175.1234.

2-(3,4-dihydroquinolin-1(2H)-yl)acetonitrile (2g): Yellow solid; 45% yield; mp 59-62 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.14 (td, J = 8.0, 1.0 Hz, 1H), 7.03 (d, J =7.0 Hz, 1H), 6.78 (t, J = 7.0 Hz, 1H), 6.67 (d, J = 8.5 Hz, 1H), 4.16 (s, 2H), 3.29 (t, J = 6.0 Hz, 2H), 2.79 (t, J = 6.5 Hz, 2H), 2.07-2.02 (m, 2H). ¹³C NMR (125 MHz,

CDCl₃) & 143.3, 129.8, 127.5, 124.8, 119.4, 116.0, 112.0, 50.2, 40.4, 27.5, 22.4. HRMS (ESI) calcd for C₁₁H₁₂N₂ [M+H]⁺ 173.1073, found 173.1082.

2-(7-(trifluoromethyl)-3,4-dihydroquinolin-1(2H)-yl)acetonitrile (2h): Yellow oil; 30% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, *J* = 8.0 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.83 (s, 1H), 4.20 (s, 2H), 3.35 (t, J = 6.0 Hz, 2H), 2.83 (t, J = 6.5 Hz, 2H), 2.08-2.03 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ

143.6, 130.0, 129.9 (q, J = 32.5 Hz), 128.5, 124.4 (q, J = 270 Hz), 115.9 (q, J = 3.8 Hz), 115.4, 108.3 (q, J = 3.8 Hz), 50.0, 40.2, 27.5, 21.9. HRMS (ESI) calcd for $C_{12}H_{11}N_2F_3$ [M+H]⁺ 241.0947, found 241.0935.

N-methyl-*N*-phenylaminoacetonitrile (2i):² Yellow oil; 44% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 7.5 Hz, 2H), 6.93 (t, J = 7.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 2H), 4.18 (s, 2H), 3.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.0, 129.6, 120.4, 115.7, 115.1, 42.5, 39.4. HRMS (ESI) calcd for C₉H₁₀N₂ [M+H]⁺ 147.0917,

found 147.0915.

N-ethyl-*N*-phenylaminoacetonitrile (2j):³ Yellow oil; 51% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (td, J = 7.5, 1.0 Hz, 2H), 6.90 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.0 Hz, 2H), 4.14 (s, 2H), 3.44 (q, J = 7.0 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.0, 129.7, 120.0, 116.5, 115.1, 46.5, 39.7, 12.4.

HRMS (ESI) calcd for C₁₀H₁₂N₂ [M+H]⁺ 161.1073, found 161.1066.

4.07 (s, 2H), 3.43 (t, J = 8.0 Hz, 2H), 3.03 (t, J = 8.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.4, 130.6, 127.7, 125.1, 120.5, 115.1, 108.3, 53.7, 37.7, 28.7. HRMS (ESI) calcd for $C_{10}H_{10}N_2$ [M+H]⁺ 159.0917, found 159.0921.

> 2-(2-methylindolin-1-yl)acetonitrile (21): Yellow oil; 39% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.14 (t, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.82 (td, *J* = 7.5, 0.5 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H), 4.20 (d, J = 18.0 Hz, 1H), 3.96 (d, J = 18.0 Hz, 1H), 3.70-3.65 (m, 1H), 3.17 (dd, J = 15.0, 8.0 Hz, 1H), 2.67 (dd, J = 15.5,

10.5 Hz, 1H), 1.38 (d, J = 6.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 129.6, 127.7, 124.8, 120.6, 115.2, 108.3, 60.7, 37.3, 35.2, 18.5. HRMS (ESI) calcd for $C_{11}H_{12}N_2$ [M+H]⁺ 173.1073, found 173.1078.

N-benzyl-N-phenylaminoacetonitrile (2m):⁴ Yellow oil; 26% yield. ¹H NMR (500 MHz, CDCl₃) & 7.39-7.31 (m, 7H), 6.98-6.94 (m, 3H), 4.52 (s, 2H), 4.07 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 148.1, 137.0, 129.7, 129.1, 128.0, 127.8, 120.9, 116.0, 115.8, 55.9, 39.7. HRMS (ESI) calcd for

C₁₅H₁₄N₂ [M+H]⁺ 223.1230, found 223.1235.

N-heptyl-*N*-phenylaminoacetonitrile (2n): Yellow oil; 21% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (td, J = 7.5, 1.0 Hz, 2H), 6.89 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 4.14 (s, 2H), 3.33 (t, J = 8.0 Hz, 2H), 1.66-1.63 (m, 2H), 1.35-1.28 (m, 8H), 0.89 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.4, 129.7, 119.9,

116.5, 114.9, 52.3, 40.2, 32.0, 29.2, 27.4, 27.2, 22.8, 14.2. HRMS (ESI) calcd for C15H22N2 [M+H]⁺ 231.1856, found 231.1849.

N-(3-bromophenyl)-*N*-methylaminoacetonitrile (20):⁵ Yellow oil; 49% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.16 (t, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.98 (t, J = 2.0 Hz, 1H), 6.76 (dd, J = 8.4, 2.4 Hz, 1H), 4.16 (s, 2H), 3.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 130.9, 123.7, 123.1, 117.8, 115.3,

113.3, 42.1, 39.4. HRMS (ESI) calcd for C₉H₉BrN₂ [M+H]⁺ 225.0022, found 225.0016.

N-(2-bromophenyl)-N-methylaminoacetonitrile (2p):⁶ Yellow solid; 30% yield; mp 37-39 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 8.0, 1.0 Hz, 1H), 7.34 (td, J = 8.5, 1.5 Hz, 1H), 7.28 (dd, J = 8.0, 1.5 Hz, 1H), 7.03 (td, J = 7.5, 1.5 Hz, 1H), 4.09 (s, 2H), 2.94 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 147.6, 134.2, 128.8,

126.5, 123.0, 119.9, 115.3, 45.0, 40.8. HRMS (ESI) calcd for C₉H₉BrN₂ [M+H]⁺ 225.0022, found 225.0017.

N-Methyl-*N*-(3-methylphenyl)aminoacetonitrile (2q):⁶ Yellow oil; 39% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.18 (m, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.68-6.67 (m, 2H), 4.15 (s, 2H), 2.99 (s, 3H), 2.34 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) & 146.3, 137.7, 127.8, 119.6, 114.2, 114.0, 110.6, 40.8, 37.7, 20.2.

HRMS (ESI) calcd for C₁₀H₁₂N₂ [M+H]⁺ 161.1073, found 161.1075.

N-Methyl-N-(2-methylphenyl)aminoacetonitrile (2r):⁶ Yellow oil; 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.19 (m, 3H), 7.09-7.05 (m, 1H), 3.85 (s, 2H), 2.86 (s, 3H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 133.0, 131.5, 127.1, 125.2, 120.9, 115.8, 45.2, 41.2, 17.9. HRMS (ESI) calcd for C₁₀H₁₂N₂ [M+H]⁺ 161.1073, found 161.1079.

> *N*-Methyl-*N*-(4-methylphenyl)aminoacetonitrile (2s):⁶ Yellow oil; 36% yield. CN ¹H NMR (500 MHz, CDCl₃) δ 7.13 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H),

4.14 (s, 2H), 2.97 (s, 3H), 2.29 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.9, 130.2, 130.1, 115.7, 115.6, 43.1, 39.7, 20.6. HRMS (ESI) calcd for C₁₀H₁₂N₂ [M+H]⁺ 161.1073, found 161.1070.

CN N

2-(indolin-1-yl)butanenitrile (2t): Yellow solid; 38% yield; mp 85-87 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.14-7.11 (m, 2H), 6.80 (td, J = 7.5, 0.5 Hz, 1H), 6.57 (d, J = 8.0 Hz, 1H), 4.30 (t, J = 8.0 Hz, 1H), 3.53 (td, J = 9.0, 3.5 Hz, 1H), 3.24 (tt, J = 11.0, 8.5 Hz, 1H), 3.05-2.99 (m, 2H), 2.00-1.93 (m, 2H), 1.16 (t, J = 7.5 Hz,

3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 130.5, 127.6, 125.1, 120.4, 117.6, 108.4, 51.8, 49.2, 28.4, 25.4, 10.8. HRMS (ESI) calcd for C₁₂H₁₄N₂ [M+H]⁺ 187.1230, found 187.1233.

2-(2-methylindolin-1-yl)butanenitrile (2u): Major isomer: Yellow oil; 41% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.12-7.09 (m, 2H), 6.77 (td, J = 7.0, 0.5 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 4.05 (t, J = 8.0 Hz, 1H), 3.83-3.78 (m, 1H), 3.16 (dd, J = 15.5, 8.5 Hz, 1H), 2.65 (dd, J = 15.5, 8.0 Hz, 1H), 2.15-2.03 (m, 2H),

1.35 (d, J = 6.0 Hz, 3H), 1.14 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 148.6, 129.3, 127.5, 124.9, 119.7, 118.4, 108.5, 59.5, 49.9, 37.3, 25.5, 19.3, 11.2. HRMS (ESI) calcd for C₁₃H₁₆N₂ [M+H]⁺ 201.1386, found 201.1380.

Minor isomer: Yellow oil; 21% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.12-7.08 (m, 2H), 6.78 (td, J = 7.5, 1.0 Hz, 1H), 6.61 (d, J = 7.5 Hz, 1H), 4.20 (dd, J = 9.0, 7.5 Hz, 1H), 3.92-3.86 (m, 1H), 3.32 (dd, J = 16.0, 9.0 Hz, 1H), 2.63 (dd, J = 16.0, 8.0 Hz, 1H), 2.06-1.93 (m, 2H), 1.36 (d, J = 6.0 Hz, 3H), 1.15 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.5, 129.6, 127.6, 125.0, 120.1, 118.1, 109.2, 59.4, 52.8, 37.8, 26.2, 22.1, 11.0. HRMS (ESI) calcd for C₁₃H₁₆N₂ [M+H]⁺ 201.1386, found 201.1378.

2-(indolin-1-yl)pentanenitrile (2v): Yellow solid; 18% yield; mp 89-91 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.14-7.11 (m, 2H), 6.80 (td, *J* = 7.5, 1.0 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 4.40 (t, *J* = 8.0 Hz, 1H), 3.53 (td, *J* = 8.5, 3.0 Hz, 1H), 3.24 (tt, *J* = 11.0, 8.5 Hz, 1H), 3.05-2.99 (m, 2H), 1.94-1.89 (m, 2H), 1.62-1.57 (m, 2H),

1.02 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 130.5, 127.6, 125.1, 120.4, 117.7, 108.4, 49.8, 49.3, 33.7, 28.4, 19.4, 13.5. HRMS (ESI) calcd for C₁₃H₁₆N₂ [M+H]⁺ 201.1386, found 201.1384.

2-(indolin-1-yl)-2-phenylacetonitrile (2w): White solid; 18% yield; mp 94-96 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, *J* = 7.0 Hz, 2H), 7.47-7.42 (m, 3H), 7.17-7.13 (m, 2H), 6.85 (t, *J* = 7.5 Hz, 1H), 6.65 (d, *J* = 7.5 Hz, 1H), 5.76 (s, 1H), 3.30-3.19 (m, 2H), 3.05-2.92 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.3, 132.8,

130.9, 129.32, 129.25, 127.62, 127.60, 125.3, 120.8, 116.0, 108.8, 54.5, 50.5, 28.3. HRMS (ESI) calcd for $C_{16}H_{14}N_2$ [M+H]⁺ 235.1230, found 235.1234.

3,4-dihydroquinoline-1(2H)-carboxamide (3): Brown solid; 30% yield; mp 145-147 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 1H), 7.20-7.16 (m, 2H), 7.07 (t, *J* = 7.5 Hz, 1H), 5.04 (br s, 2H), 3.76 (t, *J* = 6.5 Hz, 2H), 2.76 (t, *J* = 6.5 Hz, 2H), 1.98-1.92 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 139.5, 132.7,

129.5, 126.8, 124.7, 123.3, 43.6, 27.2, 24.1. HRMS (ESI) calcd for $C_{10}H_{12}N_2O$ [M+H]⁺ 177.1023, found 177.1018.

1,2,3,4-tetrahydroquinoline-2-carbonitrile (4):⁷ Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.05-7.01 (m, 2H), 6.76 (td, J = 7.5, 1.0 Hz, 1H), 6.55 (d, J = 7.5 Hz, 1H), 4.44-4.42 (m, 1H), 4.14 (s, 1H), 3.09 (ddd, J = 17.0, 11.5, 6.0 Hz, 1H), 2.82 (dt, J = 17.0, 4.5 Hz, 1H), 2.27-2.17 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.9, 129.7,

127.5, 120.3, 120.1, 119.6, 115.3, 42.9, 25.4, 23.7. HRMS (ESI) calcd for $C_{10}H_{12}N_2$ [M+H]⁺ 159.0917, found 159.0913.

8-iodo-1,2,3,4-tetrahydroquinoline (5): Yellow oil; 81% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.22-7.21 (m, 2H), 7.19 (dd, J = 8.0, 2.0 Hz, 1H), 6.23 (d, J = 8.5 Hz, 1H), 3.27 (t, J = 5.5 Hz, 2H), 2.70 (t, J = 6.5 Hz, 2H), 1.91-1.87 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 137.9, 135.4, 124.2 116.2, 77.3, 41.9, 26.9, 21.8. HRMS (ESI) calcd for C₉H₁₀IN [M+H]⁺ 259.9931, found 259.9919.

5. References

(1) N. Iranpoor, H. Firouzabadi, N. Nowrouzi and D. Khalili, Tetrahedron, 2009, 65, 3893.

(2) S. Murahashi, T. Nakae, H. Terai and N. Komiya, J. Am. Chem. Soc., 2008, 130, 11005.

(3) Y. Zhang, H. Peng, M. Zhang, Y. Cheng and C. Zhu, Chem. Commun., 2011, 2354.

(4) K. T. V. Rao, B. Haribabu, P. S. S. Prasad and N. Lingaiah, ChemCatChem, 2012, 4, 1173.

(5) C. Zhang, C. Liu, Y. Shao, X. Bao and X. Wan, Chem. Eur. J., 2013, 19, 17917.

(6) W. Han and A. R. Ofial, Chem. Commun., 2009, 5024.

(7) G. Spadoni, A. Bedini, S. Lucarini, M. Mari, D.-H. Caignard, J. A. Boutin, P. Delagrange, V. Lucini, F. Scaglione and A. Lodola, *J. Med. Chem.*, 2015, **58**, 7512.

6. ¹H- and ¹³C-NMR spectra

2-(3,4-dihydroquinolin-1(2H)-yl)propanenitrile (2a)

2-(2-methylindolin-1-yl)propanenitrile (2c) mixture of two diastereoisomers (dr = 2:1)

2-(5-nitroindolin-1-yl)propanenitrile (2d)

2-(methyl(phenyl)amino)propanenitrile (2e)

2-(ethyl(phenyl)amino)propanenitrile (2f)

2-(3,4-dihydroquinolin-1(2H)-yl)acetonitrile (2g)

2-(7-(trifluoromethyl)-3,4-dihydroquinolin-1(2H)-yl)acetonitrile (2h)

N-methyl-N-phenylaminoacetonitrile (2i)

N-ethyl-N-phenylaminoacetonitrile (2j)

2-(indolin-1-yl)acetonitrile (2k)

2-(2-methylindolin-1-yl)acetonitrile (2l)

N-benzyl-*N*-phenylaminoacetonitrile (2m)

N-heptyl-*N*-phenylaminoacetonitrile (2n)

N-(3-bromophenyl)-*N*-methylaminoacetonitrile (20)

N-(2-bromophenyl)-*N*-methylaminoacetonitrile (2p)

N-Methyl-N-(3-methylphenyl)aminoacetonitrile (2q)

N-Methyl-N-(2-methylphenyl)aminoacetonitrile (2r)

N-Methyl-N-(4-methylphenyl)aminoacetonitrile (2s)

2-(indolin-1-yl)butanenitrile (2t)

2-(2-methylindolin-1-yl)butanenitrile (2u) (Major isomer)

2-(2-methylindolin-1-yl)butanenitrile (2u) (Minor isomer)

2-(indolin-1-yl)pentanenitrile (2v)

2-(indolin-1-yl)-2-phenylacetonitrile (2w)

3,4-dihydroquinoline-1(2H)-carboxamide (3)

1,2,3,4-tetrahydroquinoline-2-carbonitrile (4)

8-iodo-1,2,3,4-tetrahydroquinoline (5)

