Supplementary Information

Aryl-triazole Foldamers Incorporating a Pyridinium Motif for Halide Anion Binding in Aqueous Media

Jie Shang, ${ }^{\dagger a b}$ Wei Zhao, ${ }^{\dagger a b}$ Xichen Li, ${ }^{a}$ Ying Wang*a and Hua Jiang*ab
${ }^{a}$ Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry, Beijing Normal University, Beijing 100875, China
${ }^{b}$ Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China

\dagger These authors contributed equally to this work.
*E-mail address: jiangh@bnu.edu.cn and ywang1@bnu.edu.cn

Table of Contents

1. Complete Reference 15 in the Main Text 3
2. General Procedures and Materials 4
3. Synthesis of Methylpyridine-appended Aryl-triazole Oligomers 5
4. 2D NMR Studies on Oligomer 1-3 10
5. ${ }^{1} \mathrm{H}$ NMR Titration Experiments. 16
5.a Summary of Binding Affinity Measurements 16
5.b ${ }^{1}$ H NMR Titration on Receptor $\mathbf{1}$ and $\mathbf{2}$ in Acetone- $d 6$. 18
5.c ${ }^{1} \mathrm{H}$ NMR Titration on Receptor $\mathbf{2}$ and $\mathbf{3}$ in 6:94 (v/v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine- d_{5}. 24
6. DFT Calculations 28
7. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra. 33
8. Supporting References. 40

1. Complete Reference $\mathbf{1 5}$ in the Main Text

15 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian03 Revision D.02; Gaussian, Inc.: Pittsburgh, PA, 2004

2. General Procedures and Materials.

All starting materials and solvents were commercially available and used without further purification unless otherwise noted. Dry tetrahydrofuran (THF) and toluene were dried from sodium/benzophenone and then distilled under inert atmosphere. Anhydrous diisopropylamine (iso$\operatorname{Pr}_{2} \mathrm{NH}$) and DCM were distilled over CaH_{2} under argon. Compounds $\mathbf{4}^{[\mathrm{S} 1]}, \mathbf{5}^{[\mathrm{S} 2]}$ and $7^{[52]}$ were prepared according to the procedure previously reported.

Column chromatography was carried out on flash grade silica gel, using $0-20$ psig pressure. NMR spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and 2D NMR) were obtained using commercial spectrometers (${ }^{1} \mathrm{H}$, $400,500$ and 600 MHz$)$ using chloroform $-d\left(\mathrm{CDCl}_{3}\right)$, acetone $-d_{6}$, methanol $-d_{4}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$, pyridine- $d 5$ and dimethyl sulfoxide- d_{6} (DMSO- d_{6}) as solvent at ambient temperature (298 K). The chemical shift references were as follows: $\left({ }^{1} \mathrm{H}\right)$ chloroform, 7.26 ppm ; $\left({ }^{13} \mathrm{C}\right)$ chloroform- $d, 77.16 \mathrm{ppm}$ (chloroform$d) ;\left({ }^{1} \mathrm{H}\right)$ DMSO- $d 5,2.50 \mathrm{ppm} ;\left({ }^{13} \mathrm{C}\right)$ DMSO- $d_{6}, 39.52 \mathrm{ppm}($ DMSO- $d 6) ;\left({ }^{1} \mathrm{H}\right)$ acetone- $d 5,2.05 \mathrm{ppm} ;$ $\left({ }^{13} \mathrm{C}\right)$ acetone- $d_{6}, 29.92 \mathrm{ppm}$ (acetone- d_{6}). Typical 1D FID was subjected to exponential multiplication with an exponent of 0.3 Hz . High resolution mass spectra (HRMS-ESI) were acquired on FT-ICR spectrometer.

3. Synthesis of Methylpyridine-appended Aryl-triazole Oligomers.

Scheme S1. Structure of oligomer 1-3.

Scheme S2. Synthesis of oligomer 1-3.

Bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-3'-(4,4'-(pyridine-3,5-diyl)bis(1H-1,2,3-triazole-4,1diyl))dibenzoate (1). Compound $\mathbf{4}(63.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{5}(0.34 \mathrm{~g}, 1.1 \mathrm{mmol})$ were dissolved in the mixture of toluene and tert-butanol, then the solution was degassed with bubbling of argon for half an hour. To the solution, $\mathrm{CuSO}_{4}(15.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and sodium ascorbate ($39.9 \mathrm{mg}, 0.2 \mathrm{mmol}$) dissolved in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added. The reaction solution protected by Ar was stirred at $70^{\circ} \mathrm{C}$ overnight. When the reaction finished, most of the solvents were removed under reduced pressure. The residue was resolved in DCM and the organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL} \times 2)$ and $\mathrm{NaCl}(100 \mathrm{~mL} \times 2)$ respectively. The crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM}: \mathrm{EA}=10: 1$) to provide $\mathbf{1}(0.26 \mathrm{~g}, 65 \%)$ as a white yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=9.41(\mathrm{~s}, 2 \mathrm{H}), 9.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.95(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{dd}, J=1.3 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.89(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.70-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.634-3.61(\mathrm{~m}$, $4 \mathrm{H}), 3.59-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 4 \mathrm{H}), 3.25(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{COD}_{3}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta$ $=165.8,147.3,145.9,138.3,133.1,131.3,130.3,129.9,127.7,125.4,121.7,120.9,72.7,71.38$, 71.28, 71.14, 69.6, 65.5, 58.8. HRMS (ESI-FT-ICR) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{3} 7 \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{10} 746.3144$, found 746.3141 .

3,5-Bis(1-(3-(2,5,8,11-tetraoxadodecan-1-oyl)phenyl)-1H-1,2,3-triazol-4-yl)-1-methylpyridin-1-

 ium iodide (6). To the solution of Compound $\mathbf{1}(0.2 \mathrm{~g}, 0.27 \mathrm{mmol})$ in dry DCM, $\mathrm{CH}_{3} \mathrm{I}(0.2 \mathrm{~mL})$ was added. The reaction solution was sealed and stirred for 7 days at room temperature. Solvents were removed under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{DCM}: \mathrm{MeOH}=100: 2)$ to provide $6(0.21 \mathrm{~g}, 87 \%)$ as a yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{M} \mathrm{Hz}\right.$, $298 \mathrm{~K}): \delta=10.13(\mathrm{~s}, 2 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 9.55(\mathrm{~s}, 2 \mathrm{H}), 8.55(\mathrm{~s}, 2 \mathrm{H}), 8.20-8.14(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{t}, J=8.0$$\mathrm{Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.0(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.81-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.71$ $(\mathrm{m}, 4 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.49-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.27(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{M} \mathrm{Hz}, 298 \mathrm{~K}\right) \delta$ $=165.4,141.1,140.0,136.3,135.9,131.99,131.76,130.29,130.18,124.38,124.05,121.0,72.0$, 70.77, 70.72, 70.61, 69.3, 64.7, 59.0, 50.1. HRMS (ESI-FT-ICR) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{IN}_{7} \mathrm{NaO}_{10} 910.2243$, found 910.2243 .

3,5-Bis(1-(3-(2,5,8,11-tetraoxadodecan-1-oyl)phenyl)-1H-1,2,3-triazol-4-yl)-1-methylpyridin-1-

 ium hexafluorophosphate (2). Compound $\mathbf{6}(0.2 \mathrm{~g}, 0.22 \mathrm{mmol})$ was dissolved in DCM (30 mL) and it was stirred with aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.1 \mathrm{mM}, 20 \mathrm{~mL})$ for 3 hours. The mixture changed colour from yellow to colourless. The organic layer was washed with further aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.1 \mathrm{molL}^{-1}\right.$, $20 \mathrm{~mL} \times 6$) and water ($20 \mathrm{~mL} \times 2$). Solvents were removed under reduced pressure and the residue was dried to give compound 2 as a pale solid (100\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=$ 9.69 (s, 2H), 9.61 (s, 2H), 9.59 (s, 1H), 8.56 (s, 2H), 8.30 (dd, $J=1.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.24 (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 4 \mathrm{H}), 3.70-$ $3.68(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.43(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COC}_{3}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=165.6,142.51,142.01,137.8,136.9,133.22,132.74,131.5,130.9$, 125.6,123.3, 121.8, 72.6, 71.36, 71.28, 71.13, 69.6, 65.6, 58.8, 50.0. HRMS (ESI-FT-ICR) m/z: $[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{10} 760.3300$, found 760.3322 .

2-(2-(2-Methoxyethoxy)ethoxy)ethyl 3,5-bis(4-(5-ethynylpyridin-3-yl)-1H-1,2,3-triazol-1-yl)be nzoate (8). Compoud $\mathbf{8}$ was obtained by a similar procedure to compound $\mathbf{1}$ starting with compound 4 and 7 . Yield 43%, pale solid. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.75(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.74(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56-8.55(\mathrm{~m}, 4 \mathrm{H}), 8.41(\mathrm{t}, J=2.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-$ $4.61(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.66(\mathrm{~m}, \underset{\mathrm{~s} 7}{6 \mathrm{H}}), 3.55-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{M} \mathrm{Hz}, 298 \mathrm{~K}\right): \delta=163.7,151.5,145.7,144.0,137.6$ 135.0, 133.1, 125.6, $121.2,119.28,119.05,114.6,84.7,79.9,71.2,69.90,69.75,69.61,68.2,65.0,58.0$. HRMS (MALDY-FT-ICR) $m / z:[M+H]^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{5} 605.2259$, found 605.2255.

Bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl) 3,3'-(4,4'-(5,5'-(1,1'-(5-(2,5,8,11-tetraoxa-dodecan-1-0 yl)-1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(pyridine-5,3-diyl))bis(1H-1,2,3-triazole-4,1-diyl))dibenzoate (9). Compoud $\mathbf{9}$ was obtained by a similar procedure to compound $\mathbf{1}$ starting with compound $\mathbf{8}$ and $\mathbf{5}$. Yield 69%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 400 \mathrm{M} \mathrm{Hz}, 298 \mathrm{~K}\right): \delta=9.87$ (s, 2H), 9.71(s, 2H), $9.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 2 \mathrm{H}), 8.64(\mathrm{~s}, 2 \mathrm{H}), 8.52(\mathrm{~s}, 2 \mathrm{H})$, 8.30 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.11$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.86$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.59$ (t, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), $4.50(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.88(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 6 \mathrm{H}), 3.58-$ $3.50(\mathrm{~m}, 12 \mathrm{H}), 3.40-3.37(\mathrm{~m}, 6 \mathrm{H}), 3.19(\mathrm{~s}, 6 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CD ${ }_{3} \mathrm{SOCD}_{3}, 100 \mathrm{M} \mathrm{Hz}, 298$ K): $\delta=164.5,163.6,145.72,145.58,144.23,144.02,137.13,136.38,132.60,131.08,130.28,128.9$, 127.7, 125.86, 125.57, 123.8, 119.87, 119.74, 119.55, 118.34, 113.2, 71.2, 69.94, 69.89, 69.77, 69.74, 69.60, 68.20, 64.86, 64.42, 57.97, 57.95. HRMS (ESI-FT-ICR) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{60} \mathrm{H}_{67} \mathrm{~N}_{14} \mathrm{O}_{15} 1223.4905$, found 1223.4877.

5,5'-(1,1'-(5-(2,5,8,11-Tetraoxadodecan-1-oyl)-1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(3-(1-(3-(2,5,8,11-tetraoxadodecan-1-oyl)phenyl)-1H-1,2,3-triazol-4-yl)-1-
methylpyridin-1-ium) iodide (10). Compoud 10 was obtained by a similar procedure to compound 6 starting with compound 9 and $\mathrm{CH}_{3} \mathrm{I}$. Yield 73%, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 400 \mathrm{M} \mathrm{Hz}\right.$,
$298 \mathrm{~K}): \delta=10.11(\mathrm{~s}, 2 \mathrm{H}), 9.87(\mathrm{~s}, 2 \mathrm{H}), 9.66(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 9.55(\mathrm{~s}, 2 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}), 9.68(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.50(\mathrm{~s}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.60(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 6 \mathrm{H}), 4.50(\mathrm{t}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.87(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 12 \mathrm{H}), 3.39-3.56(\mathrm{~m}, 6 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{M} \mathrm{Hz}, 298 \mathrm{~K}\right): \delta=164.4,163.4,141.53,141.14,140.95,140.61,136.9$, $135.9,134.7,133.2,131.2,130.69,130.31,129.86,129.52,123.99,123.18,122.8,119.58,119.03$, 114.0, 71.24, 69.86, 69.74, 69.59, 68.18, 65.20, 64.58, 58.0, 48.8. HRMS (ESI-FT-ICR) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{2+}$ Calcd for $\mathrm{C}_{62} \mathrm{H}_{72} \mathrm{~N}_{14} \mathrm{O}_{15} 626.2645$, found 626.2631 .

5,5'-(1,1'-(5-(2,5,8,11-Tetraoxadodecan-1-oyl)-1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(3-(1-(3-(2,5,8,11-tetraoxadodecan-1-oyl)phenyl)-1H-1,2,3-triazol-4-yl)-1-
methylpyridin-1-ium) hexafluorophosphate (3). Compoud $\mathbf{3}$ was obtained by a similar procedure to compound 2 starting with compound 10. Yield 100%, white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 400 \mathrm{M}$ $\mathrm{Hz}, 298 \mathrm{~K}): \delta=10.06(\mathrm{~s}, 2 \mathrm{H}), 9.83(\mathrm{~s}, 2 \mathrm{H}), 9.64(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 9.48(\mathrm{~s}, 2 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.61$ (s, 2H), 8.46 ($\mathrm{s}, 2 \mathrm{H}$), 8.29 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.62$ $(\mathrm{s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 6 \mathrm{H}), 4.49(\mathrm{~s}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}), 3,67-3,61(\mathrm{~m}, 6 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 12 \mathrm{H})$, 3.40-3.37(m, 6H), $3.19(\mathrm{~s}, 6 \mathrm{H}), 3.169 \mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 125 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=164.7$, $163.8,141.85,141.51,141.43,141.16,137.59,136.4,135.2,133.4,131.56,131.01,130.58,130.31$, $129.9,124.7,123.53,123.08,120.35,120.22,115.6,71.2,69.87,69.76,69.74,69.60,68.24,65.23$, 64.67, 58.00, 57.99, 48.8. HRMS (ESI-FT-ICR) $m / z:[M]^{2+}$ Calcd for $\mathrm{C}_{62} \mathrm{H}_{72} \mathrm{~N}_{14} \mathrm{O}_{15} 626.2645$, found 626.2631.

4. 2D NMR Studies on Oligomer 1-3.

Figure S1. Partial NOESY spectrum ($500 \mathrm{MHz}, 298 \mathrm{~K}$, acetone- d_{6}) of compound 1. [1] $=6.0 \mathrm{mM}$.

Figure S2. Partial HMBC (left) and HSQC (right) spectra (500 MHz , 298 K , acetone- d_{6}) of compound 1. [1] $=6.0 \mathrm{mM}$.

Figure S3. Partial NOESY spectrum $\left(500 \mathrm{MHz}, 298 \mathrm{~K}\right.$, acetone- d_{6}) of compound 2. [2] $=6.0 \mathrm{mM}$.

Figure S4. Partial HMBC (left) and HSQC (right) spectra (500 MHz , 298 K , acetone- d_{6}) of compound 2, [2] $=6.0 \mathrm{mM}$.

Figure S5. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, 6: 94$ (v/v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine- $d 5$) of compound 2. [2] $=6.0 \mathrm{mM}$.

Figure S6. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (400 MHz , $298 \mathrm{~K}, 6: 94$ (v / v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine- d_{5}) of compound 2. [2] $=2.0 \mathrm{mM}$.

$2 \mathrm{R}=\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{CH}_{3}$

Figure S7. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}, 6: 94(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O} /$ Pyridine- d_{5}) of compound $\mathbf{2}$ with 2.0 equivalents of $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-},[\mathbf{2}]=5.0 \mathrm{mM}$.

Figure S8. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY spectrum ($6: 94$ (v / v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine $-d 5,500 \mathrm{MHz}, 298 \mathrm{~K}$) of compound $\mathbf{3}$ in the presence of 5.0 equivalents of $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$. $[\mathbf{3}]=2.0 \mathrm{mM}$.

Figure S9. Partial ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (6:94 (v/v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine- d_{5}, 500 MHz , 298 K) of compound $\mathbf{3}$ with 5.0 equivalents of $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-},[\mathbf{3}]=2.0 \mathrm{mM}$.

Figure S10. Partial ${ }^{1}{ }^{H}-{ }^{1} \mathrm{H}$ NOESY spectrum (5:95 (v/v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine- $d_{5}, 600 \mathrm{MHz}, 298 \mathrm{~K}$) of compound $\mathbf{3}$ with 0.3 equivalent of $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$. [3] $=1.0 \mathrm{mM}$.

Nonaggregation of $\mathbf{3}$ takes places in polar solvent DMSO- d_{6}, with evidence given by the corresponding ${ }^{1} \mathrm{H}$ NMR spectrum showed one set of sharp signals.

Figure S11. Partial ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY spectrum (DMSO- $d 6,500 \mathrm{MHz}, 298 \mathrm{~K}$) of compound 3. $[\mathbf{3}]=6.0$ mM .

Figure S12. Partial ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum (DMSO- $d 6,500 \mathrm{MHz}, 298 \mathrm{~K}$) of compound 3. [3] $=6.0$ mM .

Figure S13. Partial ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum (DMSO- $d_{6}, 500 \mathrm{MHz}, 298 \mathrm{~K}$) of compound 3. [3] $=6$ mM .

5. ${ }^{1} \mathrm{H}$ NMR Titration Experiments.

5.a Summary of Binding Affinity Measurements.

${ }^{1}$ H NMR Titration Experiments. To a solution of oligomer $\mathbf{1}(1 \mathrm{mM}, 0.5 \mathrm{~mL})$ in acetone- d_{6}, a solutions of tetrabutylammoniu halide $\left(n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{X}, \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right.$or $\left.\mathrm{I}^{-}\right)([\mathrm{X}]=50 \mathrm{mM})$ in the same solvent was gradually added. In this process, a serial of ${ }^{1} \mathrm{H}$ NMR spectra of the sample were recorded by a Bruker Advance 400 MHz spectrometer at 298 K . More than 18 points were recorded and the data were processed by non-linear multivariate regression analysis by using the WinEQNMR program. ${ }^{[53]}$

Job Plot Experiments. Stock solutions of $\mathbf{1}(1 \mathrm{mM})$ and $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}(1 \mathrm{mM})$ were separately prepared in Acetone- $d 6 .{ }^{1} \mathrm{H}$ NMR spectra was recorded for each of 10 different samples containing a total of 0.5 mL of $\mathbf{1}$ and $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}$in the following ratio: 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8 and 1:9. The Job plot was constructed by the change of chemical shift multiply proportion of $\mathbf{1}$ in each sample against the proportion of $\mathbf{1}$ in each solution.

Table S1. Summary of Binding properties of 1, $\mathbf{2}$ and $\mathbf{3}$ for Halide Anions ${ }^{a}$

Receptor	Anion	Proton ${ }^{\text {b }}$	In Acetone- d_{6}				In 6:94 (v/v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine $-d_{5}$			
			$\begin{gathered} K_{\mathrm{a}} \\ \left(\mathrm{M}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	Mean $K_{\mathrm{a}}{ }^{c}$	$\mathrm{SE} /\left(K_{\mathrm{a}}\right.$ or mean $K_{\text {a }}$)	$\begin{gathered} K_{\mathrm{a}} \\ \left(\mathrm{M}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \delta \\ (\mathrm{ppm}) \end{gathered}$	Mean $K_{\mathrm{a}}{ }^{c}$	SE/ (K_{a} or mean K_{a})
1	Cl^{-}	Hc	327 ± 20	1.40	1	6.12\%	d	d	d	d
	Br^{-}	Hc	134 ± 5	1.23	1	3.73\%	d	d	d	d
	I^{-}	Hc	39 ± 1	0.67	1	2.56\%	d	d	d	d
2	Cl^{-}	Hc	$\begin{gathered} (5.40 \pm 0.21) \times 10^{4} \\ \quad[7.35 \pm 0.74] \end{gathered}$	1.49	$\begin{gathered} (6.35 \pm 0.30) \times 10^{4} \\ {[6.74 \pm 0.59]} \end{gathered}$	$\begin{gathered} 4.72 \% \\ {[8.75 \%]} \end{gathered}$	$(3.28 \pm 0.11) \times 10^{3}$	0.67	$(3.28 \pm 0.11) \times 10^{3}$	3.35\%
		Hb	$\begin{gathered} (7.29 \pm 0.15) \times 10^{4} \\ \quad[6.13 \pm 0.69] \end{gathered}$	0.79			d	d	d	d
	Br^{-}	Hc	$(1.79 \pm 0.07) \times 10^{4}$	1.32	1	3.91\%	$(2.49 \pm 0.09) \times 10^{3}$	0.64	$(2.49 \pm 0.09) \times 10^{3}$	3.61\%
	I^{-}	Hc	$(3.84 \pm 0.11) \times 10^{3}$	1.00	1	2.86\%	$(1.13 \pm 0.04) \times 10^{3}$	0.40	$(1.13 \pm 0.04) \times 10^{3}$	3.54\%
3	Cl^{-}	Hc	d	d	d	d	$(7.49 \pm 0.29) \times 10^{4}$	0.68	$(4.62 \pm 0.17) \times 10^{4}$	3.68\%
		Hg	d	d	d	d	$(1.75 \pm 0.17) \times 10^{4}$	0.51		
	Br^{-}	Hc	d	d	d	d	$(9.91 \pm 0.52) \times 10^{4}$	0.77	$(6.99 \pm 0.30) \times 10^{4}$	4.29\%
		Hg	d	d	d	${ }^{\text {d }}$	$(4.08 \pm 0.27) \times 10^{4}$	0.60		
	I^{-}	Hc	d	d	d	d	$(4.13 \pm 0.24) \times 10^{4}$	0.69	$(3.32 \pm 0.14) \times 10^{4}$	4.22\%
		Hg	d	d	d	d	$(2.52 \pm 0.13) \times 10^{4}$	0.55		

${ }^{a}$ The association constants were calculated by WinEQNMR. The association constant $\left(K_{21}\right)$ of the 1:2 (receptor: anion) complex is included in square brackets when it is applicable. ${ }^{b}$ Titration profile of the proton used for K_{a} calculation. ${ }^{c}$ Standard error of mean K_{a} was calculated according to error propagation of that $K_{a}=\frac{K_{a}^{\mathrm{H}_{b}}+K_{a}^{\mathrm{H}_{d}}}{2}$ and $\delta K_{a}=\frac{\sqrt{\delta K_{a}^{\mathrm{H}_{b}}+\delta K_{a}^{\mathrm{H}_{d}}}}{2}$ if two K_{a} was derived from the binding isotherms of two protons, for example, H_{b} and H_{d}, independently. ${ }^{d}$ Not investigated. ${ }^{e}$ Fitted the binding profile in a 1:2 (receptor : anion) binding model. Since WinEQNMR provides only the values of $\beta_{1}\left(\beta_{1}=K_{11}\right)$ and $\beta_{2}\left(\beta_{2}=\right.$ $K_{11} K_{21}$), K_{21} was consequently obtained by $K_{21}=\beta_{2} / \beta_{1}$, in which the standard deviation was propagated according to $\Delta K_{21}=K_{21} \bullet\left[\left(\Delta\left(\beta_{1}\right) / \beta_{1}\right)^{2}+\left(\Delta\left(\beta_{2}\right) / \beta_{2}\right)^{2}\right]^{1 / 2}$.

5.b ${ }^{\mathbf{1}} \mathrm{H}$ NMR Titration on Receptor 1 and $\mathbf{2}$ in Acetone- \boldsymbol{d}_{6}.

Compared the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ to that of $\mathbf{6}$, the significant upshifts of H_{b} and H_{d} indicate the receptor binds very weakly to hexafluorophosphate anions, providing hexafluorophosphate to be a good counter anions for the studied systems. In the synthesis of 2, the iodide-to-hexafluorophosphate exchange procedure should give a completely displacement of iodide anions, as demonstrated by that the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ is identical to that of $\mathbf{2}$ in the presence of 1.0 equiv of iodide anions (Figure S15).

Figure S14. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 298 \mathrm{~K}$) of compound $\mathbf{2}$ and $\mathbf{6}$ in acetone- d_{6}. [2] $=[\mathbf{6}]$ $=0.5 \mathrm{mM}$.

Figure S15. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 298 \mathrm{~K}$) of acetone- d_{6} solution of compound $\mathbf{6}$ and $\mathbf{2}$ in the presence of 1 equiv $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-} . \quad[6]=[\mathbf{2}]=\left[n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-}\right]=0.5 \mathrm{mM}$.

(

Figure S16. Changes of partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{1}$ (left column) and $\mathbf{2}$ (right column) in acetone- d_{6} upon titration with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$(top), $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$(middle) and $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-}$ (bottom). ([1] $=2 \mathrm{mM},[\mathbf{2}]=0.5 \mathrm{mM})$

Figure S17. Changes in ${ }^{1} \mathrm{H}$ chemical shifts of some protons on $\mathbf{1}$ (left column) and $\mathbf{2}$ (right column) in acetone- d_{6} with increasing the concentrations of chloride (top), bromide (middle) and iodide (bottom) ions. ([1] = $2 \mathrm{mM},[2]=0.5 \mathrm{mM}, 400 \mathrm{MHz}, 298 \mathrm{~K}$)

Figure S18. A) Changes in the triazole $\left(\mathrm{H}_{\mathrm{c}}\right){ }^{1} \mathrm{H}$ chemical shift of 1 in acetone- d_{6} with increasing concentration of chloride anions at ambient temperature. The data (\bullet) were curve-fitted to a $1: 1$ binding model (fitting-curve was represented by line). [1] $=2.0 \mathrm{mM}$. B) Job Plot for complexation of 1 in acetone- d_{6} with $n \mathrm{Bu} 4 \mathrm{~N}^{+} \mathrm{Cl}^{-}$by NMR spectroscopy, in which the chemical shift of triazole $\left(\mathrm{H}_{\mathrm{c}}\right)$ was monitored. $[\mathbf{1}]+\left[\mathrm{Cl}^{-}\right]=1.0 \mathrm{mM}$.

Figure S19. A) Changes in the triazole $\left(\mathrm{H}_{\mathrm{c}}\right){ }^{1} \mathrm{H}$ chemical shift of $\mathbf{1}$ in acetone- d_{6} with increasing concentration of bromide anions at ambient temperature. The data (\bullet) were curve-fitted to a $1: 1$ binding model (fitting-curve was represented by line). [1] $=2.0 \mathrm{mM}$. B) Job Plot for complexation of $\mathbf{1}$ in acetone- d_{6} with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$by NMR spectroscopy, in which the chemical shift of triazole $\left(\mathrm{H}_{\mathrm{c}}\right)$ was monitored. [1] $+\left[\mathrm{Br}^{-}\right]=1.0 \mathrm{mM}$.

Figure S20. A) Changes in the triazole (H_{c}) ${ }^{1} \mathrm{H}$ chemical shift of 1 in acetone- d_{6} with increasing concentration of iodide anions at ambient temperature. The data (\bullet) were curve-fitted to a $1: 1$ binding model (fitting-curve was represented by line). [1] = 2.0 mM . B) Job Plot for complexation of $\mathbf{1}$ in acetone- d_{6} with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-}$by NMR spectroscopy, in which the chemical shift of triazole $\left(\mathrm{H}_{c}\right)$ was monitored. $[\mathbf{1}]+\left[\mathrm{I}^{-}\right]=1.0 \mathrm{mM}$.

Figure S21. Changes in the chemical shift of A) triazole proton H_{c} and B) pyridinium proton Hb_{b} of $\mathbf{2}$ in acetone- d_{6} with increasing concentration of chloride anions at ambient temperature. The data (■) were curve-fitted to a 1:2 ($\mathbf{2}$ to chlorides) binding model (fitting-curves were represented by lines). $[2]=0.5 \mathrm{mM}$.

Figure S22. A) Changes in the triazole $\left(\mathrm{H}_{\mathrm{c}}\right){ }^{1} \mathrm{H}$ chemical shift of 2 in acetone- d_{6} with increasing concentration of bromide anions at ambient temperature. The data (\bullet) were curve-fitted to a $1: 1$ binding model (fitting-curve was represented by line). [2] $=0.5 \mathrm{mM}$. B) Job Plot for complexation of $\mathbf{2}$ in acetone- d_{6} with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$by NMR spectroscopy, in which the chemical shift of triazole $\left(\mathrm{H}_{\mathrm{c}}\right)$ was monitored. [2] $+\left[\mathrm{Br}^{-}\right]=1.0 \mathrm{mM}$.

Figure S23. A) Changes in the triazole $\left(\mathrm{H}_{\mathrm{c}}\right){ }^{1} \mathrm{H}$ chemical shift of 2 in acetone- d_{6} with increasing concentration of iodide anions at ambient temperature. The data (\bullet) were curve-fitted to a $1: 1$ binding model (fitting-curve was represented by line). [2] $=0.5 \mathrm{mM}$. B) Job Plot for complexation of $\mathbf{2}$ in acetone- d_{6} with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{I}^{-}$by NMR spectroscopy, in which the chemical shift of triazole $\left(\mathrm{H}_{\mathrm{c}}\right)$ was monitored. $[2]+\left[\mathrm{I}^{-}\right]=1.0 \mathrm{mM}$.
5.c ${ }^{\mathbf{1}} \mathrm{H}$ NMR Titration on Receptor 2 and 3 in 6:94 (v / v) $\mathrm{D}_{2} \mathrm{O} /$ Pyridine- \mathbf{d}_{5}.

2

I^{-}

Figure S24. Changes of partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 298 \mathrm{~K}$) of 2 (left column) and $\mathbf{3}$ (right column) in 6:94 (v/v) $\mathrm{D}_{2} \mathrm{O} /$ pyridine- d_{5} upon titration with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$(top), $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$(middle) and $n \mathrm{Bu} 4 \mathrm{~N}^{+} \mathrm{I}^{-}($bottom $) .([2]=[3]=0.5 \mathrm{mM})$

Figure S25. Changes of partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K}$) of $\mathbf{3}$ during the increasing of $\mathrm{D}_{2} \mathrm{O}$ in pyridine- $d 5$. $([3]=0.5 \mathrm{mM})$

Figure S26. Changes in ${ }^{1} \mathrm{H}$ chemical shifts of some protons on $\mathbf{2}$ (left column) and $\mathbf{3}$ (right column) in $6: 94(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O} /$ pyridine- d_{5} with increasing the concentrations of chloride (top), bromide (middle) and iodide (bottom) ions. ([2] $=[\mathbf{3}]=1 \mathrm{mM}, 400 \mathrm{MHz}, 298 \mathrm{~K})$

Figure S27. Changes in chemical shift of triazole proton in 2 (left) and $\mathbf{3}$ (right) upon titration of chloride ions. The experiment dates (point) were curved-fitted (line) to $1: 1$ model by WinEQNMR. ([2] $=[3]=0.5 \mathrm{mM}, 400 \mathrm{MHz}, 6: 94(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O} /$ Pyridine- $d 5$, 298 K)

Figure S28. The changes in the fraction of complexed 2 and 3 upon titration of $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$as determined by $1: 1$ model. $\left([\mathbf{2}]=[\mathbf{3}]=0.5 \mathrm{mM}, 400 \mathrm{MHz}, 6: 94(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O} /\right.$ pyridine $\left.-d_{5}, 298 \mathrm{~K}\right)$

Figure S29. Job plot of $\mathbf{3}$ with $n \mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Br}^{-} .\left(\chi=[\mathbf{3}] /\left([\mathbf{3}]+\left[\mathrm{Br}^{-}\right]\right), 400 \mathrm{MHz}, 6: 94(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O} /\right.$ pyridine$d 5,298 \mathrm{~K})$

6. DFT Calculations

Computational Details. The fully optimized geometries (gas phase) for $\mathbf{3} \cdot \mathrm{Cl}^{-}$and an analog of it, in which all the pyridinium groups in $\mathbf{3} \cdot \mathrm{Cl}^{-}$were displaced with pyridyl ones (denoted $\mathbf{3 P y} \cdot \mathrm{Cl}^{-}$), were calculated by using DFT with the B3LYP hybrid functional and 3-21G basis set within the Gaussian 09 software package, wherein the final geometries obtained were confirmed as minima by vibrational analysis. Four processing cores and 10 GB physical memory were used for the optimization. To reduce computational costs, all the long PEG esters were replaced with methyl ones. For the same reason, tetramethyl ammonium cation was used as the counterion for chloride, and hexafluorophosphate anions as the counterions of pyridinium in the calculations.

Figure S30. Energy-minimized structures (RB3LYP/3-21G, gas phase) of a) $\mathbf{3} \cdot \mathrm{Cl}^{-}$and b) $\mathbf{3 P y}{ }^{\bullet} \mathrm{Cl}^{-}$. To reduce computational costs, long PEG ester chains were replaced with methyl ones. Counterions were omitted for clarities.

Optimized geometries/coordinate obtained from Gaussian

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.190554	3.882592	-0.750421
2	6	0	1.137830	3.336571	-0.526262
3	7	0	2.194525	4.163163	-0.180407
4	7	0	3.265543	3.432182	0.108463
5	7	0	2.854471	2.060832	-0.064708
					S28

6	6	0	3.727095	1.009671	0.341787
7	6	0	5.105392	1.160476	0.205977
8	6	0	3.195796	-0.136706	0.939467
9	6	0	-7.381192	-1.649298	-2.202961
10	6	0	-6.920485	-0.335993	-2.335066
11	6	0	-6.538391	-2.699088	-1.822631
12	6	0	-5.199728	-2.416193	-1.570994
13	6	0	-5.575780	-0.076998	-2.071994
14	6	0	-4.724676	-1.111182	-1.689340
15	7	0	-5.028786	1.230643	-2.107566
16	7	0	-5.848219	2.414709	-1.964348
17	7	0	-4.989624	3.411026	-1.758371
18	6	0	-3.689148	2.922434	-1.756446
19	6	0	-3.713690	1.565895	-1.995761
20	7	0	-4.266000	-3.400780	-1.156202
21	7	0	-4.638839	-4.597392	-0.431568
22	7	0	-3.484083	-5.150266	-0.051866
23	6	0	-2.424765	-4.374216	-0.494344
24	6	0	-2.913459	-3.286113	-1.187530
25	6	0	-1.021195	-4.606460	-0.197530
26	6	0	-2.532492	3.710289	-1.360116
27	6	0	-1.244284	3.151645	-1.302834
28	6	0	-0.034900	-3.884466	-0.881967
29	6	0	-0.622285	-5.466332	0.816936
30	6	0	1.314219	-4.031799	-0.559069
31	6	0	1.653514	-4.910756	0.468310
32	7	0	0.693712	-5.605407	1.120124
33	6	0	2.339824	-3.267783	-1.240169
34	7	0	3.684112	-3.583626	-1.173027
35	7	0	4.386213	-2.704608	-1.885510
36	7	0	3.416357	-1.776518	-2.416990
37	6	0	2.170765	-2.128706	-2.010512
38	6	0	3.825315	-0.689116	-3.236848
39	6	0	2.892702	-0.037894	-4.054042
40	6	0	5.156851	-0.273730	-3.208719
41	6	0	3.298887	1.035661	-4.846966
42	6	0	5.546572	0.799864	-4.007498
43	6	0	4.625535	1.457082	-4.827993
44	6	0	6.937800	1.322271	-3.985532
45	8	0	7.718931	0.605400	-3.115218
46	8	0	7.329576	2.281968	-4.648054
47	6	0	9.091624	1.116783	-2.873164
48	6	0	-8.803779	-1.997612	-2.460838
49	8	0	-9.282077	-3.125103	-2.365114
50	8	0	-9.530755	-0.892380	-2.824983
51	6	0	-10.963298	-1.140377	-3.096742
52	1	0	-7.596971	0.456792	-2.613921
53	1	0	-6.937483	-3.698635	-1.722757
54	1	0	-3.693249	-0.896078	-1.450934
55	1	0	-2.892228	0.865408	-2.056206
56	1	0	-2.379346	-2.451220	-1.617810
57	1	0	-1.339648	-6.020265	1.403210
58	6	0	-2.721791	4.999388	-0.882136
59	6	0	-0.446298	5.174281	-0.284272
60	7	0	-1.680169	5.708678	-0.380128
61	6	0	-1.973488	7.013673	0.309084
62	6	0	1.071364	-6.338559	2.376753
63	1	0	-3.702133	5.452445	-0.866784
64	1	0	0.330095	5.748053	0.192818
65	1	0	-1.073043	2.132808	-1.639189
66	1	0	2.675878	-5.028648	0.784801
67	1	0	-0.319515	-3.178024	-1.650074
68	1	0	5.530455	2.053966	-0.228774
69	1	0	4.971927	2.291263	-5.424337

70	1	0	5.870613	-0.767071	-2.568561
71	1	0	2.574050	1.536802	-5.476234
72	1	0	1.859731	-0.361632	-4.073202
73	1	0	9.251819	2.004164	-3.487208
74	1	0	9.788458	0.323052	-3.149915
75	1	0	1.063068	-5.605202	3.183227
76	1	0	2.066793	-6.763123	2.247269
77	1	0	-2.637307	7.600778	-0.325766
78	1	0	-2.431426	6.752502	1.262613
79	1	0	-1.033382	7.538305	0.468878
80	1	0	-11.460440	-1.507004	-2.195776
81	1	0	-11.356511	-0.171680	-3.398301
82	1	0	1.275604	-1.553027	-2.198311
83	6	0	1.553136	2.014778	-0.461911
84	1	0	1.012868	1.106861	-0.683040
85	1	0	0.344430	-7.132144	2.548933
86	1	0	9.135479	1.342947	-1.809290
87	1	0	-11.075032	-1.880966	-3.891723
88	6	0	5.944999	0.142175	0.663638
89	6	0	7.403940	0.349224	0.520362
90	8	0	7.942211	1.344906	0.030934
91	8	0	8.114111	-0.715388	1.024756
92	6	0	9.583629	-0.597318	0.964392
93	1	0	9.936773	-0.832227	-0.043206
94	1	0	9.954075	-1.328255	1.681247
95	1	0	9.893336	0.415865	1.228192
96	6	0	4.040226	-1.152283	1.387364
97	6	0	5.419324	-1.018031	1.246369
98	1	0	6.097325	-1.785113	1.590691
99	1	0	3.596606	-2.015472	1.863726
100	1	0	2.136470	-0.242104	1.109835
101	17	0	-0.948506	-0.465181	-1.772624
102	15	0	-1.869494	4.430042	3.094523
103	9	0	-0.707641	3.265444	3.399179
104	9	0	-3.017790	3.414288	3.761361
105	9	0	-3.056556	5.542329	2.703124
106	9	0	-0.741405	5.399372	2.333813
107	9	0	-1.593338	5.155504	4.538399
108	9	0	-2.146539	3.665973	1.613267
109	15	0	1.125216	-2.778224	3.582370
110	9	0	-0.061565	-1.993597	4.450834
111	9	0	1.153473	-1.501425	2.493571
112	9	0	-0.085196	-3.470526	2.641919
113	9	0	2.267677	-3.573856	2.629396
114	9	0	2.318726	-2.096052	4.471110
115	9	0	1.052304	-4.117557	4.572343
116	7	0	-2.271555	0.112255	2.598156
117	6	0	-1.052405	0.577269	1.795146
118	6	0	-2.459480	-1.384333	2.404298
119	6	0	-3.504423	0.869717	2.121480
120	6	0	-2.018106	0.422154	4.077451
121	1	0	-1.227199	0.338204	0.742877
122	1	0	-0.945550	1.645999	1.967817
123	1	0	-0.200020	0.009540	2.164633
124	1	0	-2.629407	-1.566394	1.341883
125	1	0	-3.326858	-1.696504	2.989843
126	1	0	-1.564124	-1.903689	2.736163
127	1	0	-3.645051	0.649614	1.062086
128	1	0	-3.325433	1.929039	2.281977
129	1	0	-4.361248	0.524458	2.702970
130	1	0	-2.920654	0.161703	4.634161
131	1	0	-1.811375	1.487494	4.147216
132	1	0	-1.178865	-0.196638	4.392453

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.797410	5.157967	0.660795
2	6	0	-0.562847	4.763681	0.319087
3	7	0	-1.577359	5.703383	0.179806
4	7	0	-2.712880	5.105156	-0.153064
5	7	0	-2.405105	3.699713	-0.229228
6	6	0	-3.430580	2.788026	-0.576452
7	6	0	-4.570214	3.265682	-1.227376
8	6	0	-3.319624	1.423843	-0.276228
9	6	0	7.965666	-0.802562	0.551771
10	6	0	7.463983	0.479386	0.772634
11	6	0	7.136630	-1.859667	0.173798
12	6	0	5.775141	-1.615562	0.010102
13	6	0	6.096510	0.703999	0.598080
14	6	0	5.252238	-0.337671	0.210903
15	7	0	5.551643	1.989149	0.802358
16	7	0	6.391719	3.102141	1.167880
17	7	0	5.574341	4.145823	1.265292
18	6	0	4.270031	3.755770	0.982010
19	6	0	4.256923	2.405362	0.694422
20	7	0	4.895872	-2.662001	-0.362590
21	7	0	5.400752	-3.908610	-0.873670
22	7	0	4.324686	-4.639482	-1.159542
23	6	0	3.176541	-3.923987	-0.848236
24	6	0	3.533890	-2.682398	-0.353950
25	6	0	1.835893	-4.433185	-1.086793
26	6	0	3.144391	4.677347	0.986914
27	6	0	1.851817	4.240806	0.670591
28	6	0	0.716985	-3.856033	-0.470925
29	6	0	1.614953	-5.483993	-1.993054
30	6	0	-0.563098	-4.317082	-0.791631
31	6	0	-0.681075	-5.341589	-1.743874
32	6	0	-1.748873	-3.720568	-0.175490
33	7	0	-2.817805	-3.249862	-0.921319
34	7	0	-3.755619	-2.755381	-0.094751
35	7	0	-3.245940	-2.930441	1.223246
36	6	0	-2.017196	-3.521835	1.166660
37	6	0	-4.014387	-2.516989	2.348894
38	6	0	-3.378129	-2.136089	3.535808
39	6	0	-5.405673	-2.494000	2.249305
40	6	0	-4.142245	-1.744854	4.635818
41	6	0	-6.155306	-2.090077	3.352716
42	6	0	-5.531805	-1.720035	4.547754
43	6	0	-7.638741	-2.046347	3.310989
44	8	0	-8.118425	-2.437713	2.083459
45	8	0	-8.363676	-1.708264	4.243595
46	6	0	-9.590629	-2.420993	1.950871
47	6	0	9.409334	-1.108688	0.717040
48	8	0	9.925903	-2.210704	0.546446
49	8	0	10.118937	0.007170	1.091793
50	6	0	11.568436	-0.204085	1.281493
51	1	0	8.115380	1.285742	1.069396
52	1	0	7.552218	-2.843650	0.013156
53	1	0	4.197798	-0.151471	0.051977
54	1	0	3.432221	1.760491	0.431661
55	1	0	2.917542	-1.843739	-0.064590
56	1	0	2.465711	-5.960846	-2.464810

57	6	0	3.327322	6.035246	1.290193
58	6	0	1.084804	6.497977	0.974219
59	1	0	4.319467	6.393093	1.537241
60	1	0	0.282854	7.225779	0.966394
61	1	0	1.673410	3.198542	0.424708
62	1	0	-1.663129	-5.704059	-2.025545
63	1	0	0.835176	-3.030866	0.222649
64	1	0	-4.672543	4.318066	-1.449960
65	1	0	-6.152954	-1.416749	5.380737
66	1	0	-5.896167	-2.784404	1.333321
67	1	0	-3.646788	-1.448696	5.551717
68	1	0	-2.297138	-2.121763	3.594716
69	1	0	-10.045307	-3.090849	2.684267
70	1	0	-9.778649	-2.761426	0.934463
71	1	0	12.029458	-0.534978	0.347836
72	1	0	11.949481	0.768406	1.587073
73	1	0	-1.448318	-3.796550	2.035149
74	6	0	-1.082440	3.504784	0.066047
75	1	0	-0.596582	2.542362	0.061901
76	1	0	-9.973793	-1.410162	2.108020
77	1	0	11.745074	-0.959448	2.050765
78	6	0	-5.584129	2.378008	-1.581861
79	6	0	-6.766273	2.949562	-2.272520
80	8	0	-6.922331	4.132618	-2.565277
81	8	0	-7.699554	1.976516	-2.561426
82	6	0	-8.916817	2.466016	-3.239622
83	1	0	-9.425604	3.208401	-2.620251
84	1	0	-9.531875	1.578421	-3.376992
85	1	0	-8.662389	2.923411	-4.198772
86	6	0	-4.337619	0.539963	-0.646024
87	6	0	-5.474282	1.012131	-1.300903
88	1	0	-6.274746	0.346380	-1.589833
89	1	0	-4.244391	-0.515879	-0.417863
90	1	0	-2.453795	1.056870	0.261639
91	17	0	1.479509	0.300741	-0.254943
92	7	0	-0.283673	-0.553869	-3.462106
93	6	0	0.324511	0.848429	-3.533826
94	6	0	-1.015216	-0.882400	-4.750606
95	6	0	-1.258523	-0.608147	-2.282792
96	6	0	0.842141	-1.560269	-3.221869
97	1	0	-1.812673	-0.150967	-4.890811
98	1	0	-0.303944	-0.836132	-5.577032
99	1	0	-1.433750	-1.886027	-4.661172
100	1	0	1.346043	-1.253690	-2.301564
101	1	0	1.520238	-1.524365	-4.076537
102	1	0	0.400979	-2.551040	-3.113973
103	1	0	-2.024583	0.153041	-2.436748
104	1	0	-1.713821	-1.599803	-2.231752
105	1	0	-0.671624	-0.391964	-1.384840
106	1	0	0.835309	1.022359	-2.580773
107	1	0	1.025340	0.874381	-4.370375
108	1	0	-0.485632	1.563573	-3.686398
109	7	0	2.320774	6.931067	1.285659
110	7	0	0.385599	-5.923731	-2.326853

7. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums of compound $\mathbf{1}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums of compound 6

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums of compound $\mathbf{2}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums of compound $\mathbf{8}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums of compound 9

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums of compound $\mathbf{3}$

8. Supporting References.

[S1] Robinson, S. W.; Mustoe, C. L.; White, N. G.; Brown, A.; Thompson, A. L.; Kennepohl, P. and Beer, P. D. J. Am. Chem. Soc. 2015, 137, 499-507.
[S2] Meudtner, R. M. and Hecht, S. Angew. Chem. Int. Ed. 2008, 47, 4926-4930
[S3] Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311-312.

