Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

Aerobic oxidative cyclization of benzamides via *meta*-selective C-H *tert*-alkylation: Rapid entry to 7-alkylated isoquinolinediones

Shi Tang,^a You-Lin Deng,^a Jie Li,^a Wen-Xin Wang,^a Ying-Chun Wang,^a Zeng-Zeng Li,^a Li Yuan,^a Shi-Lu Chen,^b and Rui-Long Sheng^c

^a College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China)
^b Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081(China).
^c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032(China)
stang@jsu.edu.cn

Table of Contents

1.	General	S1
2.	Optimization of Reaction Conditions	S2-S3
3	Calculations	S3-S5
4.	Typical Experimental Procedures	S5-S16
5.	Copies of ¹ H NMR, ¹³ C NMR spectra	S17-S54
6.	NOESY and H-H COSY of 3a and 3u	855-857
7.	Observation of side-product isobutyronitrile	S58

1. General

All manipulations of oxygen- and moisture-sensitive materials were conducted with a Schlenk technique under a nitrogen or argon atmosphere. Solvent were purified and dried in a standard manner. Flash column chromatography was performed using EM Silica gel 60 (200-400 mesh). Visualization was accomplished with UV light (254 nm) and/or an aqueous alkaline KMnO₄ solution followed by heating. ¹H NMR, ¹³C NMR spectra were recorded on 400 or 500 MHz NMR spectrometer with trimethylsilane resonance as the internal standard. Unless otherwise noted, reagents were commercially available and were used without further purification. Preparation of *N*-alkyl-*N*-methacryloyl benzamides **1** were prepared according to literature procedures.¹

2. Optimization of Reaction Conditions

Table S1 Screening of optimal conditions^a

entry	metal/[O]	base/additive	solvent	yield $3a$ (%) ^b	yield 4a $(\%)^b$
1	CuI/DTBP	none	DMF	trace	13
2	CuI/TBHP	none	DMF	trace	9
3 ^c	CuI/H ₂ O ₂	none	DMF	trace	11
3	CuI/air	K ₃ PO ₄	DMF	11	75
4	CuI/air	K ₃ PO ₄	DMSO	13	62
5	CuI/air	K ₃ PO ₄	dioxane	58	11
6	CuI/air	K ₃ PO ₄	THF	12	17
7	CuI/air	K ₃ PO ₄	CH ₃ CN	27	23
8	CuI/air	K ₃ PO ₄	t-AmylOH	45	16
9	CuI/air	K ₃ PO ₄	DCM	23	11
10	CuI/air	K ₃ PO ₄	ethyl acetate	8	15
11	CuCl/air	K ₃ PO ₄	dioxane	51	10
12	CuBr/air	K ₃ PO ₄	dioxane	53	14
13	FeBr ₂ /air	K ₃ PO ₄	dioxane	28	9
14	AgOAc/ air	K ₃ PO ₄	dioxane	23	7
15	Mn(OAc) ₂ .4H ₂ O	K ₃ PO ₄	dioxane	14	16
	/air				
16	NiCl ₂ .6H ₂ O/air	K ₃ PO ₄	dioxane	10	12

17	CuI/O ₂	K ₃ PO ₄	dioxane	54	15
18^d	CuI	K_3PO_4	dioxane	21	10
19 ^e	CuI/air	K ₃ PO ₄ /KF	dioxane	65	16
20	CuI/air	K ₃ PO ₄ /KF	dioxane	73	13
21 ^f	CuI/air	K ₃ PO ₄ /KF	dioxane	71	17
22	CuI/air	K ₃ PO ₄ /NaF	dioxane	61	15
23	CuI/air	K ₃ PO ₄ /CaF ₂	dioxane	36	9
24	CuI/air	K ₃ PO ₄ /CsF	dioxane	53	14
25	CuI/air	K ₂ CO ₃ /KF	dioxane	19	12
26	CuI/air	$K_2HPO_{4/}KF$	dioxane	35	10
27	CuI/air	Cs_2CO_3/KF	dioxane	18	13
28 ^g	CuI/air	K ₃ PO _{4/} KF	dioxane	22	8
29^{h}	CuI/air	K ₃ PO ₄ /KF	dioxane	67	15
30 ^{<i>i</i>}	CuI/1,10-Phenanthroline/air	K ₃ PO ₄ /KF	dioxane	66	16
31^i	CuI /2,2'-bipyridine/air	K ₃ PO _{4/} KF	dioxane	51	18
32 ^j	CuI/air	K ₃ PO ₄ /KF	dioxane	64	15

Continued (Table S1)

^{*a*} Reaction conditions: **1a** (0.3 mmol), AIBN (4 equiv.), metal (20 mol %), oxidant (2 equiv.) or O₂/air (1 atm), base (2 equiv.), additive (2 equiv.) and solvent (2 mL) at 90 °C for 10 h. DTBP = Di-*tert*-butyl peroxide, DMF = Dimethyl formamide, DMSO = Dimethyl sulfoxide, THF = Tetrahydrofuran, DCM = Dichloromethane.^{*b*} Yield of the isolated product. ^{*c*} H₂O₂ (30% aqueous solution). ^{*d*} Under N₂ atmosphere. ^{*e*} Using 2 equiv. of KF. ^{*f*} Using 4 equiv. of KF. ^{*g*} Using 2 equiv. of AIBN. ^{*h*} Using 5 equiv. of AIBN. ^{*i*} In the presence of *N*-containing ligand (20 mol %). ^{*j*} Using 10 mol % of CuI.

3. Calculations

General: All calculations presented in this paper were performed using unrestricted density functional theory (DFT) with the hybrid functional B3LYP^{2–4} as implemented in Gaussian 09 package.⁵ Geometry optimizations were carried out with the 6-31G(d,p) basis set. On the basis of the optimized geometries, more accurate energies were with the 6-31G (d,p) basis set. On the basis of the optimized geometries, more accurate energies were energies were obtained by performing single-point calculations with a larger 6-311+G (2d, 2p)

basis set. It should be noted that the lack of dispersion (van der Waals effects) in DFT theory should lead to exaggerated repulsive interactions when atoms are forced closer to each other, especially for systems with large groups or ligands.⁷⁻⁹ In the present work, dispersion corrections were taken into account using an empirical formula by Grimme et al,¹⁰⁻¹³ which has recently been successfully applied to a number of massive systems, such as semirigid supramolecular systems,¹⁴ dicopper complexes,^{8,15} cobalamin-dependent enzymes, 6,7 Ni-containing enzyme, 15 and α -Keggin-type polyoxometalates. 17,18 It is worth stressed here that dispersion effects were taken into account in all calculations including geometry optimizations and single-point calculations. Solvation effects were also considered by performing single-point calculations at the same theory level as optimizations, using a conductor-like polarizable continuum model (CPCM)¹⁹⁻²¹ method with a dielectric constant of 2.2 (the solvent is dioxane). Frequency calculations were performed at the same level of theory as in the optimizations to further confirm the nature of stationary points and to obtain zero-point energies (ZPE) and entropy effects. The energies reported in this paper are the free energies which have been corrected for dispersion, solvation, ZPE, and entropy effects.

Results and Discussion: A reactant-state complex of intermediate **E** with the radical **A** has been optimized and named by **React** here (Figure 1). The two molecules are weakly bound. The unpaired spin density is delocalized at the xxx radical so that the one at the central carbon (C_R) is 0.79. From **React**, a transition state (see **TS** in Figure 1) for hydrogen transfer from the substrate to the xxx radical has been optimized and confirmed to be a first-order saddle point with an imaginary frequency of 1740*i* cm⁻¹. At **TS**, the distances of the transferred hydrogen (H_P) to the two carbons are 1.43 and 1.34 Å, respectively. The very small spin at the H_P atom (-0.08), along with the spins at the two

carbons (0.47 and 0.37), indicates that this is an electron-coupled proton transfer process. The free energy barrier for this step is calculated to be accessible (14.4 kcal/mol). This step results in a product state of intermediate **E** with a radical **A** (see **Prod** in Figure 1). The **Prod** is much more stable than the **React** (by -14.7 kcal/mol), since the spin in the substrate are delocalized by a larger π -conjugated system than in the radical **A**. This implies that the reaction is irreversible, that is, the reverse hydrogen transfer from the radical **A** to the substrate radical is unreachable.

Figure S1. Optimized structures of stationary points. All distances are given in angstrom (Å). The unpaired spin populations are also shown. The free energies (in kcal/mol) are provided in parentheses with the **React** as the energy reference (0.0 kcal/mol).

4. Typical Experimental Procedures

General procedure for the synthesis of isoquinolinediones. To a mixture of methacryloyl benzamide 1 (0.3 mmol), CuI (20 mol%), azo compound 2 (4.0 equiv.), K_3PO_4 (2 equiv.), KF (3 equiv.) was added dioxane (2 mL), and then the resulting solution was stirred at 90 °C under air atmosphere (1 atm.) for 10-12 h. The solvent was evaporated under reduced pressure and the resulted mixture was filtered through a Florisil pad, diluted with Et₂O, and washed with water and then brine. The organic layer was dried over anhydrous MgSO₄ and concentrated in *vacuo*. The residue was purified by flash chromatography on silica gel to afford the corresponding 7-alkylated isoquinolinediones (**3a-3w**) in a yield listed in **Scheme 2** and **3**.

3-(2-Butyl-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-

dimethylpropanenitrile (**3a**). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ : 8.35 (d, J = 2.2 Hz, 1H), 7.85 (dd, J = 8.3,

2.3 Hz, 1H), 7.55 (d, J = 8.3 Hz, 1H), 4.10 – 3.94 (m, 2H), 2.77 (d, J = 14.6 Hz, 1H), 2.34 (d, J = 14.6 Hz, 1H), 1.80 (s, 3H), 1.78 (s, 3H), 1.63 – 1.54 (m, 5H), 1.45 – 1.36 (m, 2H), 1.16 (s, 6H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 175.1, 163.2, 142.0, 140.6, 131.1, 127.5, 125.5, 125.4, 123.8, 123.2, 49.5, 45.9, 40.7, 37.0, 33.4, 30.5, 29.8, 29.6, 29.1, 28.8, 27.4, 20.3, 13.7; HRMS *m*/*z* (ESI) calcd for C₂₃H₃₀N₃O₂ [M+H]⁺ 380.2333, found: 380.2330.

3-(2-Butyl-7-(2-cyanopropan-2-yl)-4,6-dimethyl-1,3dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2**dimethylpropanenitrile (3b)**. Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (s, 1H), 7.34 (s, 1H), 4.04 – 3.95 (m, 2H), 2.77 (s, 3H), 2.75 (d, J = 14.7 Hz, 1H), 2.34 (d, J =14.7 Hz, 1H), 1.89 (s, 3H), 1.80 (s, 3H), 1.61 – 1.52 (m, 5H), 1.46 – 1.37 (m, 2H), 1.19 (s, 3H), 1.11(s, 3H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 175.4, 163.4, 143.3, 140.2, 138.8, 131.1, 125.8, 124.0, 123.5, 122.9, 49.0, 45.6, 40.7, 34.6, 33.4, 30.6, 30.0, 29.6, 28.3, 28.1, 26.8, 21.6, 20.3, 13.8; HRMS *m/z* (ESI) calcd for C₂₄H₃₂N₃O₂ [M+H]⁺ 394.2490, found: 394.2494.

3-(2-Butyl-7-(2-cyanopropan-2-yl)-6-methoxy-4-methyl-1,3-dioxo1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-

3c / CN **dimethylpropanenitrile (3c).** Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (s, 1H), 6.99 (s, 1H), 4.08 (s, 3H), 4.04 – 3.95 (m, 2H), 2.81 (d, J = 14.8 Hz, 1H), 2.39 (d, J = 14.8 Hz, 1H), 1.84 (s, 3H), 1.78 (s, 3H), 1.64 – 1.54 (m, 5H), 1.44–1.35 (m, 2H), 1.27 (s, 3H), 1.10 (s, 3H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 175.4, 163.1, 161.6, 142.9, 129.8, 127.4, 123.9, 123.8, 117.3, 109.5, 56.1, 48.8, 46.2, 40.6, 33.8, 33.6, 30.6, 30.2, 29.6, 27.0, 26.0, 20.3, 13.8; HRMS *m/z* (ESI) calcd for C₂₄H₃₂N₃O₃ [M+H]⁺ 410.2439, found: 410.2442.

3-(2-Butyl-6-chloro-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-

3d CN **dimethylpropanenitrile (3d).** Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ: 8.36 (s, 1H), 7.59 (s, 1H), 4.05 – 3.98 (m, 2H), 2.76 (d, *J* = 14.7 Hz, 1H), 2.29 (d, *J* = 14.7 Hz, 1H), 1.95 (s, 3H), 1.90 (s, 3H), 1.66 – 1.57 (m, 5H), 1.46 – 1.37 (m, 2H), 1.21 (s, 3H), 1.17 (s, 3H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ:

174.5, 162.6, 142.0, 139.6, 137.9, 130.2, 127.9, 123.8, 123.1, 122.6, 49.4, 45.8, 40.8, 35.5, 33.2, 30.5, 29.9, 29.5, 27.5, 27.3, 27.1, 20.3, 13.7; HRMS *m/z* (ESI) calcd for C₂₃H₂₉ClN₃O₂ [M+H]⁺ 414.1943, found: 414.1941.

MHz, CDCl₃) δ : 8.34 (s, 1H), 7.81 (s, 1H), 4.08 – 3.95 (m, 2H), 2.76 (d, J = 14.7 Hz, 1H), 2.30 (d, J = 14.7 Hz, 1H), 1.97 (s, 3H), 1.92 (s, 3H), 1.64 – 1.56 (m, 5H), 1.39 (dd, J = 10.3, 4.6 Hz, 2H), 1.20 (s, 3H), 1.18 (s, 3H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 174.5, 162.7, 141.9, 139.1, 134.0, 129.4, 127.8, 124.3, 123.1, 122.6, 49.3, 45.7, 40.9, 36.8, 33.2, 30.5, 29.9, 29.5, 27.8, 27.4, 20.3, 13.8; HRMS *m/z* (ESI) calcd for C₂₃H₂₉BrN₃O₂ [M+H]⁺ 458.1438, found: 458.1436.

3-(2-Butyl-7-(2-cyanopropan-2-yl)-6-fluoro-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-

dimethylpropanenitrile (3f). Colorless oil; ¹H NMR (400

MHz, CDCl₃) δ : 8.39 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 11.6 Hz, 1H), 4.07 – 3.95 (m, 2H), 2.75 (d, J = 14.7 Hz, 1H), 2.27 (d, J = 14.7 Hz, 1H), 1.87 (s, 3H), 1.83 (s, 3H), 1.65 – 1.50 (m, 5H), 1.49 – 1.34 (m, 2H), 1.20 (s, 3H), 1.17 (s, 3H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 174.6, 164.0 (d, J = 260.6 Hz), 162.4, 143.7 (d, J = 4.7 Hz), 129.2 (d, J = 26.4 Hz), 128.9 (d, J = 5.3 Hz), 122.9 (d, J = 17.8 Hz), 121.5 (d, J = 1.4 Hz), 115.3, 115.0, 49.7, 45.9, 40.8, 33.9, 33.3, 30.5, 30.0, 29.6, 27.0, 26.9, 20.3, 13.8; HRMS m/z (ESI) calcd for C₂₃H₂₉FN₃O₂ [M+H]⁺ 398.2239, found: 398.2237.

3-(7-(2-Cyanopropan-2-yl)-2-isopropyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-

3h CN **dimethylpropanenitrile (3h).** Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.32 (d, J = 2.2 Hz, 1H), 7.83 (dd, J = 8.3, 2.3 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 5.29 – 5.12 (m, 1H), 2.76 (d, J = 14.7 Hz, 1H), 2.32 (d, J = 14.6 Hz, 1H), 1.80 (s, 3H), 1.78 (s, 3H), 1.57 (d, J = 7.0 Hz, 6H), 1.54 (s, 3H), 1.19 (s, 3H), 1.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 175.3, 163.5, 141.9, 140.4, 130.9, 127.4, 125.5, 123.9, 123.4, 121.1, 49.0, 46.2, 45.9, 33.5, 30.5, 30.4, 30.0, 29.1, 28.8, 27.3, 19.5, 19.2; HRMS *m/z* (ESI) calcd for C₂₂H₂₈N₃O₂ [M+H]⁺ 366.2177, found: 366.2179.

NMR (500 MHz, CDCl₃) δ : 8.38 (d, J = 2.2 Hz, 1H), 7.87 (dd, J = 8.3, 2.3 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.33 – 7.24 (m, 3H), 5.32 (d, J = 13.7 Hz, 1H), 5.16 (d, J = 13.7 Hz, 1H), 2.73 (d, J = 14.6 Hz, 1H), 2.34 (d, J = 14.6 Hz, 1H), 1.80 (s, 3H), 1.79 (s, 3H), 1.62 (s, 3H), 1.12 (s, 3H), 0.96 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 175.0, 163.3, 142.1, 140.5, 136.5, 131.3, 129.2, 128.4, 127.6, 125.7, 125.3, 123.8, 123.2, 49.8, 46.0, 44.0, 37.0, 33.3, 30.5, 29.7, 29.2, 28.8, 26.9; HRMS *m/z* (ESI) calcd for C₂₆H₂₈N₃O₂ [M+H]⁺ 414.2177, found: 414.2173.

Ethyl 2-(4-(2-Cyano-2-methylpropyl)-7-(2-cyanopropan-

4-methyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1H)-

yl)acetate (3j). Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ : 8.35 (d, J = 2.2 Hz, 1H), 7.89 (dd, J = 8.3, 2.2 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 4.86 (d, J = 16.7 Hz, 1H), 4.69 (d, J = 16.7 Hz, 1H), 4.23 (q, J = 7.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 1H), 2.77 (d, J = 14.7 Hz, 1H), 2.38 (d, J = 14.7 Hz, 1H), 1.80 (s, 3H), 1.78 (s, 3H), 1.66 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.18 (s, 3H), 1.15(s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ : 174.8, 167.7, 162.8, 142.1, 140.7, 131.5, 127.7, 124.8, 123.7, 123.4, 61.6, 49.2, 46.1, 41.7, 37.0, 33.4, 30.6, 29.7, 29.1, 28.8, 27.4, 14.1; HRMS *m/z* (ESI) calcd for C₂₃H₂₈N₃O₄ [M+H]⁺ 410.2075, found: 410.2076.

2-(2-Butyl-4-(2-cyano-2-methylbutyl)-6-fluoro-4-

methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)-2-

³p ^{Me} CN methylbutanenitrile (3p). Yellowish oil; d.r. = 1:1; ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (d, *J* = 8.1 Hz, 0.5 H), 8.41 (d, *J* = 8.1 Hz, 0.5 H), 7.25 (d, *J* = 3.5 Hz, 0.5H), 7.22 (d, *J* = 3.4 Hz, 0.5H), 4.08 – 3.89 (m, 2H), 2.64 (d, *J* = 8.1 Hz, 1H), 2.32 (d, *J* = 14.7 Hz, 1H), 2.27 – 1.97 (m, 2H), 1.82 (s, 1.5H), 1.80 (s, 1.5H), 1.64 – 1.53 (m, 5H), 1.46 – 1.34 (m, 4H), 1.05 – 0.93 (m, 12H); ¹³C NMR (101 MHz, CDCl₃) δ : 175.0, 163.9 (d, *J* = 260.3 Hz), 162.4, 143.4 (dd, *J* = 17.6, 7.9 Hz), 130.4 (dd, *J* = 40.9, 5.6 Hz), 128.1 (dd, *J* = 25.9, 12.1 Hz), 122.3, 122.0 (d, *J* = 14.7 Hz), 121.3, 115.4 (dd, *J* = 25.1, 11.7 Hz), 48.0, 47.9, 45.6, 40.8, 35.6, 35.3, 33.5, 33.4, 29.5, 25.5, 24.4, 23.2, 20.3, 13.8, 9.9, 9.7, 8.9; HRMS *m/z* (ESI) calcd for C₂₅H₃₃FN₃O₂ [M+H]⁺ 426.2552, found:

Ethyl 2-(4-(2-Cyano-2-methylbutyl)-7-(2-cyanobutan-2yl)-4-methyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1H)yl)acetate (3q). Colorless oil; d.r. = 1:1; ¹H NMR (400 MHz, CDCl₃) δ: 8.34 – 8.31 (m, 1H), 7.89 –7.78 (m, 1H),

7.63 – 7.54 (m, 1H), 4.88 (d, J = 16.8 Hz, 0.5H), 4.86 (d, J = 16.8 Hz, 0.5H), 4.70 (d, J = 16.8 Hz, 0.5H), 4.68 (d, J = 16.8 Hz, 0.5H), 4.26 – 4.20 (m, 2H), 2.83 (d, J = 14.6 Hz, 0.5H), 2.68 (d, J = 14.8 Hz, 0.5H), 2.47 (d, J = 14.8 Hz, 0.5H), 2.25 (d, J = 14.6 Hz, 0.5H), 2.08 – 1.95 (m, 2H), 1.80 – 1.72 (m. 3H), 1.67 (s, 1.5H), 1.66 (s, 1.5H), 1.33-1.24 (m, 5H), 1.08 (s, 1.5H), 1.02 – 0.94 (m, 7.5H); ¹³C NMR (101 MHz, CDCl₃) &: 175.3, 174.7, 167.9, 167.7, 162.9, 141.0, 140.9, 140.7, 140.3, 132.1, 131.9, 128.7, 127.9, 127.4, 127.1, 126.3, 126.0, 125.0, 124.6, 122.6, 122.3, 61.7, 61.6, 48.5, 47.3, 46.0, 45.9, 43.2, 43.1, 41.7, 41.6, 35.6, 35.5, 35.3, 35.0, 33.8, 33.7, 33.4, 27.4, 27.0, 25.8, 23.5, 14.2, 9.8, 9.7, 9.0, 8.9; HRMS *m/z* (ESI) calcd for C₂₅H₃₂FN₃O₄ [M+H]⁺ 438.2388, found: 438.2392.

1-(2-Butyl-4-((1-cyanocyclohexyl)methyl)-4-methyl-1,3dioxo-1,2,3,4-tetrahydroisoquinolin-7-

3r **3**r **1**H NMR (400 MHz, CDCl₃) δ : 8.32 (s, 1H), 7.57 (s, 1H), 4.08 – 3.88 (m, 2H), 2.72 (d, J = 14.7 Hz, 1H), 2.26 (d, J = 14.7 Hz, 1H), 2.00 – 1.83 (m, 7H), 1.68 – 1.56 (m, 15H), 1.45 – 1.33 (m, 5H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 174.7, 162.8, 142.1, 139.8, 137.9, 130.2, 128.1, 123.7, 121.3, 120.5, 49.6, 45.5, 41.9, 40.8, 38.3, 36.9, 35.9, 35.2, 34.8, 33.5, 29.5, 24.9, 24.7, 23.1, 23.0, 22.6, 22.5, 20.3, 13.8; HRMS *m/z* (ESI) calcd for C₂₉H₃₇ClN₃O₂ [M+H]⁺ 494.2569, found: 494.2573.

1-(2-Benzyl-4-((1-cyanocyclohexyl)methyl)-4-methyl-1,3dioxo-1,2,3,4-tetrahydroisoquinolin-7-

NC **vi)cyclohexanecarbonitrile** (**3t**). Colorless solid; m.p. 128-129 °C; ¹H NMR (400 MHz, CDCl₃) δ : 8.36 (s, 1H), 7.85 (dd, J = 8.3, 2.2 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.35 – 7.20 (m, 3H), 5.32 (d, J = 13.7 Hz, 1H), 5.11 (d, J = 13.7 Hz, 1H), 2.66 (d, J = 14.6 Hz, 1H), 2.32 (d, J = 14.6 Hz, 1H), 2.25 – 2.14 (m, 2H), 1.94 – 1.17 (m, 21H); ¹³C NMR (101 MHz, CDCl₃) δ : 175.2, 163.5, 141.9, 140.8, 136.5, 131.8, 129.4, 128.4, 127.6, 126.1, 125.0, 122.2, 121.4, 50.1, 45.6, 44.1, 44.0, 38.2, 37.5, 36.9, 35.2, 33.5, 29.5, 25.6, 24.8, 24.6, 23.5, 22.5, 22.4; HRMS *m*/*z* (ESI) calcd for C₃₂H₃₆N₃O₂ [M+H]⁺ 494.2803, found: 494.2805.

Methyl 3-(7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,4dimethyl-1,3 -dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl) -2,2-dimethylpropanoate (3u). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.23 (d, J = 2.2 Hz, 1H), 7.55 (dd, J = 8.3,

2.3 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 3.66 (s, 3H), 3.38 (s, 3H), 3.12 (s, 3H), 2.64 (d, J = 14.5 Hz, 1H), 2.55 (d, J = 14.5 Hz, 1H), 1.62 (s, 6H), 1.56 (s, 3H), 1.00 (s, 3H), 0.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 176.9, 176.6, 176.3, 164.2, 144.1, 140.2, 131.1, 127.0, 125.7, 124.6, 52.3, 51.5, 51.2, 46.4, 45.7, 41.6, 33.3, 28.9, 27.3, 26.4, 23.3; HRMS *m/z* (ESI) calcd for C₂₂H₃₀NO₆ [M+H]⁺ 404.2068, found: 404.2071.

Methyl 3-(2-(2-Ethoxy-2-oxoethyl)-7-(1-methoxy-2-methyl -1-oxopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-Tetrahydro -isoquinolin-4-yl)-2,2-dimethylpropanoate (3w). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ : 8.23 (d, J = 2.1 Hz, 1H),

7.57 (dd, J = 8.3, 2.2 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 4.86 (d, J = 16.6 Hz, 1H), 4.63 (d, J = 16.6 Hz, 1H), 4.2 - 4.1 (m, 2H), 3.66 (s, 3H), 3.15 (s, 3H), 2.69 (d, J = 14.6 Hz, 1H), 2.63 (d, J = 14.6 Hz, 1H), 1.62 (s, 6H), 1.58 (s, 3H), 1.28 (t, J = 7.6 Hz, 3H), 1.04 (s, 3H), 0.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 177.1, 176.5, 175.8, 167.9, 163.5, 144.2, 140.4, 131.5, 127.1, 126.0, 124.1, 61.5, 52.4, 51.5, 50.0, 46.4, 46.0, 41.6, 41.5, 33.8, 29.0, 26.4, 26.3, 23.5, 14.1; HRMS m/z (ESI) calcd for C₂₅H₃₄NO₈ [M+H]⁺ 476.2279, found: 476.2283.

3-(2-Butyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4yl)-2,2-dimethylpropanenitrile (4a). Colorless oil: ¹H NMR (400 MHz, CDCl₃) δ: 8.38 – 8.27 (m, 1H), 7.75 – 7.64 (m, 1H), 7.57 – 4a 7.46 (m, 2H), 4.09 - 3.95 (m, 2H), 2.77 (d, J = 14.6 Hz, 1H), 2.36 (d, J = 14.6 Hz, 1H), 1.65 - 1.50 (m, 5H), 1.45 - 1.36 (m, 2H), 1.16 (s, 3H), 1.15 (s, 3H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ: 175.4, 163.6, 140.6, 133.7, 129.4, 128.2, 125.7, 124.7, 123.4, 49.5, 45.9, 40.7, 33.6, 30.6, 29.7, 29.6, 27.2, 20.3, 13.8; HRMS m/z (ESI) calcd for C₁₉H₂₅N₂O₂ [M+H]⁺ 313.1911, found: 313.1907.

3-(2-Butyl-4,7-dimethyl-1,3-dioxo-1,2,3,4-

tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile

(**4b**). Colorless oil: ¹H NMR (400 MHz, CDCl₃) δ: 8.11 (s, 1H), 7.48 (dd, J = 8.0, 1.4 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 4.07 – 3.94 (m, 2H), 2.75 (d, J =

S14

14.6 Hz, 1H), 2.45 (s, 3H), 2.33 (d, J = 14.6 Hz, 1H), 1.67 – 1.52 (m, 5H), 1.45 – 1.36 (m, 2H), 1.14 (s, 3H), 1.13 (s, 3H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 175.3, 164.1, 143.2, 142.2, 132.6, 132.2, 125.0, 123.5, 123.1, 49.8, 45.9, 40.6, 34.0, 30.6, 29.8, 29.6, 27.1, 24.3, 20.4, 13.8; HRMS *m*/*z* (ESI) calcd for C₂₀H₂₇N₂O₂ [M+H]⁺ 327.2068, found: 327.2067.

References:

- W. Kong, M. Casimiro, N. Fuentes, E. Merino and C. Nevado, Angew. Chem. 2013, 125, 13324-13328, Angew. Chem. Int. Ed., 2013, 52, 13086=13090; b) L. Li, M. Deng, S.-C. Zheng, Y. P. Xiong, B. Tan and X.-Y. Liu, Org. Lett. 2014, 16, 504-507; c) L. Zhang, C. Yang, Z. Xu, F. Gao, W. J. Xia, J. Org. Chem. 2015, 80, 5730-5736; d) M. Zhang, P. Xie, W. Zhao, B. Niu, W. Wu, Z. Bian, C. U. Pittman Jr. and A. Zhou, J. Org. Chem. 2015, 80, 4176-4183
- 2. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 3. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 4. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785-789.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N.; Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J Cioslowski, D.J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009.
- P. E. M. Siegbahn, M. R. A. Blomberg, S. -L. Chen, J. Chem. Theory. Comput., 2010, 6, 2040.

- 7. S. -L. Chen, M. R. A. Blomberg, P. E. M. Siegbahn, J. Phys. Chem. B, 2011, 115, 4066.
- 8. H. -M. Zhang and S. -L. Chen, J. Chem. Theory Comput., 2015, 11, 2525-2535.
- 9. S. Grimme, J. Comput. Chem., 2004, 25, 1463.
- 10. S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- 11. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys., 2010, 132, 154104.
- 12. Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys. 2011, 13, 6670-6688.
- 13. S. Grimme, Chem. Eur. J., 2012, 18, 9955.
- 14. Liu, Y.-F.; Yu, J.-G.; Siegbahn, P. E. M.; Blomberg, M. R. A. Chem. Eur. J. 2013, 19, 1942–1954.
- 15. S. -L. Chen, M. R. A. Blomberg, P. E. M. Siegbahn, Chem. Eur. J., 2012, 18, 6309-6315.
- 16. I. Efremenko, R. Neumann, J. Phys. Chem. A, 2011, 115, 4811-4826.
- F. Chen, X. Li, B. Wang, T. Xu, S. L. Chen, P. Liu, C. Hu, Chem. Eur. J., 2012, 18, 9870– 9876.
- 18. A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin. Trans., 1993, 2, 799.
- 19. R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A, 1999, 103, 9100.
- 20. V. Barone, M. Cossi, J. Phys. Chem. A, 1998, 102, 1995.
- 21. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.

5 Copies of ¹H NMR and ¹³C NMR spectra

3-(2-Butyl-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3a)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3a)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-4,6-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3b)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-4,6-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3b)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-6-methoxy-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3c)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-6-methoxy-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3c)

3-(2-Butyl-6-chloro-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3d)

3-(2-Butyl-6-chloro-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3d)

3-(2-Butyl-6-bromo-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3e)

3-(2-Butyl-6-bromo-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3e)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-6-fluoro-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3f)

3-(2-Butyl-7-(2-cyanopropan-2-yl)-6-fluoro-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3f)

3-(7-(2-Cyanopropan-2-yl)-2-isopropyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3h)

3-(7-(2-Cyanopropan-2-yl)-2-isopropyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3h)

3-(2-Benzyl-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3i)

3-(2-Benzyl-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (3i)

Ethyl 2-(4-(2-cyano-2-methylpropyl)-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1H)-yl)acetate (3j)

Ethyl 2-(4-(2-cyano-2-methylpropyl)-7-(2-cyanopropan-2-yl)-4-methyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1H)-yl)acetate (3j)

2-(2-Butyl-4-(2-cyano-2-methylbutyl)-6-fluoro-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)-2-methylbutanenitrile (3p)

2-(2-Butyl-4-(2-cyano-2-methylbutyl)-6-fluoro-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)-2-methylbutanenitrile (3p)

Ethyl 2-(4-(2-cyano-2-methylbutyl)-7-(2-cyanobutan-2-yl)-4-methyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1H)-yl)acetate (3q)

Ethyl 2-(4-(2-cyano-2-methylbutyl)-7-(2-cyanobutan-2-yl)-4-methyl-1,3-dioxo-3,4-dihydroisoquinolin-2(1H)-yl)acetate (3q)

1-(2-butyl-6-chloro-4-((1-cyanocyclohexyl)methyl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)cyclohexanecarbonitrile (3r)

1-(2-butyl-6-chloro-4-((1-cyanocyclohexyl)methyl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)cyclohexanecarbonitrile (3r)

1-((7-(1-Cyanocyclohexyl)-2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)cyclohexanecarbonitrile (3s)

1-((7-(1-Cyanocyclohexyl)-2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)cyclohexanecarbonitrile (3s)

1-(2-Benzyl-4-((1-cyanocyclohexyl)methyl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)cyclohexanecarbonitrile (3t)

1-(2-Benzyl-4-((1-cyanocyclohexyl)methyl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-7-yl)cyclohexanecarbonitrile (3t)

Methyl 3-(7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanoate (3u)

Methyl 3-(7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanoate (3u)

Methyl 3-(2-benzyl-7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanoate

Methyl 3-(2-benzyl-7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanoate

(3v)

(3v)

Methyl 3-(2-(2-ethoxy-2-oxoethyl)-7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)

-2,2-dimethylpropanoate (3w)

Methyl 3-(2-(2-ethoxy-2-oxoethyl)-7-(1-methoxy-2-methyl-1-oxopropan-2-yl)-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)

-2,2-dimethylpropanoate (3w)

3-(2-butyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (4a)

3-(2-butyl-4-methyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (4a)

3-(2-Butyl-4,7-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,2-dimethylpropanenitrile (4b)

5 H-H COSY of 3a

6. Observation of side-product isobutyronitrile (Me₂CHCN)

