Formation of α-Chalcogenyl Acrylamides through Unprecedented
Chalcogen-Mediated Metal-Free Oxyfunctionalization of Ynamides with DMSO as Oxidant
Hai Huang, Luning Tang, Qi Liu, Yang Xi, Guangke He* and Hongjun Zhu*
Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
General Method. S1
General experimental procedure and characterization data S1

1. General procedure for the preparation of ynamides 1; Typical Procedure I S2
2. General procedure for the preparation of arenesulfenyl chlorides; Typical Procedure II.. S2
3. General procedure for the preparation of α-chalcogenyl acrylamides; Typical Procedure III. S3
3.1. ${ }^{1} H$ NMR monitoring on the reaction of ynamides 1 a at different time S4
3.2. Characterization data for New compounds. S4
3.3. Large-scale experiments S14
3.4. Synthesis of α-selanyl acrylamides. S14
3.5. Synthesis of α-tellanyl acrylamides S15
4. Experiment for Mechanistic Study S16
NMR Spectra S20

General Method

All reactions were performed in reaction tubes under nitrogen atmosphere. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded at respectively 400 MHz and 100 MHz spectrometer using CDCl_{3} as solvent. The following abbreviations are used to describe peak patterns where appropriate: $\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Coupling constants are reported in Hertz (Hz). Chemical shifts are reported in ppm relative to the internal standard tetramethylsilane $(\delta=0$ $\mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR and deuteriochloroform $(\delta=77.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR. High-resolution mass spectra (HRMS) were recorded on an ESI-TOF (time-of- flight) mass spectrometer. Melting points were measured with micro melting point apparatus.

General experimental procedure and characterization data

1. General procedure for the preparation of ynamides 1; Typical Procedure I

Ynamides 1 were synthesized and characterized according to the method reported by Hsung. ${ }^{1}$ To a mixture of tert-butyloxycarbamates $(8.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(16 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{mmol})$, and 1,10-phenanthroline (1.6 mmol) in a reaction vial was added a solution of bromoalkyne ${ }^{2}$ (8.8 $\mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$. The reaction mixture was capped and heated in an oil bath at $70^{\circ} \mathrm{C}$ for 18 h while being monitored with TLC analysis. Upon completion, the reaction mixture was cooled to room temperature and diluted with EtOAc and filtered through Celite, and the filtrate was concentrated in vacuum. The crude products were purified by silica gel flash chromatography on a silica gel column with petroleum ether (PE) and ethyl acetate (EA) as eluent to afford directing products.

2. General procedure for the preparation of arenesulfenyl chlorides; Typical Procedure II

$\mathrm{ArSH}+\underset{(1.24 \text { equiv })}{\mathrm{NCS}} \longrightarrow \underset{\mathrm{DCM}, \mathrm{N}_{2}, 0^{\circ} \mathrm{C}}{\substack{\text { 2a-2i }}} \mathrm{ArSCI}$

Arenesulfenyl chlorides were synthesized according to previously reported methodology. ${ }^{3}$

Under an atmosphere of $\mathrm{N}_{2}, \mathrm{~N}$-chlorosuccinimide ($1.66 \mathrm{~g}, 12.4 \mathrm{mmol}$) was placed in a $100-\mathrm{mL}$ reaction flask and dissolved in dichloromethane (50 mL). Arenethiol ($1.02 \mathrm{~mL}, 10.0 \mathrm{mmol}$) was added slowly at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . After the volatiles were removed, hexane $(15 \mathrm{~mL})$ was added to the residue. The resulting white precipitate of succinimide was filtrated. Evaporation followed by distillation gave the desire arenesulfenyl chlorides.

3. General procedure for the preparation of α-chalcogenyl acrylamides; Typical Procedure III

In a 10 mL flame-dried Schlenk tube were placed ynamides $\mathbf{1}$ (0.3 mmol), $\operatorname{ArSCl} 2$ (2.0 equiv) and DMSO (2.0 mL) under nitrogen condition. The reaction mixture had been stirred at rt for 1 hour while was monitored with TLC analysis. The reaction mixture was quenched by adding EtOAc and water. The combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the desired product 3 .

3.1. ${ }^{1} H$ NMR monitoring on the reaction of ynamides 1 a at different time.

Figure 1. ${ }^{1} \mathrm{H}$ NMR monitoring on the reaction of ynamides $\mathbf{1 a}$ at different time.

3.2. Characterization data for New compounds.

3-(2-(p-tolylthio)hex-2-enoyl)oxazolidin-2-one (3a): $72.3 \mathrm{mg}, 79 \%$ total yield; (E)-isomer: $49.4 \mathrm{mg}, 54 \%$ yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $6.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,151.9,144.7,137.0,130.8,130.1,129.7,126.5,62.0,42.3,32.9$, $22.0,21.0,13.7$; MS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}(\%)=328.2(100)[\mathrm{M}+\mathrm{Na}]^{+} . \mathbf{I R} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2922,1784$, 1680, 1384, 1358, 1286, 1218, 1111, 1038, 806, 756, 717; HRMS (ESI ${ }^{+}$) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 306.1164$, Found: 306.1172. (Z)-isomer: $22.9 \mathrm{mg}, 25 \%$ yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, 1.58-1.46 (m, 2 H), $0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,152.4,146.6$, $136.6,131.0,129.8,129.5,129.0,62.2,43.0,31.8,21.6,21.0,13.8 ; \operatorname{MS}(E S I): m / z(\%)=328.2$
(100) $[\mathrm{M}+\mathrm{Na}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,2924,2871,1783,1676,1523,1443,1384,1343,1186$, 1117, 1007, 807, 754; HRMS (ESI ${ }^{+}$: m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$306.1164, Found: 306.1161 .

3-(2-(p-tolylthio)hept-2-enoyl)oxazolidin-2-one (3b): $69.8 \mathrm{mg}, 73 \%$ total yield; (E)-isomer: $48.0 \mathrm{mg}, 50 \%$ yield; colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2$ H), $6.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,151.9,144.9,136.9,130.8,130.1$, $129.7,126.3,62.0,42.3,30.8,30.7,22.2,21.0,13.8 ; \mathbf{M S}(E S I): m / z(\%)=342.2(100)[\mathrm{M}+\mathrm{Na}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2964,2929,2860,1782,1686,1495,1392,1346,1280,1197,1116,1038,880$, 755; HRMS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$342.1140, Found: 342.1152. (Z)isomer: $21.8 \mathrm{mg}, 23 \%$ yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2$ H), $7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,152.4,146.8,136.5,131.0,129.7,129.4$, $128.8,62.1,43.0,30.3,29.6,22.3,20.9,13.8 ; \mathbf{M S}(E S I): m / z(\%)=342.2(100)[\mathrm{M}+\mathrm{Na}]^{+} . \operatorname{IR} v$ $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2957,2924,2871,1785,1681,1492,1383,1359,1312,1218,1119,1038,807,757$; HRMS (ESI ${ }^{+}$: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$342.1140, Found: 342.1166.

3-(2-(p-tolylthio)dec-2-enoyl)oxazolidin-2-one (3c): 69.2 $\mathrm{mg}, 64 \%$ total yield; (\boldsymbol{E})-isomer: $46.2 \mathrm{mg}, 43$ \% yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.50-1.41(m, 2 H$), 1.35-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.2,151.8,144.9,137.0,130.9,130.2,129.7,126.3,62.0,42.3,31.7,31.0,29.1,29.0,28.7,22.6$, 21.0, 14.0; MS (ESI):m/z (\%) = $384.3(100)[\mathrm{M}+\mathrm{Na}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2930,2873,1784$, 1681, 1492, 1386, 1364, 1302, 1205, 1068, 807, 768; HRMS (ESI ${ }^{+}$) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$
$\left([\mathrm{M}+\mathrm{H}]^{+}\right)$362.1790, Found: 362.1782. (Z)-isomer: $23.0 \mathrm{mg}, 21 \%$ yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.42(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,152.4$, $147.1,136.5,131.1,129.8,129.4,128.8,62.1,43.0,31.7,29.9,29.2,29.0,28.2,22.6,21.0,14.1$; MS (ESI):m/z $(\%)=384.3(100)[\mathrm{M}+\mathrm{Na}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2922,2871,1783,1676$, 1532, 1455, 1382, 1364, 1288, 1076, 856, 807, 766; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 362.1790$, Found: 362.1785.

3-(5-phenyl-2-(p-tolylthio)pent-2-enoyl)oxazolidin-2-one (3d): $71.5 \mathrm{mg}, 65 \%$ total yield; (E)-isomer: $48.2 \mathrm{mg}, 44 \%$ yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.31-7.16 (m, 7 H), $6.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3$ H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,151.8,142.7,140.6,137.2,130.4,130.3,129.7,128.4$, 128.3, 127.4, 126.1, 62.0, 42.3, 34.7, 32.5, 21.0; MS (ESI):m/z (\%) = $390.2(100)[\mathrm{M}+\mathrm{Na}]^{+}$. IR v $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2923,2873,1778,1682,1543,1443,1376,1352,1254,1068,854,754$; HRMS (ESI^{+}): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 390.1140$, Found: 390.1158 . (Z)-isomer: 23.3 mg , 21% yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 5$ H), $7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.52(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.80-2.77 (br, 4 H), $2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,152.4,144.7,140.8$, $136.8,130.7,129.8,129.7,128.4,126.1,62.2,42.9,34.2,31.4,21.0 ;$ MS $(E S I): m / z(\%)=390.2$ (100) $[\mathrm{M}+\mathrm{Na}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2963,2921,2872,1780,1677,1523,1455,1368,1342,1233$, 1118, 854, 756; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$390.1140, Found: 390.1153.

(S)-4-benzyl-3-(2-(p-tolylthio)hex-2-enoyl)oxazolidin-2-one (3e): $92.5 \mathrm{mg}, 78 \%$ total yield; (\boldsymbol{E})-isomer: $59.1 \mathrm{mg}, 50$ \% yield; colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{br}$,
$1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{br}, 1 \mathrm{H}), 2.54(\mathrm{br}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.58-$ $1.47(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,151.8,144.5,137.1$, $135.1,130.7,130.3,129.7,129.3,128.9,127.3,126.9,66.2,55.1,37.6,32.9,22.0,21.0,13.8 ;$ MS (ESI):m/z $(\%)=396.3(100)[M+H]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2934,2862,1788,1674,1438$, 1352, 1311, 1268, 1204, 1007, 856, 754, 701; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 418.1453$, Found: 418.1461 . (Z)-isomer: $33.4 \mathrm{mg}, 28 \%$ yield; white solid; mp 121$122{ }^{\circ} \mathrm{C}$ (n-hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.06(\mathrm{~m}$, $4 \mathrm{H}), 6.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.12\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=\right.$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.9,152.4,146.3,136.7,135.1,130.9,129.8,129.7,129.6,129.3$, $128.9,127.2,66.4,55.5,37.3,31.9,21.6,21.0,13.8 ; \mathbf{M S}(E S I): m / z(\%)=396.3(100)[M+H]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2957,2932,2854,1790,1678,1493,1454,1352,1297,1279,1218,1089,813$, 753, 700; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$418.1453, Found: 418.1475. Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$: C 69.84, H 6.37, N 3.54. Found: C 69.92, H 6.55, N 3.66.

Crystal data for $\boldsymbol{Z}-\mathbf{3 e}: \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S} ; \mathrm{M}=395.50$; Monoclinic'; space group $P 2_{1}$; final R indices $[I>2 \sigma(I)]: R_{1}=0.0429$, $w R_{2}$ $=0.1192, R$ indices(all data): $R_{1}=0.0489, w R_{2}=0.1234, a=$ $13.5980(8) \AA, b=5.7831(3) \AA, c=14.8716(8) \AA ; \alpha=90^{\circ}, \beta$ $=111.469(2)^{\circ}, \gamma=90^{\circ} ; V=1088.34(10) \AA^{3} ; T=296 \mathrm{~K} ; \mathrm{Z}=2 ;$ reflection measured/independent: 7583/3727 ($R_{\text {int }}=0.026$), number of observations $[I>2 \sigma(I)]$: 3350, parameters: 255 . CCDC-1432338 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

(S)-4-phenyl-3-(2-(p-tolylthio)hex-2-enoyl)oxazolidin-2-one (3f):
$81.3 \mathrm{mg}, 71 \%$ total yield; (E)-isomer: $45.8 \mathrm{mg}, 40 \%$ yield; colorless oil; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.12(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H})$, $0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7$, $152.1,146.4,138.1,136.5,130.9$,
$129.6,129.5,128.9,128.5,126.5,125.9,69.9,57.5,32.7,21.9,21.0,13.7 ;$ MS (ESI):m/z (\%) $=$ $382.3(100)[\mathrm{M}+\mathrm{H}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,2928,2861,1788,1687,1492,1382,1320,1197$, 1100, 1044, 807, 713, 699; HRMS (ESI ${ }^{+}$: m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$404.1296, Found: 404.1321. (Z)-isomer: $35.5 \mathrm{mg}, 31 \%$ yield; white solid; mp 93-94 ${ }^{\circ} \mathrm{C}(n-$ hexane/ethylacetate); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.00$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.59(\mathrm{t}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.55-$ $1.44(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,152.8,148.7$, 137.6, $136.2,131.2,129.8,129.4,128.9,126.0,69.9,58.2,32.0,21.6,21.0,13.8 ; \mathbf{M S}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}(\%)=$ $382.3(100)[\mathrm{M}+\mathrm{H}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960$, 2932, 2871, 1790, 1686, 1511, 1459, 1378, 1321, 1115, 1034, 854, 723; HRMS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$404.1296, Found: 404.1323. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$: C 69.26, H 6.08, N 3.67. Found: C 69.26, H 6.13, N 3.76.

(Z)-3-(3-phenyl-2-(p-tolylthio)but-2-enoyl)oxazolidin-2-one (Z-3g): $68.7 \mathrm{mg}, 65 \%$ yield; white solid; mp $114-115{ }^{\circ} \mathrm{C} \quad(n-$ hexane/ethylacetate); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.29(\mathrm{~m}, 5$ H), $7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{~b}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,151.8$, $145.2,140.5,137.4,131.6,130.0,129.5,128.1,127.9,127.6,123.8,61.9,42.3,23.5,21.1 ;$ MS (ESI):m/z $(\%)=354.2(100)[\mathrm{M}+\mathrm{H}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2922,2871,1775,1682,1533$, 1448, 1367, 1320, 1117, 1034, 1006, 856, 754; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$376.0983, Found: 376.0997. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$: C 67.97, H 5.42, N 3.96 . Found: C 68.02, H 5.51, N 4.04.

Crystal data for $\boldsymbol{Z} \mathbf{- 3} \mathbf{g}: \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}=353.42$, Triclinic, space group $P-1$, final R indices $[I>2 \sigma(I)]: R_{1}=0.0417, w R_{2}=0.1127, \mathrm{R}$ indices (all data): $R_{1}=0.0572, w R_{2}=0.1248, a=7.326(5) \AA, b=$ 10.134(7) $\AA, c=12.489(8) \AA, \alpha=80.774(11)^{\circ}, \beta=82.540(12)^{\circ}, \gamma=$ 8
$77.770(11)^{\circ}, V=890.0(10) \AA^{3}, T=296 \mathrm{~K}, \mathrm{Z}=2$, reflection measured/independent: 4938/3122 $\left(R_{\text {int }}=0.021\right)$, number of observations $[I>2 \sigma(I)]: 2417$, parameters: 228. CCDC-1422307 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

(Z)-ethyl carboxylate (E-3h): $\quad 78.2 \mathrm{mg}, 64 \%$ yield; colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1$ H), $7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), $6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.7,161.1,149.6,138.0,136.9,133.7,130.3,129.7,129.2,129.1$, $126.9,126.5,122.8,121.6,115.2,113.9,61.2,32.7,21.8,20.7,14.3,14.0 ;$ MS (ESI):m/z (\%) $=$ $408.3(100)[\mathrm{M}+\mathrm{H}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2959,2930,1719,1688,1540,1444,1397,1378,1298$, 1203, 1147, 805, 747; HRMS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 430.1453$, Found: 430.1489.

(E)-N-benzyl-2-(p-tolylthio)- N-tosylhex-2-enamide ($\boldsymbol{E}-3 \mathbf{i}$): 94.3 mg , 66% yield; white solid; mp $96-97{ }^{\circ} \mathrm{C}$ (n-hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.13$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.19-$ $1.09(\mathrm{~m}, 2 \mathrm{H}), 0.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,145.2,144.3,137.3$, $136.8,135.7,130.6,129.7,129.2,129.0,128.7,128.4,127.5,127.4,127.1,50.2,32.4,21.7,21.6$, 21.1, 13.5; MS (ESI):m/z (\%) = 502.2 (100) $[\mathrm{M}+\mathrm{Na}]^{+} . \mathbf{I R} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2956,2927,2849,1680$, 1596, 1494, 1455, 1343, 1164, 811, 750, 708; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$502.1487, Found: 502.1514. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C 67.61, H 6.09, N 2.92 . Found: C 67.53, H 6.11, N 2.87.

Crystal data for $\boldsymbol{E - 3 i}: \mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}_{2} ; \mathrm{M}=479.63$; Monoclinic; space group $P 2_{1} / c$; final R indices 9
$[I>2 \sigma(I)]: R_{1}=0.0596, w R_{2}=0.1564, R$ indices(all data): $R_{1}=0.0837, w R_{2}=0.1731, a=12.8698(16)$ $\AA, b=13.2620(15) \AA, c=15.0271(18) \AA ; \beta=92.583(4)^{\circ} ; V=2562.2(5) \AA^{\circ} ; T=296 \mathrm{~K} ; \mathrm{Z}=4 ;$ reflection measured/independent: 17942/4495 ($R_{\mathrm{int}}=0.049$), number of observations $[I>2 \sigma(I)]$: 3272, parameters: 295 . CCDC-1432339 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

(E)-N-benzyl- N-(methylsulfonyl)-2-(p-tolylthio)hex-2-enamide ($E-3 \mathrm{j}$):
$70.1 \mathrm{mg}, 58 \%$ yield; colorless oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$
$7.20(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}$, $2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}$, $2 \mathrm{H}), 0.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,144.0,138.1,136.4,131.4$, 129.9, 128.6, 127.7, 127.6, 127.4, 49.4, 41.8, 32.6, 21.8, 21.1, 13.6; MS (ESI):m/z (\%) = 426.2 (100) $[\mathrm{M}+\mathrm{Na}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2964,2926,2867,1683,1602,1488,1400,1353,1164,856$, 756, 711; HRMS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$426.1174, Found: 426.1234.

(E)-N-benzyl-2-((4-(tert-butyl)phenyl)thio)- N-tosylhex-2-enamide (\boldsymbol{E}-3ib): $106.3 \mathrm{mg}, 68 \%$ yield; white solid; $\mathrm{mp} 71-72{ }^{\circ} \mathrm{C}(n-$ hexane/ethylacetate); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=8.4$ Hz, 2 H), 7.32-7.23 (m, 5 H), 7.21-7.16 (m, 4 H), 7.14-7.09 (m, 2 H), $6.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.24-$ $1.12(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,150.4,145.9,144.4$, $136.6,135.9,130.1,129.8,129.2,128.6,128.4,127.6,127.5,126.8,126.0,50.3,34.5,32.5,31.2$, 21.7, 21.6, 13.6; MS (ESI):m/z (\%) = $544.2(100)[\mathrm{M}+\mathrm{Na}]^{+} . \mathbf{I R} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,2869,1673$, 1497, 1455, 1361, 1341, 1169, 1117, 822, 756, 704; HRMS (ESI ${ }^{+}$) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$544.1956, Found: 544.1991. Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C 69.06, H 6.76, N 2.68 . Found: C 69.14, H 6.74, N 2.74.

(E)- N -benzyl- N -tosyl-2-((4-(trifluoromethyl)phenyl)thio)hex-2enamide (E-3ic): 84.9 mg , 53% yield; white solid; mp $142-143{ }^{\circ} \mathrm{C}$ 10
(n-hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 1.80(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{q}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,150.7,144.8,139.6,136.5,135.4,129.2,128.5,128.4,127.8,127.7,127.5$, $125.5(\mathrm{q}, \mathrm{J}=3.6 \mathrm{~Hz}), 124.3,122.6,50.0,32.7,21.6,21.4,13.6 ; \mathbf{M S}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}(\%)=556.2(100)$ $[\mathrm{M}+\mathrm{Na}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2956,2921,1682,1602,1498,1454,1330,1184,1104,829,809$, 784, 701; HRMS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$556.1204, Found: 556.1235; Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C 60.77, H 4.91, N 2.62. Found: C 60.82, H 4.88, N 2.79.

(E)-N-benzyl-2-((4-chlorophenyl)thio)- N-tosylhex-2-enamide (E 3id): $82.2 \mathrm{mg}, 55 \%$ yield; white solid; mp $128-129{ }^{\circ} \mathrm{C} \quad(n-$ hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 4 \mathrm{H})$, $6.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 2 \mathrm{H})$, $0.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,147.7$, 144.8, 136.7, 135.5, 132.9, $131.9,130.6,129.1,128.9,128.6,128.5,127.6,127.5,125.8,50.0,32.6,21.7,13.6 ;$ MS (ESI):m/z $(\%)=500.3(100)[\mathrm{M}+\mathrm{H}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,2871,1683,1474,1360,1169,1089,1009$, 811, 756, 705; HRMS (ESI $): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClNO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 522.0940$, Found: 522.0972. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClNO}_{3} \mathrm{~S}_{2}$: C 62.45 , H 5.24, N 2.80. Found: C 62.44 , H 5.23, N 2.91 .

(E)-N-benzyl-2-((4-bromophenyl)thio)- N-tosylhex-2-enamide (E 3ie): $99.4 \mathrm{mg}, 61 \%$ yield; white solid; $\mathrm{mp} 127-128{ }^{\circ} \mathrm{C}(n-$ hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,148.0$, $144.8,136.7,135.5,132.7,131.8,130.8,129.1,128.6,128.5,127.6,127.5,125.6,120.9,50.0$, 32.6, 21.8, 21.6, 13.6; MS (ESI):m/z $(\%)=544.2(100)[\mathrm{M}+\mathrm{H}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2959$, 2929, 2869, 1683, 1471, 1359, 1169, 1085, 1005, 811, 756, 704; HRMS (ESI ${ }^{+}$: m/z calcd. for
$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$566.0435, Found: 566.0464. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{3} \mathrm{~S}_{2}$: C 57.35, H 4.81, N 2.57. Found: C 57.29, H 4.68, N 2.63.

(E)- N -benzyl-2-((3-fluorophenyl)thio)- N-tosylhex-2-enamide (E-3if): $86.4 \mathrm{mg}, 57 \%$ yield; white solid; mp $73-74{ }^{\circ} \mathrm{C}$ (n-hexane/ethylacetate);
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.22(\mathrm{~m}$, $5 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.74(\mathrm{~m}, 2 \mathrm{H})$, $6.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{q}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 2 \mathrm{H})$, $0.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,162.5(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 149.1$, 144.6, 136.7, $136.2(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 135.4,129.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 129.1,128.6,128.5,127.6,127.5$, $125.1,124.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 50.0,32.6,21.6,21.5$, 13.6; MS (ESI):m/z (\%) = $484.2(100)[\mathrm{M}+\mathrm{H}]^{+} . \mathbf{I R} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2930,1677,1598,1577$, 1473, 1454, 1342, 1174, 1117, 943, 875, 766; HRMS (ESI ${ }^{+}$: m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FNO}_{3} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$506.1236, Found: 506.1263. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FNO}_{3} \mathrm{~S}_{2}$: C 64.57, H 5.42, N 2.90. Found: C 64.33, H 5.51, N 3.02.

(E)-N-benzyl-2-((2-bromophenyl)thio)- N-tosylhex-2-enamide (\boldsymbol{E}-3ig): $102.4 \mathrm{mg}, 63 \%$ yield; white solid; $\mathrm{mp} 123-124{ }^{\circ} \mathrm{C}$ (n-hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.15\left(\mathrm{dd}, J_{1}=1.2 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.92\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 2 \mathrm{H})$, $0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,151.0,144.4,136.7,135.6,135.3$, $132.5,129.6,129.1,128.5,127.6,127.5,127.4,127.1,124.5,121.6,50.0,32.7$ 21.6, 13.6; MS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}(\%)=544.2(100)[\mathrm{M}+\mathrm{H}]^{+} . \mathbf{I R} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2961,2930,2871,1679,1448,1351$, 1186, 1169, 1115, 1089, 1018, 943, 757; HRMS (ESI ${ }^{+}$: m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 566.0435, Found: 566.0449. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{3} \mathrm{~S}_{2}$: C $57.35, \mathrm{H} 4.81, \mathrm{~N} 2.57$. Found: C 57.47, H 4.80, N 2.69 .

3ih): $105.3 \mathrm{mg}, 71 \%$ yield; white solid; $\mathrm{mp} 67-68{ }^{\circ} \mathrm{C}$ (n-hexane/ethylacetate); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2$ H), 6.88-6.84(m, 1 H$), 5.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}), 1.74(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,144.5,144.3,136.8,136.0,135.6,135.2,131.7,131.2,130.1,129.0,128.5,128.4$, $128.2,127.5,126.3,50.2,32.4,21.8,21.6,20.7,19.8,13.5 ; \mathbf{M S}(E S I): m / z(\%)=494.3(100)[M+$ $\mathrm{H}]^{+}$. IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2960,2926,2871,1683,1596,1489,1454,1344,1195,1184,1165,1115$, 1088, 943, 802, 755; HRMS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$516.1643, Found: 516.1679. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C 68.12, H 6.33, N 2.84. Found: C 68.08, H 6.44, N 2.91.

(E)- N-benzyl-2-((2,4-dimethylphenyl)thio)- N -tosylhex-2-enamide (E 3ii): $110.2 \mathrm{mg}, \quad 74 \%$ yield; white solid; $\mathrm{mp} 81-82{ }^{\circ} \mathrm{C} \quad(n-$ hexane/ethylacetate); ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1$ H), $6.91(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.19-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,144.4,142.7$, 139.4, 137.9, 136.8, 135.8, 132.4, 131.2, 129.0, 128.7, 128.4, 127.6, 127.5, 127.4, 127.3, 126.9, 50.4, 32.4, 21.8, 21.6, 21.0, 20.3, 13.5; MS (ESI):m/z $(\%)=494.2(100)[\mathrm{M}+\mathrm{H}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2952,2925,2866,1675,1597,1456$, 1440, 1354, 1312, 1184, 1165, 1077, 828, 750, 703; HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$516.1643, Found: 516.1675. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C} 68.12$, H 6.33, N 2.84 . Found: C 68.34, H 6.48, N 2.71.

3.3. Large-scale experiments

The reaction of ynamide $\mathbf{1 i}(5.0 \mathrm{mmol}), \mathbf{2 a}$ (2.0 equiv) and DMSO $(25 \mathrm{~mL})$ was carried out at rt under N_{2} atmosphere for 2 h , and the progress of the reaction was monitored by TLC analysis. The
reaction mixture was quenched by adding EtOAc (30 mL) and water (30 mL). The water phase was extracted twice with EtOAc (20 mL), and the combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration gave the crude product, which was purified by chromatography on silica gel (PE/EtOAc, 10:1) to afford $\boldsymbol{E}-\mathbf{3 i}(1.50 \mathrm{~g}, 63 \%$ yield $)$ as a white solid.

The reaction of ynamide $\mathbf{1 i}(5.0 \mathrm{mmol}), \mathbf{2 g}$ (2.0 equiv) and DMSO (25 mL) was carried out at rt under N_{2} atmosphere for 2 h , and the progress of the reaction was monitored by TLC analysis. The reaction mixture was quenched by adding EtOAc $(30 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$. The water phase was extracted twice with EtOAc (20 mL), and the combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration gave the crude product, which was purified by chromatography on silica gel (PE/EtOAc, 10:1) to afford \boldsymbol{E} - $\mathbf{3 i g}(1.66 \mathrm{~g}, 61 \%$ yield $)$ as a white solid.

3.4. Synthesis of α-selanyl acrylamides

In a 10 mL flame-dried Schlenk tube were placed ynamide $\mathbf{1 i}(0.3 \mathrm{mmol})$, PhSeCl (2.0 equiv) and $\mathrm{DMSO}(2.0 \mathrm{~mL})$ under nitrogen condition. The reaction mixture had been stirred at rt for 1 hour while was monitored with TLC analysis. The reaction mixture was quenched by adding EtOAc and water. The combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the desired product (\boldsymbol{E})- \boldsymbol{N}-benzyl-2-(phenylselanyl)- \boldsymbol{N}-tosylhex-2-enamide (\boldsymbol{E}-4ia): $86.2 \mathrm{mg}, 56 \%$ yield; white solid; mp $68-69{ }^{\circ} \mathrm{C}$ (n-hexane/ethylacetate); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.6,147.2,144.5,136.6,135.7,132.0,129.9,129.2,129.0,128.5,128.4$, $127.6,127.5,127.2,121.4,50.2,33.3,21.6,21.5,13.5 ; \mathbf{M S}(E S I): m / z(\%)=514.2(100)[\mathrm{M}+\mathrm{H}]^{+}$.

IR $v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2964,2935,1689,1346,1182,1163,1120,856,740 ;$ HRMS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SSe}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$536.0775, Found: 536.0805. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{SSe}$: C 60.93, H 5.31, N 2.73 . Found: C 60.97, H 5.53, N 2.87.

3.5. Synthesis of α-tellanyl acrylamides.

1) Preparation of the phenyltellury l bromide solution: Bromine (101.6 mg , 0.6 mmol) was added to a flask containing diphenyl ditelluride $(245.5 \mathrm{mg}$, $0.6 \mathrm{mmol})$ in 1,2 -dichloroethane $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at this temperature. 2) In a 10 mL flame-dried Schlenk tube were placed ynamide $\mathbf{1 i}(0.3 \mathrm{mmol}), \mathrm{PhTeBr}(2.0$ equiv, in DCE) and DMSO (2.0 mL) under nitrogen condition. The reaction mixture had been stirred at rt for 1 hour while was monitored with TLC analysis. The reaction mixture was quenched by adding EtOAc and water. The combined organic layers were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the desired product (\boldsymbol{E})- \boldsymbol{N}-benzyl-2-(phenyltellanyl)- \boldsymbol{N}-tosylhex-2-enamide (\boldsymbol{E}-5ia): $69.4 \mathrm{mg}, 41 \%$ yield; yellow oil; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.18 (m, 8 H$), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $2.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,147.7,144.5,138.3,136.5,136.3,129.4,129.3,128.5,128.4,128.1,127.7,113.9$, $113.8,50.1,38.0,21.6,21.3,13.8 ; \mathbf{M S}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}(\%)=564.2(100)[\mathrm{M}+\mathrm{H}]^{+} . \operatorname{IR} v\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 1690, 1666, 1594, 1535, 1495, 1444, 1281, 1169, 879, 745; HRMS (ESI ${ }^{+}$) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{STe}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$586.0672, Found: 586.0706.

4. Experiment for Mechanistic Study

In a 10 mL flame-dried Schlenk tube were placed ynamide $\mathbf{1 i}(0.3 \mathrm{mmol})$, p-tolylsulfenylchloride $\mathbf{2 a}$ (2.0 equiv) and DMSO (2.0 mL) under nitrogen condition. The reaction mixture was stirred at rt for 1 hour while being monitored with TLC analysis. The reaction mixture was detected by GC-MS analysis.

File: D: \MassHunter\shoudong\huanghai1130.D
Operator:
Acquired: 30 Nov 2015 09:13 using AcqMethod huanghai.m Instrument: Agilent 5977 GCMS
Sample Name:
Misc Info:
Vial Number: 1

Data File：D：\YPCS \huanghai1130．D
样品：

Signal Number： 2 1．706 Min Area：812772 Area \％： 2.64

Three best match records in date base	Refl\＃	CAS $\#$ M	Matching degree
C：Idatabase\DEMO．L			
1 Dimethyl sulfide	340	$000075-18-3$	97
2 Dimethyl sulfide	339	$000075-18-3$	96
3 Dimethyl sulfide	338	$000075-18-3$	95

＇Additive：TEMPO，E－3i Yield：60\％
Additive：BHT，E－3i Yield：63\％
In a 10 mL flame－dried Schlenk tube were placed ynamide $\mathbf{1 a}(0.3 \mathrm{mmol})$ ，p－tolylsulfenylchloride $\mathbf{2 a}$（2．0 equiv），

Additive（ 2.0 equiv）and DMSO（ 2.0 mL ）under nitrogen condition．The reaction mixture was stirred at rt for 1 hour while being monitored with TLC analysis．The reaction mixture was quenched by adding EtOAc and water．

The combined organic layers were washed by brine，dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ，and concentrated under reduced pressure．

The residue was purified by silica gel column chromatography to give $\boldsymbol{E - 3 i}$ ．

References

[1] Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, Org. Lett. 2004, 6, 1151
[2] H. Hofmeister, K. Annen, H. Laurent, R. Wiechert, Angew. Chem. 1984, 96, 720; Angew. Chem., Int. Ed. 1984, 23, 727.
[3] a) M. Iwasaki, T. Fujii, A. Yamamoto, K. Nakajima, Y. Nishihara, Chem. Asian J. 2014, 9, 58; b) M. Iwasaki, T. Fujii, K. Nakajima, Y. Nishihara, Angew. Chem. 2014, 126, 14100; Angew. Chem. Int. Ed. 2014, 53, 13880.

NMR Spectra

Z-3e

10

E-3ig

L（し（

E-3ii

