Supporting Information

Copper-Mediated Aerobic (Phenylsulfonyl)difluoromethylation of Arylboronic Acids with Difluoromethy Phenyl Sulfone

Xinjin Li,^{*a,b} Jingwei Zhao*,^{*b*} Mingyou Hu,^{*b*} Dingben Chen,^{*b*} Chuanfa Ni,^{*b*} Limin Wang^{**a*} and Jinbo Hu^{**b*}</sup>

^aKey Laboratory of Advanced Materials, Institute of Fine Chemicals East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

E-mial: wanglimin@ecust.edu.cn.

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry Chinese

Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China

E-mial: jinbohu@sioc.ac.cn.

Table of Contents

1. General Information
2. Preparation of "PhSO ₂ CF ₂ Cu" Generated from PhSO ₂ CF ₂ H
3. Transformation of "[(PhSO ₂ CF ₂) ₂ Cu] ⁻ " into "PhSO ₂ CF ₂ Cu"
4. The Stability of "PhSO ₂ CF ₂ Cu" under Different Conditions5
5.(Phenylsulfonyl)difluoromethylation of Arylboronic Acids with
"PhSO ₂ CF ₂ Cu" Generated from PhSO ₂ CF ₂ H6
6. Synthesis of Difluoromethylated Aromatics by Reductive Desulfonylation.21
7. References
8. ¹⁹ F, ¹ H and ¹³ C NMR Spectra of isolated Products

1. General Information

Commercial reagents were used without further purification. DMF and NMP were distilled over CaH₂, and stored over activated molecular sieve. CuCl and CuI were purified according to reported procedures.^[1] Difluoromethyl phenyl sulfone (1) was prepared using known procedure.^{[2] 1}H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz NMR spectrometer. ¹H NMR spectroscopy chemical shifts were determined relative to internal Me₄Si (TMS) at δ 0.0 or to the signal of the residual protonated solvent CDCl₃ δ 7.26. ¹³C NMR spectroscopy chemical shifts were determined relative to internal TMS at δ 0.0. For the isolated compounds, ¹⁹F NMR spectroscopy chemical shifts were determined relative to CFCl₃ at δ 0.0; for the reaction mixtures, ¹⁹F NMR spectroscopy chemical shifts were determined relative to PhCF₃ at δ –62.0. Data for ¹H, ¹³C and ¹⁹F NMR spectra are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). FT-IR spectra were obtained with a Nicolet 380 spectrophotometer. Mass spectra were obtained on an Agilent LC-MS 1100 instrument. High resolution mass data were recorded on a Thermo Fisher Scientific LTQ FT Ultra instrument. GC-MS data were recorded on a Finnigan 4021 instrument. Elemental analysis was performed with Elementer Vario EL III instrument. Melting points were recorded on a SGW X-4 melting point apparatus and are uncorrected. All reactions were monitored by TLC or ¹⁹F NMR spectroscopy.

2. Preparation of "PhSO₂CF₂Cu" Generated from PhSO₂CF₂H

$$\frac{\text{CuCl (0.2 mmol)}}{\text{PhSO}_2\text{CF}_2\text{H}} \xrightarrow{t\text{BuONa (2.0 equiv)}} \text{PhSO}_2\text{CF}_2\text{Cu}^*$$
1 (1.6 equiv) DMF, -20°C, 30 min

In a glovebox, CuCl (20 mg, 0.2 mmol) and ^{*t*}BuONa (38.5 mg, 0.4 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (1 mL) was added and

stirred vigorously at room temperature for 10 min, and then difluoromethyl phenyl sulfone (1) (45 μ L, 0.32 mmol) was added at -20° C for 30 min under an argon atmosphere. The reaction was monitored by ¹⁹F NMR spectroscopy using PhCF₃ (25 μ L) as an internal standard (Figure S1).

Figure S1. Preparation of "PhSO₂CF₂Cu" generated from PhSO₂CF₂H

3. Transformation of "[(PhSO₂CF₂)₂Cu]⁻" into [PhSO₂CF₂Cu]

In a glovebox, CuCl (20 mg, 0.2 mmol) and 'BuONa (38.5 mg, 0.4 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (1 mL) was added and stirred vigorously at rt for 10 min, and then difluoromethyl phenyl sulfone (1) (45 μ L, 0.32 mmol) was added at –20°C for 30 min under an argon atmosphere. The reaction was monitored by ¹⁹F NMR spectroscopy using PhCF₃ (25 μ L,) as an internal standard (Figure S2, **a**). The same sample was monitored again by ¹⁹F NMR spectroscopy at rt after 5 min (Figure S2, **b**).

Figure S2. Transformation of "[(PhSO₂CF₂)₂Cu]⁻" into "PhSO₂CF₂Cu"

4. The Stability of "PhSO₂CF₂Cu" under Different Conditions

$$\frac{\text{CuCl (0.5 mmol)}}{\text{PhSO}_2\text{CF}_2\text{H}} \xrightarrow{t\text{BuONa (2.0 equiv)}} \text{"PhSO}_2\text{CF}_2\text{Cu"}$$
1 (1.6 equiv)
$$\frac{18 \text{-crown-6 (1.0 equiv)}}{\text{DMF, -20^{\circ}\text{C, 30 min}}}$$

In a glovebox, CuCl (50 mg, 0.5 mmol, 1.0 equiv) and ^{*t*}BuONa (96 mg, 1.0 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (2 mL) was added and stirred vigorously at rt for 20 min, and then difluoromethyl phenyl sulfone (**1**) (113 μ L, 0.8 mmol) and 18-crowm-6 (132 mg, 0.5 mmol) was added at -20°C for 30

min under an argon atmosphere. The reaction was monitored at rt after 5 min by ¹⁹F NMR spectroscopy using PhCF₃ (25.5 μ L) as an internal standard (81% yield for "PhSO₂CF₂Cu"). The same sample was stored in refrigerator (about -12°C) and was monitored again by ¹⁹F NMR spectroscopy after 5 h, 13 h, 24 h, 37 h, 61 h, 109 h (Figure S3).

Figure S3. The stability of "PhSO₂CF₂Cu" under different conditions

5. (Phenylsulfonyl)difluoromethylation of Arylboronic Acids with "PhSO₂CF₂Cu" Generated from PhSO₂CF₂H

5.1 Screening of Reaction Conditions

In a glovebox, CuCl (50 mg, 0.5 mmol) and ^{*t*}BuONa (96 mg, 1.0 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (2 mL) was added and stirred vigorously at rt for 20 min, and then difluoromethyl phenyl sulfone (1) (113 μ L, 0.8 mmol) was added at -20°C for 45 min under an argon atmosphere. The pregenerated "PhSO₂CF₂Cu" and additive were added respectively into (2-(trifluoromethoxy)phenyl)boronic acid (**2a**) (purity 98%, 42 mg, 0.2 mmol, 1.0 equiv) in DMF (2 mL) for 4 h under an air atmosphere. The reaction mixture was monitored by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

	PhSO ₂ CF ₂ H (1)			
	DMF CuCl -20 °C ^t BuONa			
	B(OH) ₂ "PhSO ₂ CF ₂ Cu"	CF ₂ SO ₂	Ph Cl	
	additive, DMF		+	
2a air, temp., $4h$ $3a$ B				
entry	additive (equiv)	temp.	yield ^{<i>a</i>} of $3a(B)(\%)$	
1	_	0 °C	16 (28)	
2	-	rt	67 (18)	
3	Et ₃ N 3HF (0.8)	rt	0 (0)	
4	H ₂ O (0.5)	rt	68 (19)	
5	H ₂ O (1.0)	rt	60 (21)	
6	1,10-phen (1.0)	rt	0 (0)	
7^b	18-crowm-6 (2.5)	rt	68 (11)	
8	K ₃ PO ₄ (1.0)	rt	68 (18)	
9	KOAc (1.0)	rt	60 (27)	
10^{c}	Cu(OAc) ₂ (5 mol %)	rt	69 (19)	
11	AgNO ₃ (0.5)	rt	72 (15)	
12	AgNO ₃ (1.0)	rt	73 (10)	
13	$AgNO_3(0.5) + Cu(OAc)_2 H_2O(0.2)$	rt	75 (7)	
14 ^d	$AgNO_3(0.5) + Cu(OAc)_2 H_2O(0.2)$	rt	77 (9)	
15 ^{<i>d</i>}	$AgNO_3(0.6) + Cu(OAc)_2 H_2O(0.3)$	rt	80 (7)	
16^{e}	$AgNO_3(0.6) + Cu(OAc)_2 H_2O(0.3)$	rt	0 (-)	

^{*a*}Yields were determined by ¹⁹F NMR spectroscopy.

^b18-crowm-6 was added after the addition of **1** in the generation of "PhSO₂CF₂Cu".

^{*c*}The reaction was conducted for 3 h and 1 (3.2 equiv) was used.

^{*d*}The reaction was conducted with 0.4 mmol of 2a for 6 h.

^{*e*}The reaction was conducted under argon atmosphere.

5.2 (Phenylsulfonyl)difluoromethylation of Arylboronic Acids with "PhSO₂CF₂Cu" Generated from PhSO₂CF₂H

Method A

Standard procedure for 0.2 mmol scale:

In a glovebox, CuCl (50 mg, 0.5 mmol) and ¹BuONa (96 mg, 1.0 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (2 mL) was added and stirred vigorously at rt for 20 min, and then difluoromethyl phenyl sulfone (1) (113 μ L, 0.8 mmol) was added at -20°C for 45 min under an argon atmosphere. The pregenerated "PhSO₂CF₂Cu", AgNO₃ (20.5 mg, 0.12 mmol), and Cu(OAc)₂ H₂O (12 mg, 0.06 mmol) were added respectively into a solution of arylboronic acid (0.2 mmol, 1.0 equiv) in DMF (2 mL) at rt for 4 h under an air atmosphere. After addition of dichloromethane (5 mL), 1N HCl solution (1 mL), and H₂O (10 mL), the organic layer was separated and the aqueous layer was extracted with dichloromethane (3×5 mL). The combined organic layer was washed with brine (2×10 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

Standard procedure for 0.4 mmol scale:

In a glovebox, CuCl (100 mg, 1.0 mmol) and ^{*t*}BuONa (192 mg, 2.0 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (4 mL) was added and stirred vigorously at rt for 20 min, and then difluoromethyl phenyl sulfone (1) (113 μ L, 1.6 mmol) was added at -20°C for 45 min under an argon atmosphere. The pregenerated "PhSO₂CF₂Cu", AgNO₃ (41 mg, 0.24 mmol), and Cu(OAc)₂ H₂O (24 mg, 0.12 mmol) were added respectively into a solution of arylboronic acid (0.4 mmol, 1.0 equiv) in DMF (4 mL) at rt for 6 h under an air atmosphere. After addition of dichloromethane (10 mL), 1N HCl solution (1.5 mL), and H₂O (10 mL), the organic layer was separated and the aqueous layer was extracted with dichloromethane (3×10 mL). The combined organic layer was washed with brine (2×20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

Method B

Standard procedure:

In a glovebox, CuCl (50 mg, 0.5 mmol) and 'BuONa (96 mg, 1.0 mmol) were added to an oven-dried 10-mL Schlenk tube equipped with a stirring bar. The Schlenk tube was sealed with a septum and brought to the bench. DMF (2 mL) was added and stirred vigorously at rt for 20 min, and then difluoromethyl phenyl sulfone (1) (113 μ L, 0.8 mmol) was added at -20°C for 45 min under an argon atmosphere. The pregenerated "PhSO₂CF₂Cu" was added into a solution of arylboronic acid (0.2 mmol, 1.0 equiv) in DMF (2 mL) at rt for 4 h under an air atmosphere. After addition of dichloromethane (5 mL), 1N HCl solution (1 mL), H₂O (10 mL) and the organic layer was separated and the aqueous layer was extracted with dichloromethane (3×5 mL). The combined organic layer was washed with brine (2×10 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel.

(Note: The generation of "PhSO₂CF₂Cu" is crucial for obtaining all products in good

yields.)

1-(Difluoro(phenylsulfonyl)methyl)-2-(trifluoromethoxy)benzene (3a)

For 0.4 mmol scale, the standard procedure of method A was followed to provide **3a** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (105 mg, 75%). M.p.: 93-95 °C. IR (KBr): 3092, 1609, 1493, 1449, 1341, 1251, 1172, 1061, 945, 773, 763, 598 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.44 (m, 2H, ArH), 7.60-7.64 (m, 3H, ArH), 7.70 (d, *J* = 7.6 Hz, 1H, ArH), 7.78 (t, *J* = 7.4 Hz, 1H), 7.99 (d, *J* = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 119.2 (t, *J* = 21.5 Hz), 120.2 (q, *J* = 257.9 Hz), 120.9 (q, *J* = 1.5 Hz), 121.2 (t, *J* = 287.7 Hz), 126.4, 129.3, 130.8 (t, *J* = 6.9 Hz), 131.0, 132.7, 134.1, 135.5, 147.8 (q, *J* = 1.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -56.6 (s, 3F), -98.4 (s, 2F). MS (ESI, m/z): 369.9 (M+NH₄)⁺, 374.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₄H₁₃O₃NF₅S (M+NH₄)⁺: 370.0527, found: 370.0531.

1-(Difluoro(phenylsulfonyl)methyl)-2-(trifluoromethyl)benzene (3b)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3b** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (44 mg, 65%). M.p.: 117-118 °C. IR (KBr): 3067, 1584, 1448, 1351, 1304, 1284, 1172, 1037, 933, 772, 720, 685, 589, 544 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.64 (t, *J* = 7.6 Hz, 2H, ArH), 7.72-7.74 (m, 2H, ArH), 7.78 (t, *J* = 7.6 Hz, 1H, ArH), 7.90-7.98 (m, 2H, ArH), 8.03 (d, *J* = 7.8 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 121.5 (t, *J* = 288.0 Hz), 122.7 (q, *J* = 272.2 Hz), 125.1 (t, *J* = 22.6 Hz), 127.9 (q, *J* = 6.6 Hz), 129.4, 129.5 (q, *J* = 32.8 Hz), 131.0, 131.7 (t, *J* = 7.7 Hz), 131.8, 132.5, 132.7, 135.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -58.0 (t, *J* = 18.8 Hz, 3F), -94.4 (q, *J* = 19.1 Hz,

2F). MS (ESI, m/z): 353.9 (M+NH₄)⁺, 358.8 (M+Na)⁺. HRMS (ESI): calcd. For $C_{14}H_{10}O_2F_5S$ (M+H)⁺: 337.0311, found: 337.0316.

2-(Difluoro(phenylsulfonyl)methyl)benzaldehyde (3c)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3c** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (39 mg, 66%). M.p.: 102-103 °C. IR (KBr): 3080, 2929, 1696, 1596, 1457, 1340, 1249, 1170, 1064, 939, 823, 761, 687, 595 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (t, *J* = 7.8 Hz, 2H, ArH), 7.72-7.74 (m, 3H, ArH), 7.81 (t, *J* = 7.6 Hz, 1H, ArH), 8.03 (d, *J* = 7.8 Hz, 2H, ArH), 8.18 (d, *J* = 6.0 Hz, 1H, ArH), 10.50 (s, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃): δ 122.6 (t, *J* = 286.6 Hz), 127.1 (t, *J* = 21.5 Hz), 129.0, 129.5 (t, *J* = 8.8 Hz), 129.6, 131.0, 132.0, 132.8, 133.1, 135.9, 136.3, 190.4 (t, *J* = 5.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -92.8 (s, 2F). MS (ESI, m/z): 296.8 (M+H)⁺, 313.9 (M+NH₄)⁺, 318.9 (M+Na)⁺. HRMS (ESI): calcd. For C₁₄H₁₁O₃F₂S (M+H)⁺: 297.0390, found: 297.0391.

2-(Difluoro(phenylsulfonyl)methyl)benzonitrile (3d)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3d** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (41 mg, 70%). M.p.: 149-150 °C. IR (KBr): 3075, 2237, 1579, 1446, 1340, 1287, 1170, 1060, 939, 770, 711, 597, 543 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (t, J = 8.0 Hz, 2H, ArH), 7.71-7.84 (m, 5H, ArH), 8.07 (d, J = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 112.3 (t, J = 3.6 Hz), 116.1, 120.8 (t, J = 287.7 Hz), 128.9 (t, J = 21.8 Hz), 129.6, 130.1 (t, J = 6.5 Hz), 131.2, 131.8, 132.6, 132.7, 135.1, 136.0. ¹⁹F

NMR (376 MHz, CDCl₃): δ –99.6 (s, 2F). MS (ESI, m/z): 293.9 (M+H)⁺, 310.9 (M+NH₄)⁺, 315.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₄H₁₃O₂N₂F₂S (M+NH₄)⁺: 311.0656, found: 311.0660.

1-(Difluoro(phenylsulfonyl)methyl)-2-(methylsulfonyl)benzene (3e)

For 0.2 mmol scale, the standard procedure of method B was followed to provide **3e** by column chromatography on silica gel (petroleum ether/EtOAc, 10:1 to 5:1, v/v) as a white solid (44 mg, 64%). M.p.: 164-165 °C. IR (KBr): 3118, 2937, 1583, 1454, 1353, 1319, 1249, 1169, 1143, 1047, 949, 775, 732, 686, 597 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.29 (s, 3H, CH₃), 7.65 (t, *J* = 7.6 Hz, 2H, ArH), 7.80-7.83 (m, 3H, ArH), 8.01-8.06 (m, 3H, ArH), 8.42-8.46 (m, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 45.0 (t, *J* = 4.3 Hz), 121.6 (t, *J* = 288.6 Hz), 125.3 (t, *J* = 22.6 Hz), 129.5, 131.1, 131.91 (t, *J* = 7.6 Hz), 131.92, 132.3, 133.1, 133.3, 135.8, 141.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -90.9 (s, 2F). MS (ESI, m/z): 346.9 (M+H)⁺, 363.9 (M+NH₄)⁺, 368.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₄H₁₃O₄F₂S₂ (M+H)⁺: 347.0215, found: 347.0218.

1-(Difluoro(phenylsulfonyl)methyl)-2-fluorobenzene (3f)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3f** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (43 mg, 75%). M.p.: 105-106 °C. IR (KBr): 3079, 1614, 1493, 1449, 1340, 1261, 1171, 1106, 1062, 939, 764, 687, 597, 545 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.16-7.20 (m, 1H, ArH), 7.26-7.30 (m, 1H, ArH), 7.55-7.64 (m, 4H, ArH), 7.77 (t, *J* = 7.6 Hz, 1H, ArH), 8.01 (d, *J* = 7.6 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 114.5 (td, ²*J*_{*F*-*C*} = 22.2 Hz, ²*J*_{*F*-*C*} = 10.9 Hz), 117.2 (d, ²*J*_{*F*-*C*} = 21.2 Hz), 121.2 (td, ¹*J*_{*F*-*C*} = 286.6

Hz, ${}^{3}J_{F-C} = 3.7$ Hz), 124.2 (d, ${}^{3}J_{F-C} = 3.6$ Hz), 129.3, 130.2 (t, ${}^{3}J_{F-C} = 6.6$ Hz), 131.0, 132.6, 134.7 (d, ${}^{3}J_{F-C} = 8.7$ Hz), 135.5, 160.7 (dt, ${}^{1}J_{F-C} = 257.4$ Hz, ${}^{3}J_{F-C} = 2.9$ Hz,). 19 F NMR (376 MHz, CDCl₃): δ –99.7 (d, J = 22.9 Hz 2F), –110.8 (m, 1F). MS (ESI, m/z): 303.9 (M+NH₄)⁺, 308.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₃H₁₃O₂NF₃S (M+NH₄)⁺: 304.0610, found: 304.0614.

1-Chloro-2-(difluoro(phenylsulfonyl)methyl)benzene (3g)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3g** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (42 mg, 70%). M.p.: 101-102 °C. IR (KBr): 3084, 1592, 1473, 1453, 1341, 1245, 1166, 1107, 1042, 938, 759, 728, 687, 596, 541 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.41 (m, 1H, ArH), 7.48-7.49 (m, 2H, ArH), 7.62 (t, *J* = 7.8 Hz, 2H, ArH), 7.67 (d, *J* = 8.0 Hz, 1H, ArH), 7.77 (t, *J* = 7.2 Hz, 1H, ArH), 8.00 (d, *J* = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 121.6 (t, *J* = 288.0 Hz), 124.7 (t, *J* = 20.7 Hz), 126.7, 129.4, 131.0, 131.2 (t, *J* = 7.6 Hz), 132.2, 132.8, 133.4, 134.1 (t, *J* = 2.5 Hz), 135.5. ¹⁹F NMR (376 MHz, CDCl₃): δ -97.2 (s, 2F). MS (ESI, m/z): 319.8 (M+NH₄)⁺, 324.7 (M+Na)⁺. HRMS (ESI): calcd. For C₁₃H₁₃O₂NClF₂S (M+NH₄)⁺: 320.0315, found: 320.0318.

1-Bromo-2-(difluoro(phenylsulfonyl)methyl)benzene (3h)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3h** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (49 mg, 71%). M.p.: 119-121 °C. IR (KBr): 3067, 1590, 1450, 1340, 1245, 1164, 1108, 1029, 933, 755, 723, 686, 592 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ

7.37-7.45 (m, 2H, ArH), 7.61 (t, J = 7.6 Hz, 2H, ArH), 7.66-7.72 (m, 2H, ArH), 7.77 (t, J = 7.4 Hz, 1H, ArH), 8.00 (d, J = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 121.4 (t, J = 288.4 Hz), 121.6 (t, J = 2.5 Hz), 126.4 (t, J = 20.8 Hz), 127.3, 129.4, 131.0, 131.5 (t, J = 7.6 Hz), 132.8, 133.4, 135.5, 135.8. ¹⁹F NMR (376 MHz, CDCl₃): δ –96.7 (s, 2F). MS (ESI, m/z): 363.7 (M+NH₄)⁺, 368.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₃H₁₃O₂NBrF₂S (M+NH₄)⁺: 363.9809, found: 363.9813.

1-(Difluoro(phenylsulfonyl)methyl)-2-nitrobenzene (3i)

For 0.2 mmol scale, the standard procedure of method B was followed to provide **3i** by column chromatography on silica gel (petroleum ether/EtOAc, 15:1 to 10:1, v/v) as a white solid (44 mg, 70%). M.p.: 128-129 °C. IR (KBr): 3101, 1543, 1452, 1368, 1253, 1175, 1108, 1058, 939, 853, 765, 686, 599, 540 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.65 (m, 3H, ArH), 7.70-7.75 (m, 2H, ArH), 7.79 (t, *J* = 7.6 Hz, 1H, ArH), 7.91 (d, *J* = 7.2 Hz, 1H, ArH), 8.00 (d, *J* = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 119.4 (t, *J* = 22.9 Hz), 120.4 (t, *J* = 288.0 Hz), 124.3, 129.5, 130.8 (t, *J* = 6.5 Hz), 131.1, 131.4, 132.2, 133.8, 135.9, 149.7. ¹⁹F NMR (376 MHz, CDCl₃): δ –96.0 (s, 2F). MS (ESI, m/z): 335.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₃H₁₀O₄NF₂S (M+H)⁺: 314.0290, found: 314.0293.

1-(Difluoro(phenylsulfonyl)methyl)-3-nitrobenzene (3j)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3j** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (43 mg, 69%). M.p.: 138-140 °C. IR (KBr): 3101, 1628, 1541, 1448, 1358, 1267, 1167, 1066, 978, 712, 595, 544 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (t, *J* = 7.8 Hz,

2H, ArH), 7.74 (t, J = 8.0 Hz, 1H, ArH), 7.81 (t, J = 7.6 Hz, 1H, ArH), 8.02-8.04 (m, 3H, ArH), 8.46 (d, J = 8.4 Hz, 1H, ArH), 8.52 (s, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.6 (t, J = 285.8 Hz), 123.2 (t, J = 6.6 Hz), 127.2, 128.8 (t, J = 23.0 Hz), 129.6, 130.1, 131.0, 131.9, 133.7 (t, J = 5.4 Hz), 135.9, 148.2. ¹⁹F NMR (376 MHz, CDCl₃): δ –102.4 (s, 2F). MS (ESI, m/z): 335.9 (M+Na)⁺. HRMS (ESI): calcd. For C₁₃H₁₃O₄N₂F₂S (M+NH₄)⁺: 331.0555, found: 331.0559.

1-(Difluoro(phenylsulfonyl)methyl)-4-nitrobenzene (3k)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3k** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (38 mg, 61%). M.p.: 153-155 °C. IR (KBr): 3122, 1613, 1537, 1448, 1344, 1272, 1166, 1094, 1065, 858, 731, 685, 594 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (t, *J* = 7.6 Hz, 2H, ArH), 7.83 (t, *J* = 7.4 Hz, 1H, ArH), 7.90 (d, *J* = 8.8 Hz, 2H, ArH), 8.03 (d, *J* = 8.0 Hz, 2H, ArH), 8.37 (d, *J* = 8.8 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.8 (t, *J* = 285.9 Hz), 123.7, 129.4 (t, *J* = 5.8 Hz), 129.6, 131.0, 132.0, 132.8 (t, *J* = 22.3 Hz), 135.9, 150.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -102.7 (s, 2F). MS (ESI, m/z): 335.8 (M+Na)⁺. HRMS (ESI): calcd. For C₁₃H₁₃O₄N₂F₂S (M+NH₄)⁺: 331.0554, found: 331.0559.

5-(Difluoro(phenylsulfonyl)methyl)-2-fluoropyridine (3l)

For 0.4 mmol scale, the standard procedure of method A was followed to provide **31** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (82 mg, 71%). M.p.: 133-134 °C. IR (KBr): 3062, 1601, 1487, 1447, 1397, 1338, 1264, 1169, 1071, 952, 846, 753, 716, 685, 606 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ

7.11 (dd, J = 8.6 Hz, J = 2.6 Hz, 1H, ArH), 7.67 (t, J = 8.0 Hz, 2H, ArH), 7.82 (t, J = 7.6 Hz, 1H, ArH), 8.03 (d, J = 8.0 Hz, 2H, ArH), 8.11-8.15 (m, 1H, ArH), 8.53 (s, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 110.0 (d, ² $J_{F-C} = 37.2$ Hz), 120.7 (t, ¹ $J_{F-C} = 285.1$ Hz), 121.2 (td, ² $J_{F-C} = 23.3$ Hz, ⁴ $J_{F-C} = 4.4$ Hz), 129.6, 131.0, 131.8, 135.9, 141.1 (dt, ³ $J_{F-C} = 9.5$ Hz, ³ $J_{F-C} = 4.7$ Hz,), 148.1 (dt, ³ $J_{F-C} = 16.8$ Hz, ³ $J_{F-C} = 6.6$ Hz,), 165.8 (d, ¹ $J_{F-C} = 244.3$ Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ –61.5 (d, J = 4.1 Hz, 1F), –102.5 (s, 2F). MS (ESI, m/z): 287.8 (M+H)⁺. HRMS (ESI): calcd. For C₁₂H₉O₂NF₃S (M+H)⁺: 288.0296, found: 288.0301.

2-Chloro-5-(difluoro(phenylsulfonyl)methyl)pyridine (3m)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3m** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (49 mg, 81%). M.p.: 137-139 °C. IR (KBr): 3049, 1589, 1461, 1339, 1277, 1168, 1116, 1070, 842, 741, 685, 598 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8.4 Hz, 1H, ArH), 7.64 (t, *J* = 7.8 Hz, 2H, ArH), 7.79 (t, *J* = 7.4 Hz, 1H, ArH), 7.94 (dd, *J* = 8.4 Hz, *J* = 2.0 Hz, 1H, ArH), 8.00 (d, *J* = 8.0 Hz, 2H, ArH), 8.63 (s, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.7 (t, *J* = 285.2 Hz), 122.2 (t, *J* = 23.0 Hz), 124.4, 129.6, 131.0, 131.7, 135.9, 138.1 (t, *J* = 5.1 Hz), 148.9 (t, *J* = 6.5 Hz), 155.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -103.1 (s, 2F). MS (ESI, m/z): 303.8 (M+H)⁺. HRMS (ESI): calcd. For C₁₂H₉O₂NClF₂S (M+H)⁺: 304.0002, found: 304.0005.

2-Bromo-5-(difluoro(phenylsulfonyl)methyl)pyridine (3n)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3n** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a

white solid (54 mg, 78%). M.p.: 138-139 °C. IR (KBr): 3045, 1582, 1456, 1339, 1276, 1169, 1097, 1068, 954, 844, 736, 685, 601, 541 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.67 (m, 3H, ArH), 7.79-7.85 (m, 2H, ArH), 8.01 (d, *J* = 8.0 Hz, 2H, ArH), 8.61 (s, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.7 (t, *J* = 285.8 Hz), 122.6 (t, *J* = 22.9 Hz), 128.2, 129.6, 131.0, 131.8, 135.9, 137.6 (t, *J* = 5.1 Hz), 146.8 (t, *J* = 1.8 Hz), 149.1 (t, *J* = 6.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -103.2 (s, 2F). MS (ESI, m/z): 347.7 (M+H)⁺. HRMS (ESI): calcd. For C₁₂H₉O₂NBrF₂S (M+H)⁺: 347.9495, found: 347.9500.

5-(Difluoro(phenylsulfonyl)methyl)-2-(trifluoromethyl)pyridine (30)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **30** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (55 mg, 82%). M.p.: 112-113 °C. IR (KBr): 3058, 1582, 1448, 1340, 1280, 1171, 1101, 1024, 956, 861, 723, 686, 609, 583, 539 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (t, *J* = 7.8 Hz, 2H, ArH), 7.81-7.87 (m, 2H, ArH), 8.04 (d, *J* = 8.0 Hz, 2H, ArH), 8.23 (d, *J* = 8.4 Hz, 1H, ArH), 8.99 (s, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 121.0 (q, *J* = 273.2 Hz), 120.2 (q, *J* = 2.1 Hz), 120.3 (t, *J* = 285.8 Hz), 126.2 (t, *J* = 23.2 Hz), 129.6, 131.1, 131.6, 136.0, 137.5 (t, *J* = 5.5 Hz), 148.9 (t, *J* = 6.2 Hz), 151.5 (q, *J* = 35.2). ¹⁹F NMR (376 MHz, CDCl₃): δ -68.3 (s, 3F), -103.4 (s, 2F). MS (ESI, m/z): 337.8 (M+H)⁺. HRMS (ESI): calcd. For C₁₃H₉O₂NF₅S (M+H)⁺: 338.0264, found: 338.0269.

2-Chloro-3-(difluoro(phenylsulfonyl)methyl)pyridine (3p)

For 0.2 mmol scale, the standard procedure of method A was followed to provide

3p by column chromatography on silica gel (petroleum ether/EtOAc, 20:1 to 10:1, v/v) as a white solid (44 mg, 73%). M.p.: 142-143 °C. IR (KBr): 3080, 1582, 1449, 1410, 1341, 1284, 1176, 1116, 1046, 937, 808, 743, 687, 597, 547 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (dd, *J* = 8.0 Hz, *J* = 4.8 Hz, 1H, ArH), 7.63 (t, *J* = 7.8 Hz, 2H, ArH), 7.78 (t, *J* = 7.4 Hz, 1H, ArH), 7.99 (d, *J* = 7.6 Hz, 2H, ArH), 8.02 (dd, *J* = 7.6 Hz, *J* = 2.0 Hz, 1H, ArH), 8.57 (d, *J* = 4.8 Hz, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.5 (t, *J* = 287.6 Hz), 122.0, 122.4 (t, *J* = 22.2 Hz), 129.6, 131.0, 132.2, 135.9, 140.3 (t, *J* = 7.0 Hz), 150.1, 152.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -98.9 (s, 2F). MS (ESI, m/z): 303.8 (M+H)⁺. HRMS (ESI): calcd. For C₁₂H₉O₂NClF₂S (M+H)⁺: 304.0002, found: 304.0005.

2-(Difluoro(phenylsulfonyl)methyl)benzofuran (3q)

For 0.2 mmol scale, the standard procedure of method B was followed to provide **3q** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (39 mg, 63%). M.p.: 106-108 °C. IR (KBr): 3075, 1582, 1449, 1351, 1298, 1166, 1064, 979, 881, 753, 682, 626, 575 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.34 (m, 2H, ArH), 7.43 (t, *J* = 7.8 Hz, 1H, ArH), 7.56 (d, *J* = 8.0 Hz, 1H, ArH), 7.61 (t, *J* = 7.8 Hz, 2H, ArH), 7.67 (d, *J* = 8.0 Hz, 1H, ArH), 7.77 (t, *J* = 7.4 Hz, 1H, ArH), 8.02 (d, *J* = 7.2 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 112.2, 112.5 (t, *J* = 3.3 Hz), 117.4 (t, *J* = 283.3 Hz), 122.5, 124.1, 126.5, 127.2, 129.5, 131.0, 132.6, 135.7, 141.6 (t, *J* = 30.3 Hz), 156.1. ¹⁹F NMR (376 MHz, CDCl₃): δ -102.9 (s, 2F). MS (ESI, m/z): 325.9 (M+NH₄)⁺. HRMS (ESI): calcd. For C₁₅H₁₄O₃NF₂S (M+NH₄)⁺: 326.0655, found: 326.0657.

4-(Difluoro(phenylsulfonyl)methyl)dibenzo[b,d]furan (3r)

For 0.2 mmol scale, the standard procedure of method B was followed to provide **3r** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (43 mg, 60%). M.p.: 186-188 °C. IR (KBr): 3071, 1581, 1478, 1423, 1338, 1282, 1193, 1169, 1045, 966, 848, 758, 684, 599, 538 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (t, *J* = 7.4 Hz, 1H, ArH), 7.44-7.57 (m, 5H, ArH), 7.69 (t, *J* = 7.8 Hz, 2H, ArH), 7.95 (d, *J* = 7.6 Hz, 1H, ArH), 8.00 (d, *J* = 8.0 Hz, 2H, ArH), 8.15 (d, *J* = 7.6 Hz, 1H, ArH), 8.00 (d, *J* = 8.0 Hz, 2H, ArH), 8.15 (d, *J* = 7.6 Hz, 1H, ArH), 8.11.6 (t, *J* = 23.4 Hz), 112.1, 120.7, 121.7 (t, *J* = 286.5 Hz), 122.6, 122.7, 123.3, 125.0, 126.0, 127.0 (t, *J* = 7.4 Hz), 128.1, 129.1, 131.1, 132.9, 135.3, 153.5 (t, *J* = 2.2 Hz), 156.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -100.0 (s, 2F). MS (ESI, m/z): 375.9 (M+NH₄)⁺, 380.9 (M+Na)⁺. HRMS (ESI): calcd. For C₁₉H₁₆O₃NF₂S (M+NH₄)⁺: 376.0808, found: 376.0813.

2-(Difluoro(phenylsulfonyl)methyl)benzo[b]thiophene (3s)

For 0.2 mmol scale, the standard procedure of method B was followed to provide **3s** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a pink solid (49 mg, 76%). M.p.: 141-143 °C. IR (KBr): 3066, 1581, 1523, 1448, 1346, 1238, 1167, 1036, 830, 751, 682, 600, 531 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.47 (m, 2H, ArH), 7.61 (t, *J* = 7.8 Hz, 2H, ArH), 7.76 (t, *J* = 7.6 Hz, 1H, ArH), 7.80 (s, 1H, ArH), 7.87 (d, *J* = 9.2 Hz, 2H, ArH), 8.03 (d, *J* = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.7 (t, *J* = 284.0 Hz), 122.5, 125.2, 125.3, 126.7, 127.4 (t, *J* = 26.2 Hz), 129.3 (t, *J* = 5.8 Hz), 129.4, 131.0, 132.5, 135.5, 138.3, 141.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -93.6 (s, 2F). MS (ESI, m/z): 346.7 (M+Na)⁺. HRMS (ESI): calcd. For C₁₅H₁₄O₂NF₂S₂ (M+NH₄)⁺: 342.0425, found: 342.0429.

2-(Difluoro(phenylsulfonyl)methyl)thiophene (3t)

For 0.2 mmol scale, the standard procedure of method B was followed to provide **3t** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (30 mg, 55%). M.p.: 99-100 °C. IR (KBr): 3131, 1525, 1424, 1339, 1259, 1171, 1093, 1033, 863, 719, 686, 602, 539 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.17 (m, 1H, ArH), 7.54-7.55 (m, 1H, ArH), 7.60-7.64 (m, 3H, ArH), 7.77 (t, *J* = 7.4 Hz, 1H, ArH), 8.01 (d, *J* = 7.6 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 120.8 (t, *J* = 283.6 Hz), 127.3 (t, *J* = 27.0 Hz), 127.7, 129.3, 130.9, 131.5, 132.0 (t, *J* = 5.5 Hz), 132.6, 135.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -92.8 (s, 2F). MS (ESI, m/z): 291.8 (M+NH₄)⁺, 296.7 (M+Na)⁺. HRMS (ESI): calcd. For C₁₁H₁₂O₂NF₂S₂ (M+NH₄)⁺: 292.0269, found: 292.0272.

1-(Difluoro(phenylsulfonyl)methyl)-2-methoxybenzene (3u)

For 0.2 mmol scale, the standard procedure of method A was followed to provide **3u** by column chromatography on silica gel (petroleum ether/EtOAc, 20:1, v/v) as a white solid (27 mg, 45%). M.p.: 83-84 °C. IR (KBr): 3045, 2847, 1604, 1585, 1495, 1450, 1333, 1300, 1247, 1162, 1045, 924, 753, 688, 596, 530 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.69 (s, 3H, OCH₃), 6.94 (d, *J* = 8.4 Hz, 1H, ArH), 7.02 (t, *J* = 7.4 Hz, 1H, ArH), 7.50 (t, *J* = 8.2 Hz, 2H, ArH), 7.56 (t, *J* = 7.4 Hz, 2H, ArH), 7.71 (t, *J* = 7.6 Hz, 1H, ArH), 7.93 (d, *J* = 7.6 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 55.9, 112.4, 115.1(t, *J* = 20.8 Hz), 120.3, 122.5 (t, *J* = 287.3 Hz), 129.0, 130.2 (t, *J* = 7.6 Hz), 130.8, 133.8, 134.1, 135.0, 158.8 (t, *J* = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃): δ -97.5 (s, 2F). MS (ESI, m/z): 316.0 (M+NH₄)⁺. Anal. calcd. For C₁₄H₁₂F₂O₃S (%): C, 56.37; H, 4.05. Found: C, 56.39; H, 3.95.

6. Synthesis of Difluoromethylated Aromatics by Reductive Desulfonylation

Standard procedure:

The reductive desulfonylation procedure was according to our previous report.^[3] HOAc/NaOAc (1:1) solution (1.5 mL) was added into a suspension of **3** (0.2 mmol, 1.0 equiv), Magnesium turning (72 mg, 3.0 mmol) in DMF (2 mL) at rt under an argon atmosphere. The reaction was monitored by TLC until the starting material **3** was consumed completely.

1-(Difluoromethyl)-2-(trifluoromethoxy)benzene (4a)

According to standard procedure, after stirring at rt for 3 h, PhCF₃ (26.5 μ L,) as an internal standard was added into the reaction mixture, and monitored by ¹⁹F NMR spectroscopy in 76% yield. Characterization of **4a**: ¹⁹F NMR (376 MHz, unlocked): δ –56.9 (s, 3F), –113.2 (d, *J* = 54.5 Hz, 2F). GC—MS (EI): *m/z* = 212.2.

1-(Difluoromethyl)-2-fluorobenzene (4b)^[4]

According to standard procedure, after stirring at rt for 3 h, PhCF₃ (26 µL) as an internal standard was added into the reaction mixture, and monitored by ¹⁹F NMR spectroscopy in 86% yield. Characterization of **4b**: ¹⁹F NMR (376 MHz, unlocked): δ –113.1 (dd, ²*J*_{H-F} = 54.3 Hz, ⁴*J*_{H-F} = 3.9 Hz, 2F), –119.4 (m, 1F). GC—MS (EI): *m/z* =

146.1.

2-(Difluoromethyl)benzo[b]thiophene (4c)

HOAc/NaOAc (1:1) solution (1.5 mL) was added into a suspension of **3s** (0.2 mmol, 1.0 equiv), Magnesium turning (72 mg, 3.0 mmol) in DMF (2 mL) at rt under an argon atmosphere. After stirring at rt for 3 h, dichloromethane (5 mL), and H₂O (10 mL) was added, and then the organic layer was separated and the aqueous layer was extracted with dichloromethane (3×5 mL). The combined organic layer was washed with brine (2×10 mL), dried over MgSO₄, filtered and concentrated in vacuo to obtain the crude product. The crude product was purified by a flash cloum chromatography on silica gel using pentane as eluent to afford **4c** as light yellow oil (25 mg, 68%). IR (KBr): 2924, 2852, 1461, 1369, 1260, 1150, 1061, 1036, 801, 745, 689 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.93 (t, *J* = 55.8 Hz, 1H, CF₂H), 7.41-7.43 (m, 2H, ArH), 7.53 (s, 1H, ArH), 7.82-7.89 (m, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 111.9 (t, *J* = 236.2 Hz), 122.7, 124.5 (t, *J* = 7.3 Hz), 124.7, 124.9, 125.9, 136.4 (t, *J* = 25.5 Hz), 138.3, 140.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -104.0 (dd, ²*J*_{H-F} = 52.3 Hz, ⁴*J*_{H-F} = 2.6 Hz, 2F). MS (EI, m/z): 184 (M⁺, 100). HRMS (EI): calcd. For C₉H₆F₂S (M⁺): 184.0158, found: 184.0156.

(Note: The product 4c was isolated in a moderate yield because of its volatility.)

7. References

- 1. W. L. F. Armarego and C. L. L. Chai, *Purification of laboratory chemicals (fifth edition)*; Elsevier Science: USA, 2003.
- 2. (a) J. Hine and J. J. Porter, J. Am. Chem. Soc., 1960, 82, 6178; (b) G. K. S. Prakash, J. Hu, and G. A. Olah, J. Org. Chem., 2003, 68, 4457.
- 3. C. Ni and J. Hu, Tetrahedron Lett., 2005, 46, 8273.

4. D. A. Burgess and I. D. Rae, Aust. J. Chem., 1977, 30, 1611.

8. ¹⁹F, ¹H and ¹³C NMR Spectra of isolated Products

S32

S41

