# **Supporting Information**

# Enabling Higher Photoelectrochemical Efficiency of TiO<sub>2</sub> via Controlled

# Formation of Disordered Shell: Alternative to hydrogenation process

Vitaly Gurylev<sup>a</sup>, Mrinalini Mishra<sup>a</sup>, Chung-Yi Su<sup>a</sup> and Tsong-Pyng Perng<sup>a,\*</sup>

<sup>a</sup>Department of Materials Science and Engineering, National Tsing Hua University,

Hsinchu 300, Taiwan

### Content

| 1. | Experimental Methods | S2         |
|----|----------------------|------------|
| 2. | Figures              | <b>S4</b>  |
| 3. | References           | <b>S10</b> |

#### 1. Experimental Methods

ITO glass was used as a substrate for deposition of  $TiO_2$  thin films. The substrate was immersed in a solution of acetone and ethanol, ultrasonicated for 20 min and rinsed with DI water to remove the contaminants.  $TiO_2$  thin film was deposited on the surface of ITO glass by atomic layer deposition (ALD). The temperature of substrate was set at 100 °C, and TiCl<sub>4</sub> and H<sub>2</sub>O were used as precursors for TiO<sub>2</sub>. The lengths of pulse time were 0.08 s for TiCl<sub>4</sub> and 0.1 s for H<sub>2</sub>O. The vacuum inside the chamber was controlled at 10<sup>-2</sup> torr. The total cycle number of ALD deposition was set at 200, but two additional samples were deposited with 100 and 400 cycles to study the thickness effect. The ALD system and operation procedure have been presented previously.<sup>1,2</sup>

After the deposition was finished, the samples were immediately transferred to a furnace for thermal treatment in air at 450 °C for 3 h. Later, an ultrathin layer of amorphous  $TiO_2$  was deposited on the crystallized film by ALD with the cycle number of 30, 50, or 100.

The phases and crystal structures were analyzed by grazing incidence X-Ray diffricaton (TTRAXIII, Rigaku) using Cu K<sub> $\alpha$ </sub> radiation and incident angle of 0.5°. Raman spectra were obtained by microzone confocal Raman spectroscopy (Horiba Jobin Yvon, Labram HR 800). The excitation wavelength was 325 nm (Kimon IK3301R-G) with a laser power of 30 mW (He-Cd laser). The instrument was equipped with an LMU-NUV 40x objective lens resulting in a spot size of 0.79 µm<sup>2</sup>. The optical property of the TiO<sub>2</sub> thin films was evaluated by PL spectroscopy using He-Cd laser with a wavelength of 325 nm as the light source. The X-ray photoelectron spectroscopic (XPS) analysis was conducted on PHI Quantera AES 650. Argon sputtering for 10 s with an average etching rate of 8 nm/min was made prior to analysis to remove contaminants from the surface. In order to eliminate any contribution of substrate to the signal from  $TiO_2$ , the samples for this analysis were prepared with 400 cycles, which is equal to a thickness of ~20 nm. The band gaps of the samples were estimated by UV-vis spectrophotometry (Hitachi UV-3010) with an integrating sphere attachment. An atomic force microscopy (AFM) system equipped with KPFM module (Bruker, Dimension ICON, scan rate 1 Hz, resonant frequency 1.3 MHz) was employed to map height profile and surface potential. For the AFM cross-sectional analysis, a part of ITO glass was covered with a mask. For the KPFM measurement, conductive Si tips with Co-Cr coating and a radius of 35 nm (Bruker, MESP) was applied. The average force constant and resonance frequency of the tip were  $\sim 2.8$  N/m and 75 kHz, respectively.

The electrochemical measurement was performed using a Solartron 1286 potentiostat digitally controlled by a PC. The samples were immersed in 0.5 M KOH solution and illuminated by a 200 W Hg lamp.

# 2. Figures



Fig. S1 (a) Cross-sectional analysis of  $TiO_2$  film deposited by ALD with 200 cycles on ITO glass. (b) Corresponding thickness profile.



Fig. S2 XRD patterns of TiO<sub>2</sub>-(200 cyc./450 °C, 3 h) covered by 30, 50, and 100

cycles of amorphous TiO<sub>2</sub>.



Fig. S3 Two-dimensional AFM images of  $TiO_2$  films. (a) As-deposited thin film prepared by ALD with 200 cycles, (b) annealed in air at 450 °C for 3 h, and then covered with amorphous  $TiO_2$  by (c) 30, (d) 50, and (e) 100 cycles of ALD.



**Fig. S4** XPS survey scans of as-deposited TiO<sub>2</sub> prepared by 400 cycles of ALD. The right and left insets represeny enlargment in the ranges of 430 eV to 455 eV and 470 eV to 510 eV, respectively. As can be seen from the insets, there is an absence of any traces of Sn (Sn  $3d_{3/2}$  at 498 eV and Sn  $3d_{5/2}$  at 489 eV) or In (In  $3d_{3/2}$  at 453 eV and In  $3d_{5/2}$  at 445 eV)<sup>3</sup> which evidences that TiO<sub>2</sub> deposited by low-temperature ALD process using TiCl<sub>4</sub> and H<sub>2</sub>O as precursors has almost negligible impact on the etching of ITO substrate.



Fig. S5 UV-vis spectra of TiO<sub>2</sub>-(200 cyc./450 °C, 3 h) covered by 30, 50, and 100

cycles of amorphous TiO<sub>2</sub>.



Fig. S6 Current-voltage curves of amorphous and anatase  $TiO_2$  prepared by ALD with

(a) 200, (b) 400, and (c) 100 cycles, and further annealed in air at 450 °C for 3 h.

# 3. References

- H. S. Chen, P. H. Chen, S. H. Huang and T. P. Perng, *Chem. Commun.*, 2014, 50, 4379.
- W. T. Chang, Y. C. Hsueh, S. H. Huang, K. I. Liu, C. C. Kei and T. P. Perng, J. Mater. Chem. A, 2013, 1, 1987.
- 3. C. J. Huang, Y. K. Su and S. L. Wu, Mater. Chem. Phys., 2004, 84, 146.