An Unprecedented Benzannulation of Oxindoles With Enalcarbenoids: A Regioselective Approach to Functionalized Carbazoles

Kuldeep Singh Rathore, Bapurao Sudam Lad, Haribabu Chennamsetti and Sreenivas Katukojvala* Department of Chemistry, Indian Institute of Science Education \& Research, Bhopal, MP, India 462066

Supporting Information

Contents :

1. General methods S2
2. Starting materials S2
3. Optimization of the tandem benzannulation reaction S5
4. Substrate scope of the benzannulation S6
5. Mechanistic studies S15
6. References S19
7. NMR Spectra S20

1. General methods

All the reactions performed in an oven-dried glassware under argon atmosphere. Solvents were dried using standard methods. Tetrahydrofuran and diethyl ether dried over sodium benzophenone ketyl. Acetonitrile, dichloromethane and toluene were distilled over calcium hydride. Unless otherwise stated, all the commercial reagents were used as received. The progress of the reaction was monitored by thin layer chromatography (Merck Silica gel 60 F 254, precoated plates on alumina). Column chromatographic purifications performed on Merck silica gel (100-200 mesh). Melting points recorded on a digital melting point apparatus and are uncorrected.

Spectroscopic characterizations were carried at the Central Instrumentation Facility (CIF), Indian Institute of Science Education and Research (IISER) Bhopal. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on Bruker Avance III FT-NMR spectrometers at $400 \mathrm{MHz}, 500$ or 700 MHz and ${ }^{13} \mathrm{C}$-NMR spectra were recorded at $101 \mathrm{MHz}, 126 \mathrm{MHz}$ or $176 \mathrm{MHz} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts reported in ppm relative to the TMS ($\delta=0$) and are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts reported in ppm relative to the residual CDCl_{3} signal ($\delta=77.16$). IR spectra recorded on a Perkin-Elmer FT-IR spectrometer. HRMS data obtained on a Bruker micro TOF-QII or Agilent 5975C high-resolution mass spectrometers.

2. Starting materials

Preparation of diazoenals $\mathbf{1 a - c}$ and $\mathbf{1 e - g}$ was reported in our earlier work. ${ }^{1}$ Oxindoles $\mathbf{2 a - d}$ and $\mathbf{2 i}$ were obtained from Sigma-Aldrich. Known oxindoles $\mathbf{2 e}-\mathbf{h}, \mathbf{2 j}$ and new oxindole $\mathbf{2 k}$ were prepared according to the known procedures. ${ }^{2-5}$

1a-g

1a: $R=E t$
1b: $R=M e$
1c: $R=B n$

1d

1e: $\mathrm{R}=\mathrm{Cl}$
1f: $R=B r$
1g: $R=O M e$

2c

2d

2e

$2 f$

$2 g$

2h

$2 i$

2j

2k

Preparation of chiral menthyl ester diazoenal 1d

The new chiral menthyl ester diazoenal $\mathbf{1 d}$ was prepared from the known keto diazo ester $\mathbf{S}_{\mathbf{1}}{ }^{6 a}$ via new vinyldiazo ester $\mathbf{S}_{\mathbf{2}}$.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-diazobut-3-enoate (\mathbf{S}_{2}): The unstable vinyl diazoester $\mathbf{S}_{\mathbf{2}}$ was prepared from the known keto diazo ester $\mathbf{S}_{\mathbf{1}}{ }^{6 \mathrm{a}}$ in two steps by following literature procedure. ${ }^{6 b}$ Obtained as a yellow liquid; yield $=51 \%$ (for two steps); $\mathrm{R}_{\mathrm{f}}=$ 0.53 (ethyl acetate/hexane : 10:90); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.10$ (dd, $J=17.4,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.65(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.28$ (series of m, 2H), $1.05-0.90(\mathrm{~m}$, $2 \mathrm{H}), 0.84(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-0.78(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,120.7,107.1,75.2,63.3,47.1,41.2,34.2,31.4,26.5$, 23.7, 22.0, 20.7, 16.6; IR (neat): 2088, 1703, $1616 \mathrm{~cm}^{-1}$.

1d
(E)-(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl

2-diazo-5-oxopent-3-
enoate (1d): Formylation of freshly the prepared vinyldiazo ester $\mathbf{S}_{\mathbf{2}}$ by our earlier reported procedure ${ }^{1}$ gave chiral menthyl ester diazoenal 1d. Obtained as a yellow liquid; yield $=76 \% ; \mathrm{R}_{\mathrm{f}}$ $=0.43$ (Ethyl acetate/Hexane $=30: 70) ;[\alpha]_{\mathrm{D}}{ }^{23}-59^{\circ}\left(\mathrm{c} 0.67, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=15.7,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ $1.37(\mathrm{~m}, 2 \mathrm{H}), 1.12-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.81(\mathrm{~m}$, $1 \mathrm{H}), 0.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.7,161.8,139.4,121.9,47.1$, $41.1,34.0,31.4,26.6,23.6,21.9,20.6,16.5$; IR (neat): $2102,1713,1679,1609,1320 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 279.1703$, found 279.1687.

5-((tert-butyldimethylsilyl)oxy)indolin-2-one (2i): Prepared from 2k by TBS-protection of hydroxyl group. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 4 \mathrm{H})$,
$3.48(\mathrm{~s}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,151.3,136.2$, $126.4,118.9,117.3,109.9,36.6,25.7,18.2,-4.5$; HRMS (ESI) m / z Calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{Si}$ [M+H] 264.1414, Found: 264.1442.

3. Optimization of the tandem benzannulation reaction ${ }^{\text {a }}$

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1 a} / \mathbf{2 a}=0.56 / 0.225 \mathrm{mmol} .{ }^{\mathrm{b}}$ Yield of isolated product. ${ }^{\mathrm{c}}$ Diazo compound was decomposed.

Optimization procedure:

A 0.28 M solution of 1 a was added with a flow rate of $1 \mathrm{ml} / \mathrm{h}$ using a syringe pump to a 0.23 M solution of 2-oxindole 2a ($30 \mathrm{mg}, 0.225 \mathrm{mmol}$) in a 10 ml round bottom flask containing $\mathrm{Rh}_{2} \mathrm{~L}_{\mathrm{n}}$, $5 \mathrm{~mol} \%$ BINOL phosphoric acid (\pm)-BPA ($4 \mathrm{mg}, 0.011 \mathrm{mmol}$) and $4 \AA \mathrm{MS}(80 \mathrm{mg})$, at the respective temperature under argon atmosphere. After addition of 1a, the reaction was continued at the same temperature for an additional 3 h (or as judged by TLC). Solvent was evaporated under reduced pressure and the carbazole product 3a was purified by a silica gel flash column chromatography using Ethyl acetate/Hexanes (2:98) as the eluent.

4. Substrate scope of the benzannulation

General procedure: A solution of $1(0.56 \mathrm{mmol})$ in 2 ml DCM was added slowly with a flow rate of $1 \mathrm{ml} / \mathrm{h}$ using a syringe pump to a DCM solution (1 ml) of 2-oxindole $2(0.225 \mathrm{mmol}$), $\mathrm{Rh}_{2}(\mathrm{Oct})_{4}(3.5 \mathrm{mg}, 0.0045 \mathrm{mmol})$ and (\pm)-BINOL phosphoric acid BPA ($\left.4 \mathrm{mg}, 0.011 \mathrm{mmol}\right)$ in a 10 ml round bottom flask in the presence of $4 \AA \mathrm{MS}(80 \mathrm{mg})$, maintained at $84{ }^{\circ} \mathrm{C}$ under argon atmosphere. After addition of 1 (2 h), reaction was continued at the same temperature for an additional 3 h . Solvent was evaporated under reduced pressure and the residue was purified by a silica gel flash column chromatography using Ethyl acetate/Hexanes as the eluent (2:98) to furnish carbazole $3\left(\mathrm{R}_{\mathrm{f}}=0.2-0.3\right.$; Ethyl acetate/Hexanes $\left.=2: 98\right)$.

Ethyl 1-hydroxy-9H-carbazole-2-carboxylate (3a): White solid; 35 mg , yield $=62 \%$; m.p. $=176-178{ }^{0} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.38(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.06$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.4,149.2,140.4,128.7,128.5,127.3,123.2,121.3,120.1,120.0,111.6,111.2,108.1,61.4$, 14.4; IR (neat): $3425,3311,3001,2921,1715 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}$ [M+H] 256.0968, Found: 256.0974.

3b

Methyl 1-hydroxy-9H-carbazole-2-carboxylate (3b): White solid; 26 mg , yield $=48 \%$; m.p. $=207-208{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 11.32(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.7,149.1,140.4,128.7,128.4,127.3,123.2,121.3,120.1,120.07,111.6,111.4,107.9,52.4$; IR (neat): $3545,3371,3006,2918,1620 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}-\mathrm{H}]$ 240.0655, Found: 240.0658.

Benzyl 1-hydroxy-9H-
carbazole-2-carboxylate (3c): White solid; 48 mg , yield $=68 \%$; m.p. $=157-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.28(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H})$, 5.43 ($\mathrm{s}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,149.3,140.4,135.7,128.8,128.6,128.4$, $128.36,127.4,123.2,121.4,120.2,120.1,113.3,111.6,111.4,107.9,67.0 ;$ IR (neat): 3536, 3365, 3011, 2921, $1685 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NaNO}_{3}$ [M+Na] 340.0944, Found: 340.0925. CCDC 1033504 contains crystallographic data of this compound.

Methyl 8-chloro-1-hydroxy-9H-carbazole-2-carboxylate (3d): White solid; 32 mg , yield $=51 \%$; m.p. $=182-184{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.32(\mathrm{~s}, 1 \mathrm{H}), 8.67$ $(\mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=$ $7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.41, 149.15, 137.51, 128.72, 128.22, 126.31, 124.47, 120.63, 120.61, 119.64, 116.84, 111.49, 108.35, 52.31; IR (neat): $3410,3058,2850,1635 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]$ 276.0422, Found: 276.0383.

Benzyl 8-chloro-1-hydroxy-9H-carbazole-2-carboxylate (3e): White solid; 56 mg , yield $=71 \%$; m.p. $=146-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.36(\mathrm{~s}, 1 \mathrm{H}), 8.73$ (s, 1H), $7.97(\mathrm{dd}, J=7.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.49$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.8,149.3,137.5,135.5,128.8,128.7$, $128.5,128.3,128.2,126.3,124.5,120.7,120.6,119.7,116.8,111.5,108.4,67.0$; HRMS (ESI) m / z Calc. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]$ 352.0735, Found: 352.0760.

Methyl 7-chloro-1-hydroxy-9H-carbazole-2-carboxylate (3f): White solid; 35 mg , yield $=56 \%$; m.p. $=206-208^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.31(\mathrm{~s}$, $1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 171.6,149.1,140.7,133.1,128.7,128.2,122.2,121.8,120.9,120.7,111.6,111.2$, 108.2, 52.4. IR(neat): 3390, 3060, 29400, 2840, $1630 \mathrm{~cm}^{-1}$; LRMS (ESI): $274.2(\mathrm{M}-\mathrm{H})$.

Benzyl 7-chloro-1-
hydroxy-9H-carbazole-2-carboxylate (3g): White solid; 58 mg , yield $=73 \%$; m.p. $=169-170$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.27(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.4$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,149.0,140.6,135.5,133.0$, 128.7, 128.5, 128.2, 128.1, 128.1, 122.1, 121.6, 120.7, 120.6, 111.4, 111.1, 108.0, 66.9; IR (neat): $3379,3151,3046,2920,2848,1666 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z Calc. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClNO}_{3}[\mathrm{M}-$

H] 350.0578, Found: 350.0596. CCDC 1033505 contains crystallographic data of this compound.

Benzyl 6-chloro-1-hydroxy-9H-carbazole-2-carboxylate (3h):
White solid; 52 mg , yield $=66 \%$; m.p. $=157-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.27(\mathrm{~s}$, $1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.32(\mathrm{~m}$, $5 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,149.3,138.6,135.6,129.1,128.9,128.7$, $128.5,128.4,127.8,127.5,125.6,124.3,121.0,120.5,112.6,111.4,108.4,67.1$; IR (neat): 3395, 3309, 3006, 2912, $1642 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClNO}_{3}$ [M-H] 350.0578, Found: 350.0567.

Ethyl 6-bromo-1-hydroxy-9H-carbazole-2-carboxylate (3i): White solid; 38 mg , yield $=52 \%$; m.p. $=187-189{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.39(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.1,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,149.1,138.7,129.9,128.8,127.4,124.8$, $123.9,120.4,112.9,112.7,111.1,108.5,61.4,14.3$; IR (neat) $3400,3298,2921,2832,1690 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrNO}_{3}\left[\mathrm{M}^{+}\right]$332.9995, Found: 333.0013.

3j
Methyl 1-hydroxy-9-methyl-9H-carbazole-2-carboxylate (3j): White solid; 3 mg , yield $=6 \%$; m.p. $=112-113{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.62(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.1,150.9,142.4,128.7,128.7,127.0,122.2,121.0,119.6,119.3,111.1,109.2,107.8,52.2$, 32.1; IR(neat): 3470, 3284, 3118, 2910, 1677, $1460 \mathrm{~cm}^{-1}$

Methyl 1-hydroxy-8-methyl-9H-carbazole-2-carboxylate (3k): White solid; 30 mg , yield $=52 \%$; m.p. $=104-106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.38(\mathrm{~s}$, $1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.7,149.0,139.8,129.2,128.1,127.6,122.6,120.7,120.1,120.0,118.8,111.4$, 107.6, 52.2, 16.9; IR(neat): $3450,3320,3095,2970,1675 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]$ 256.0968, Found: 256.0990.

Ethyl 1-hydroxy-8-methyl-9H-carbazole-2-carboxylate (31): White solid; 33 mg , yield $=55 \%$; m.p. $=132-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.47(\mathrm{~s}, 1 \mathrm{H}), 8.43$ $(\mathrm{s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,149.1,139.8,129.1,128.1,127.6,122.6,120.7$, $120.1,120.0,118.8,111.3,107.8,61.3,16.9,14.3$; IR(neat): $3465,3350,3091,2950,1660 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]$ 270.1125, Found: 270.1111.

Benzyl 1-hydroxy-8-methyl-9H-carbazole-2-carboxylate (3m):
White solid; 46 mg , yield $=62 \%$; m.p. $=116-118{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.36(\mathrm{~s}$, $1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1$, $149.2,139.8,135.6,129.2,128.7,128.5,128.3,128.1,127.7,122.5,120.7,120.1,120.1,118.8$, 111.4, 107.6, 66.9, 16.9; IR(neat): $3490,3352,2920,1647 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]$ 332.1281, Found: 332.1292.

Methyl 1-hydroxy-6-methyl-9H-carbazole-2-carboxylate (3n):
White solid; 32 mg , yield $=55 \%$; m.p. $=185-187{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.29(\mathrm{~s}$, $1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $171.8,149.1,138.7,129.5,128.9,128.7,128.6,123.4,121.0,119.9,111.3,111.2,107.7,52.3$, 21.6; IR(neat): $3400,3308,2921,2802,1670 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}$ [M+H] 256.0968, Found: 256.0950.

Benzyl 1-hydroxy-6-methyl-9H-carbazole-2-carboxylate (30):
White solid; 49 mg , yield $=66 \%$; m.p. $=133-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.29(\mathrm{~s}$, $1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}$, $2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ; .{ }^{13} \mathrm{C}$ NMR (176 MHz, CDCl_{3}) $\delta 171.1,149.3,138.7,135.8,129.5,128.9$, $128.8,128.7$, 128.6, 128.4, 123.4, 121.1, 120.0, 111.3, 111.2, 107.7, $67.0,21.6$; IR(neat): 3450 , 3309, 3085, 2980, $1670 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}] 332.1281$, Found: 332.1282.

TBSO

Benzyl 6-((tert-butyldimethylsilyl)oxy)-1-hydroxy-9H-carbazole-2-carboxylate (3p): White solid; 54 mg , yield $=54 \%$; m.p. $=134-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.26(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.30(\mathrm{~m}, 8 \mathrm{H})$, $7.02(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.01,149.44,149.22,135.71,135.65,129.08,128.71,128.49,128.45,128.22$, $123.74,121.22,119.55,111.81,111.26,110.84,107.55,66.81,25.80,-4.37 . I R(n e a t): 3520$,

3395, 3061, 2921, $1665 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NNaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}$ 470.1777, Found: 470.1758.

(1S,3S,4R)-4-isopropyl-3-methylcyclohexyl 1-hydroxy-9H-carbazole-2-carboxylate (3q): White solid; 43 mg , yield $=53 \%$; m.p. $=56-58{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{23}-69^{\circ}(\mathrm{c}$ $0.36, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.8,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}$, $1 \mathrm{H}), 5.07(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}$, $2 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.97-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,149.1$, $140.3,128.5,128.4,127.1,123.1,121.2,120.0,119.8,111.4,111.1,108.3,75.4,47.2,41.0,34.3$, 31.5, 26.6, 23.7, 22.1, 20.8, 16.6; IR (neat): 3391, 3020, 2987, 1667, $1313 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calc. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NaNO}_{3}[\mathrm{M}+\mathrm{Na}]$ 388.1883, Found: 388.1909.

(1S,3S,4R)-4-isopropyl-3-methylcyclohexyl 8-chloro-1-
hydroxy-9H-carbazole-2-carboxylate (3r): White solid; 60 mg , yield $=67 \%$; $\mathrm{m} . \mathrm{p}=114-116$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-74^{\mathrm{o}}\left(\mathrm{c} 0.34, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.61(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.98$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.7,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98$ (d, $J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,149.3,137.5,128.6,128.3,126.2,124.5,120.63,120.56,119.6,116.8,111.3,108.9$, $75.6,47.2,41.0,34.3,31.5,26.6,23.7,22.0,20.7,16.6$; IR (neat): 3334, 3014, 2989, 1656, 1310 cm^{-1}; HRMS (ESI) m/z Calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClNaNO}_{3}[\mathrm{M}+\mathrm{Na}] 422.1493$, Found: 422.1525.

(1S,3S,4R)-4-isopropyl-3-methylcyclohexyl 7-chloro-1-
hydroxy-9H-carbazole-2-carboxylate (3s): White solid; 68 mg , yield $=76 \%$; m.p. $=158-160$ ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-66^{\circ}\left(\mathrm{c} 0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.97$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.00$ $(\mathrm{m}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $0.98(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,149.0,140.6,132.9,128.7,127.9,122.0,121.7,120.6,120.5,111.4,110.9$, $108.6,75.6,47.2,40.9,34.3,31.5,26.6,23.7,22.0,20.7,16.6$; IR (neat): 3419, 3022, 2989, 1660, $1314 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{ClNaNO}_{3}[\mathrm{M}+\mathrm{Na}] 422.1493$, Found: 422.1533.

(4-Chlorophenyl)(1-
hydroxy-9H-carbazol-2-yl)methanone (3t): Yellow solid; 25 mg , yield $=35 \%$ (reaction without (\pm)-BPA was clean and gave similar yield); m.p. $=130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.84(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.53(\mathrm{~m}, 5 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.7, 151.2, 140.8, 138.1, 137.0, 130.8, 129.4, 128.8, 128.7, 128.0, 123.7, 123.0, 121.6, 120.3, 114.9, 111.7, 111.0; IR (neat): 3372, 3010, 2918, 1629, $1590 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. For $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]$ 322.0629, Found: 322.0601. CCDC 1033506 contains crystallographic data of this compound.

(4-bromophenyl)(1-hydroxy-9H-carbazol-2-yl)methanone (3u):
Yellow solid; 23 mg , yield $=29 \%$ (reaction without $(\pm$)-BPA was clean and gave similar yield); m.p. $=153-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.83(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8,151.2,140.9,137.5,131.7,131.0,129.4,128.7,128.0$, 126.6, 123.7, 123.0, 121.6, 120.3, 114.9, 111.7, 111.0; IR (neat): 3369, 2956, 3011, 2917, 1670, $1261 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{BrNO}_{2}\left[\mathrm{M}^{-}\right]$365.9948, Found: 365.9965.

(1-hydroxy-9H-carbazol-2-yl)(4-methoxyphenyl)methanone
(3v): Yellow solid; 22 mg , yield $=31 \%$ (reaction without $(\pm$)-BPA was clean and gave similar yield); m.p. $=137-139{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.97(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.7,162.8,150.9,140.8,132.0,131.2,128.95,128.8,127.7,124.0,123.1,121.5$, $120.2,115.4,113.7,111.7,110.7,55.7$; IR (neat): $3369,3002,2919,2851,1697,1454 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]$ 318.1125, Found: 318.1140.

5. Mechanistic Studies:

Characterization of 5b

(E)-methyl 2,5-dihydroxy-2-(1H-indol-2-yl)pent-3-enoate (5b): A solution of the methyl ester diazoenal $\mathbf{1 b}(290 \mathrm{mg}, 1.87 \mathrm{mmol})$ in $2 \mathrm{ml} \mathrm{CH} \mathrm{Cl}_{2}$ was added over 2 h using a syringe pump to a solution of oxindole 2a ($100 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.015 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ in 2 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ maintained at $40^{\circ} \mathrm{C}$. The reaction was continued until all the diazoenal $\mathbf{1 b}$ was consumed (additional 3 h). Thin layer chromatography (TLC) of the reaction mixture indicated the presence of an unstable intermediate. Attempts to isolate the intermediate by flash column chromatography (using silica gel or aluminium oxide) were unsuccessful due to decomposition in the column.

About half of the volume of the reaction mixture was evaporated at room temperature under reduced pressure and dried. To a solution of the residue (100 mg) in 2 ml methanol at $0{ }^{\circ} \mathrm{C}$ was added excess NaBH_{4} and stirred for 20 min . TLC showed formation of one major product. The reaction was quenched with ice-cold water (2 ml) and extracted with 10 ml ethyl acetate. The organic phase was washed with water, brine and dried over anhydrous sodium sulphate. Solvent was evaporated at room temperature and the crude material was dried under vacuum. Purification of the residue by silica gel flash column chromatography (Ethyl acetate/Hexanes $=3: 2$) afforded partially purified alcohol $\mathbf{5 b}$ as a white foam $(28 \mathrm{mg}) . \mathrm{R}_{\mathrm{f}}=0.12$ (Ethyl Acetate $/$ Hexane $=60: 40$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.1,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (dt, $J=15.4$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=15.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=4.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,137.1,135.7,131.0,129.4,128.4,122.5,120.8,120.2,111.2$,
100.7, 75.2, 62.6, 54.1; IR (neat): $3361,3021,1731 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}$ [M-H] 260.0917, Found: 260.0895.

Remaining half of the volume of the reaction mixture was allowed to continue stirring at $40{ }^{\circ} \mathrm{C}$ in the presence of (\pm)-BINOL phosphoric acid. After 12 h the intermediate was completely consumed leading to carbazole $\mathbf{3 b}$ as the only detectable product.

Formation of Deuterium Labeled Carbazole 3b

A solution of $\mathbf{1 b}(87 \mathrm{mg}, 0.58 \mathrm{mmol})$ in 2 ml DCM was added slowly with a flow rate of $1 \mathrm{ml} / \mathrm{h}$ using a syringe pump to a DCM solution (1 ml) of 2-oxindole 2a ($30 \mathrm{mg}, 0.225 \mathrm{mmol}$), $\mathrm{Rh}_{2}(\mathrm{OOct})_{4}(3.5 \mathrm{mg}, 0.0045 \mathrm{mmol}),(\pm)-\mathrm{BINOL}$ phosphoric acid BPA $(4 \mathrm{mg}, 0.011 \mathrm{mmol})$ and $\mathrm{D}_{2} \mathrm{O}$ ($12 \mathrm{mg}, 0.67 \mathrm{mmol}$) in a 10 ml round bottom flask, maintained at $84{ }^{\circ} \mathrm{C}$ under argon atmosphere. After addition of $\mathbf{1 b}(2 \mathrm{~h})$, the reaction was continued at the same temperature for an additional 3 h . Solvent was evaporated under the reduced pressure and the residue was purified by a silica gel flash column chromatography using Ethyl acetate/Hexanes as the eluent (2:98) which furnished carbazole 3b as a white solid ($12 \mathrm{mg}, 26 \%$). Based on the comparison of integration values of C-4 and C-3 attached protons in the ${ }^{1} \mathrm{H}$-NMR spectra, 20% deuterium incorporation was observed at the C-3 position of the carbazole 3b. A plausible mechanism for the formation of deuterium labeled carbazole $\mathbf{3 b}(H / D=80: 20)$ is proposed below.

3b (H/D=80 : 20)

${ }^{1} H$ NMR spectra of $\mathbf{3 b}$ and deuterium labeled $\mathbf{3 b}(H / D=80: 20)$

Plausible mechanism for the formation of deuterium labeled carbazole 3b

Plausible alternate mechanism of benzannulation via intermolecular oxa-Michael addition

6. References

1. Dawande, S. G.; Kanchupalli, V.; Kalepu, J.; Chennamsetti, H.; Lad, B. S.; Katukojvala, S. Angew. Chem. Int. Ed. 2014, 53, 4076.
2. Xu, X.-H.; Wang, X.; Liu, G.-K.; Tokunaga, E.; Shibata, N. Org. Lett. 2012, 14, 2544-2547.
3. Caballero, J.; Munoz, C.; Alazate-Morales, J.H.; Cunha, S.; Gano, L.; Bergmann, R.; Steinbach, J.; Kniess, T. Eur. J. Med. Chem. 2012, 58, 272.
4. Zakrzewska, A.; Kolehmainen, E.; Osmialowski, B.; Gawinecki, R. J. Fluorine Chem. 2001, 111, 1.
5. Xie, J.; Sun, J.; Zhang, G.; Houghten, R. A.; Yu, Y. J. Comb. Chem. 2007, 9, 566.
6. a) Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N. E.; See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M. J. Am. Chem. Soc. 1993, 115, 958; b) Davis, H. M. L.; Hougland, P. W.; Cantrell Jr, W. R. Synth. Commun. 1992, 22, 971.
7. Wanner, M. J.; Ingemann, S. I.; van Maarseveen, J. H.; Hiemstra, H. Eur. J. Org. Chem. 2013, 1100.

7. NMR spectra

SK-KSR-6-7-1 (400 MHz)

$\stackrel{\infty}{\stackrel{\infty}{1}}$

SK-KSR-6-228-1(500)

|

SK-KSR-6-227-1(500)
$\stackrel{N}{N}$

SK-KSR-6-40-1Rp(500MHz)
N $\stackrel{\stackrel{N}{\mathrm{~N}}}{\stackrel{-}{1}}$

SK-BSL-02-223 (400 MHz)

 $\stackrel{m}{\square}$

SK-KSR-6-200-1-Rep(500MHz) \uparrow

No
N

SK-KSR-6-203-1RP(500MHz)

$\stackrel{\stackrel{n}{m}}{\stackrel{1}{-}}$
 $\stackrel{\underset{\sim}{\mathrm{i}}}{\stackrel{\mathrm{N}}{2}}$

3m

SK-KSR-6-206-1P(500MHz)

 $\stackrel{\text { Ni }}{\stackrel{1}{7}}$ $\stackrel{\sim}{\dot{+}}$ $\stackrel{\sim}{\sim}$

SK-KSR-2-199-1(500MHz)

$\stackrel{\underset{1}{7}}{\stackrel{1}{1}}$ か $\stackrel{\text { in }}{\stackrel{\text { ® }}{1}}$

[^0]

BSL-03-64

SK-KSR-6-96(500 MHz)

 $\stackrel{\text { 世 }}{\stackrel{\text { N }}{\text { I }}}$

SK-KSR-6-98(126 MHz)

 $\stackrel{\infty}{0}$

	1		1	1		1	1		1	1	1	1	,	1	1	1	1	1	1		1		1		
240	230	220	210	200	190	180	170	160	150	140	130	$\begin{array}{r} 120 \\ \text { f1 } \end{array}$	$\begin{gathered} 110 \\ (\mathrm{ppm}) \end{gathered}$	100	90	80	70	60	50	40	30	20	10	0	-10

$\mathrm{SK}-\mathrm{KSR}-6-92(500 \mathrm{MHz}) \underset{\text { ৷. }}{\text { I }}$

[^0]:

