Supporting Information

Palladium-Catalyzed Cross-Coupling of Enamides with Sterically Hindered α-Bromocarbonyls

Ran Ding, ${ }^{a}$ Zhi-Dao Huang, ${ }^{\text {a }}$ Zheng-Li Liu, ${ }^{\text {a }}$ Tian-Xiang Wang, ${ }^{\text {a }}$ Yun-He Xu*a ${ }^{\text {a }}$ and Teck-Peng Loh ${ }^{*, \mathrm{~b}}$
${ }^{a}$ Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, University of Sciences and Technology of China, Hefei, Anhui 230026, P.R. China. ${ }^{b}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Table of Contents

1. General information 2
2. Procedure for the synthesis of compound $\mathbf{3 a}-\mathbf{3 t}, \mathbf{4 a}-\mathbf{4 g}$. 2
3. Optimization of reaction conditions for synthesis of $\mathbf{3}$ a 2
4. Mechanitic study 4
5. Table of unsuccessful substrates 9
6. Procedure for the synthesis of compound $\mathbf{5 a - 5 j}$ 10
7. NMR data and spectra of the products 13

1. General information

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at $25^{\circ} \mathrm{C}$ on Bruker Advance 400M NMR spectrometers (CDCl_{3} as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of $\mathrm{SiMe}_{4}(\delta 0.00$ singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets) and etc. Coupling constants are reported as a J value in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform-d ($\delta 77.00$ triplet). High resolution mass spectral analysis (HRMS) was performed on WaterXEVOG2 Q-TOF (Waters Corporation). IR spectra were recorded on a commercial FT/IR spectrometer. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system.

2. Procedure for the synthesis of compound $\mathbf{3 a}-\mathbf{3 t}, \mathbf{4 a}-\mathbf{4 g}$.

A dry $25-\mathrm{mL}$ Schlenk tube containing a magnetic stirring bar was charged with $\mathbf{1}$ (0.3 $\mathrm{mmol}), 2$ (2.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%, 17.3 \mathrm{mg}, 0.015 \mathrm{mmol})$, ($\left.4-\mathrm{MeOPh}\right)_{3} \mathrm{P}(20$ $\mathrm{mol} \%, 21.12 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\mathrm{AgOAc}(1.5 \mathrm{eq}, 75 \mathrm{mg}, 0.45 \mathrm{mmol})$ and DCM (1.0 $\mathrm{mL})$. Then the mixture was charged with argon and heated at $80^{\circ} \mathrm{C}$ oil bath. After finishing, the reaction mixture was concentrated on a rotary evaporator and the residue was directly subjected to flash column chromatography on silica gel with $(50 \% \mathrm{EtOAc} /$ Petroleum ether $)$ as eluate to furnish the desired product.

3. Optimization of reaction conditions:

Table 1.

Table 2.

Table 3.

4. Mechanistic study of coupling reaction between enamide and α-Bromocarbonyls:

Ethyl 2-methyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propanoate
${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 11 \mathrm{H})$, $1.28(\mathrm{~m}, 4 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , chloroform-d) $\delta 176.22$, 81.24, 60.72, 59.68, 40.76, 33.59, 24.62, 20.61, 17.22, 14.30.

HRMS (ESI, m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$272.2226, found: 272.2218.

Ethyl 2,2-dimethyl-4,4-diphenylbut-3-enoate
${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.15-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , chloroform-d) δ 176.49, 143.48, 141.62, 139.43, 134.29, 130.24, 128.17, 127.96, 127.37, 127.35, 127.24, 60.55, 44.18, 27.90, 14.08.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 317.1517$, found: 317.1519

2j
Ethyl 2-bromo-2-cyclopropylpropanoate
${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{tt}, J$ $=8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.76-0.53(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, chloroform-d) $\delta 171.17,63.29,62.19,25.13,21.58,14.06,5.57,4.55$.

-171.17

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

E
(E)-ethyl 5-bromo-2-methylpent-2-enoate
${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 6.76-6.65(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.44(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.77$ (dddd, $J=8.1,7.1,6.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{q}, J=1.1 \mathrm{~Hz}$, 3 H), $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , chloroform- d) $\delta 167.84,137.68$, 130.61, 60.83, 32.09, 30.76, 14.40, 12.84.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$242.9997, found: 242.9991.

5. Unsuccessful substrates in coupling reaction between enamides and α-bromocarbonyls.

6. Procedure for the synthesis of compound $\mathbf{5 a} \mathbf{- 5 j}$.

3a ($0.3 \mathrm{mmol}, 86.4 \mathrm{mg}$) dissolved in EtOH (2.0 mL) was added 48% aqueous solution of $\mathrm{HBr}(1.0 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 hours. After finishing, then the reaction was quenched by addition of saturated aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over anhydrous MgSO_{4}. After filtration, the organic solvent was removed under reduced pressure on a rotary evaporator. Then the crude product was purified by column chromatography on silica gel (with 5\% EtOAc/Petroleum ether) to afford the desired compound 5a (61.9 mg , yield $=84 \%$).

3j ($0.3 \mathrm{mmol}, 82.8 \mathrm{mg}$) dissolved in $\mathrm{EtOH}(2.0 \mathrm{~mL})$ was added 48% aqueous solution of $\mathrm{HBr}(1.0 \mathrm{~mL})$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 10 hours. then the reaction was quenched by addition of saturated aqueous NaHCO_{3} at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over anhydrous MgSO_{4}. After filtration, the organic solvent was removed under reduced pressure on a rotary evaporator. Then the crude product was purified by chromatography on silica gel (with 5\% $\mathrm{EtOAc} /$ Petroleum ether) to afford the desired compound 5b. Yield ($61.3 \mathrm{mg}, 87 \%$).

3a $(0.1 \mathrm{~g})$ and Pd / C catalyst $(10 \%, 0.01 \mathrm{~g})$ were added to the $\mathrm{MeOH}(25 \mathrm{~mL})$ solution in a two-neck round-bottom flask under hydrogen atmosphere. The mixture was stirred for 6 hours and was filtered. The filtrate was evaporated under reduced pressure to give a white solid of $\mathbf{5 e}$ without further purification. Yield ($0.093 \mathrm{~g}, 93 \%$).

$3 \mathbf{j}(0.2 \mathrm{~g})$ and Pd / C catalyst $(10 \%, 0.02 \mathrm{~g})$ were added to the $\mathrm{MeOH}(25 \mathrm{~mL})$ solution in a two-neck round-bottom flask under hydrogen atmosphere. The mixture was stirred for 6 hours and was filtered. The filtrate was evaporated under reduced pressure to give a white solid of $\mathbf{5 f}$ without further purification. Yield ($0.183 \mathrm{~g}, 91 \%$).

$4 \mathbf{e}(0.2075 \mathrm{~g})$ and Pd / C catalyst $(10 \%, 0.02 \mathrm{~g})$ were added to the $\mathrm{MeOH}(25 \mathrm{~mL})$ solution in a two-neck round-bottom flask under hydrogen atmosphere. The mixture was stirred for 6 hours and was filtered. The filtrate was evaporated under reduced pressure, then the crude product was purified by chromatography on silica gel (with $0 \%-8 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$) to give a white solid of $\mathbf{5 c}$. Yield ($0.1309 \mathrm{~g}, 85 \%$).

$4 f(0.0668 \mathrm{~g})$ and Pd / C catalyst $(10 \%, 0.01 \mathrm{~g})$ were added to the $\mathrm{MeOH}(25 \mathrm{~mL})$ solution in a two-neck round-bottom flask under hydrogen atmosphere. The mixture was stirred for 6 hours and was filtered. The filtrate was evaporated under reduced pressure, then the crude product was purified by chromatography on silica gel (with $0 \%-8 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$) to give a white solid of $\mathbf{5 d}$. Yield ($0.04 \mathrm{~g}, 81 \%$).

Aqueous lithium hydroxide ($1 \mathrm{M}, 2 \mathrm{~mL}$) was added to the solution of $\mathbf{5 e}(0.0893 \mathrm{~g}$, $0.308 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 10 hours. After finishing, the mixture was diluted with ethyl acetate (10 mL). After separation, the aqueous phase was extracted twice with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. The organic solvent was removed under reduced pressure, and the crude product was purified by chromatography on silica gel (with $20 \%-60 \%$ EtOAc/Petroleum ether) to afford the desired compound 5i. Yield ($0.061 \mathrm{~g}, 92 \%$).

Aqueous lithium hydroxide ($1 \mathrm{M}, 3 \mathrm{~mL}$) was added to the solution of $\mathbf{5 f}(0.148 \mathrm{~g}, 0.53$ mmol) in THF (3 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 hours. After finishing, the mixture was diluted with ethyl acetate (10 mL). After separation, the aqueous
phase was extracted twice with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. The organic solvent was removed under reduced pressure, and the crude product was purified by chromatography on silica gel (with $20 \%-60 \%$ EtOAc/Petroleum ether) to afford the desired compound 5 g. Yield ($0.0808 \mathrm{~g}, 81 \%$).

Diisobutylaluminum hydride solution (1.0 M in hexane, $0.9 \mathrm{~mL}, 0.9 \mathrm{mmol}$) was added dropwise to the solution of $\mathbf{5 e}(0.058 \mathrm{~g}, 0.2 \mathrm{mmol})$ in dichloromethane (2 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 10 minutes at the same temperature, the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for an additional 30 minutes. The methanol (1 mL) and hydrochloric acid ($3 \mathrm{M}, 3 \mathrm{~mL}$) were successively added. The reaction mixture was partitioned by dichloromethane, and then the aqueous phase was extracted twice with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash column chromatography on silica gel to give $\mathbf{5 j}(0.025 \mathrm{~g}, 51 \%)$

Diisobutylaluminum hydride solution (1.0 M in hexane, $0.9 \mathrm{~mL}, 0.9 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{5 f}(0.0576 \mathrm{~g}, 0.208 \mathrm{mmol})$ in dichloromethane (2 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 10 minutes at the same temperature, the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for an additional 30 minutes. The methanol (1 mL) and hydrochloric acid ($3 \mathrm{M}, 3 \mathrm{~mL}$) were successively added. The reaction mixture was partitioned by dichloromethane, and then the aqueous phase was extracted twice with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash column chromatography on silica gel to give $\mathbf{5 h}(0.020 \mathrm{~g}, 43 \%)$

7. NMR data and spectra of the products:

Ethyl 2-(3-acetamido-1H-inden-2-yl)-2-methylpropanoate (3a)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.54-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.35,169.65,144.10,144.06,140.92,133.55,126.74,125.38$, $124.33,119.79,61.26,44.12,37.58,26.34,23.44,14.82$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 310.1419$, found:310.1416.

Ethyl 2-(3-acetamido-5-methyl-1 H -inden-2-yl)-2-methylpropanoate (3b)

${ }^{1}$ H NMR (400 MHz, DMSO- d_{6}) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 2.04(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.35,169.62,144.35,144.31,138.02,135.72,133.50$, $126.16,124.04,120.21,61.22,44.15,37.18,26.31,23.45,22.08,14.81$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$324.1576, found: 324.1573.

Ethyl 2-(3-acetamido-6-chloro-1 H -inden-2-yl)-2-methylpropanoate (3c)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=$ $8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.04$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 176.16$,
$169.71,144.81,143.06,142.96,132.95,130.14,126.84,124.55,121.19,61.33,44.16$, 37.57, 26.26, 23.41, 14.80.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NClO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 344.1029$, found: 344.1014.

Ethyl 2-(3-acetamido-5-fluoro-1H-inden-2-yl)-2-methylpropanoate (3d)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (ddd, $J=9.9,8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{~s}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 176.16,169.78,162.44(J=242 \mathrm{~Hz}), 146.74,146.31(J=9 \mathrm{~Hz}), 136.62$, 133.12, $125.57(J=9 \mathrm{~Hz}), 111.98(J=23 \mathrm{~Hz}), 106.79(J=24 \mathrm{~Hz}), 61.33,44.24$, 37.09, 26.28, 23.43, 14.80.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NFO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 328.1325$, found: 328.1318.

Ethyl 2-(3-acetamido-6-bromo-1H-inden-2-yl)-2-methylpropanoate (3e)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=$ $8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 176.13$, $169.71,144.83,143.45,143.33,133.02,129.63,127.36,121.64,118.50,61.33,44.14$, 37.59, 26.25, 23.40, 14.80.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NBrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 388.0524$, found: 388.0527 .

Ethyl 2-(3-acetamido-5-methoxy-1H-inden-2-yl)-2-methylpropanoate (3f)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=$ 8.1, 2.4 Hz, 1H), $6.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.41$ $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.31,169.67,159.27,145.61,145.56,133.45,132.95$, $124.87,111.34,105.46,61.25,56.14,44.21,36.81,26.29,23.46,14.81$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 340.1525$, found: 340.1526 .

Ethyl 2-(3-acetamido-7-acetoxy-1H-inden-2-yl)-2-methylpropanoate (3g)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.\mathrm{d}_{6}\right) \delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=$ $12.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 176.15, 169.76, $169.60,146.90,146.36,144.53,133.40,132.12,128.47,119.13,117.80,61.32,44.09$, 35.03, 26.28, 23.40, 21.66, 14.78.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 368.1474$, found: 368.1472.

Ethyl 2-(4-acetamido-2H-chromen-3-yl)-2-methylpropanoate (3h)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}$, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.23,170.33,154.48,133.93,129.79,126.21$, $124.18,123.61,122.07,116.02,66.26,61.37,45.44,24.88,23.33,14.83$.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 326.1368$, found: 326.1360 .

Ethyl 2-(2-acetamidoacenaphthylen-1-yl)-2-methylpropanoate (3i)

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 9.47$ (s, 1H), $8.00-7.79$ (m, 2H), 7.57 (t, $J=21.2$ $\mathrm{Hz}, 4 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 176.97,170.35,138.02,137.79,137.26,134.65$, $128.53,128.46,128.34,128.06,127.82,126.67,124.27,123.35,61.39,44.89,26.74$, 23.71, 14.80.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 346.1419$, found: 346.1415 .

Ethyl (Z)-4-acetamido-2,2-dimethyl-4-phenylbut-3-enoate (3j)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.62,169.73,139.30,134.89,131.90,129.09$, 128.41, 126.14, 61.12, 43.55, 27.10, 23.45, 14.86.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$298.1419, found: 298.1413.

Ethyl (Z)-4-acetamido-2,2-dimethyl-4-(o-tolyl)but-3-enoate (3k)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.27(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.73,168.93,140.78,136.18,134.98,132.74$, 130.90 , 129.59, 127.97, 126.12, 61.15, 43.42, 26.99, 23.43, 20.97, 14.81 .

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 312.1576$, found: 312.1578 .

Ethyl (Z)-4-acetamido-2,2-dimethyl-4-(m-tolyl)but-3-enoate (3I)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}$) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 176.62,169.69,139.34,138.08,134.93,131.74,129.08,128.97,126.70$, 123.38, 61.10, 43.52, 27.13, 23.46, 22.01, 14.86.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 312.1576$, found: 312.1576.

Ethyl (Z)-4-acetamido-4-(2-methoxyphenyl)-2,2-dimethylbut-3-enoate (3m)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.90(\mathrm{~m}$, $2 \mathrm{H}), 5.75(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.36$ ($\mathrm{s}, 6 \mathrm{H}$), $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 176.75, 169.24, 157.47, 133.67, 132.84, 130.33, 129.47, 128.91, 121.11, 112.74, 61.09, 56.59, 43.57, 27.08, 23.48, 14.88.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$328.1525, found: 328.1520.

Ethyl (Z)-4-acetamido-4-(4-methoxyphenyl)-2,2-dimethylbut- 3-enoate (3n)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 0 \mathrm{H}), 5.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO)
$\delta 176.71,169.66,159.77,134.50,131.74,129.96,127.40,114.45,61.07,56.05,43.47$, 27.19, 23.47, 14.87.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 328.1525$, found: 328.1523.

Ethyl (Z)-4-acetamido-4-(4-fluorophenyl)-2,2-dimethylbut-3-enoate (30)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.86$ (s, 1H), 7.42 (dd, $J=8.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (t, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.35$ $(\mathrm{s}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ 176.56, 169.74, $162.58(J=242 \mathrm{~Hz}), 135.83,135.80,134.01,131.78,128.14(J=8 \mathrm{~Hz}), 115.85(J$ $=22 \mathrm{~Hz}$), 61.14, 43.54, 27.09, 23.44, 14.85.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 316.1325$, found: 316.1326.

Ethyl (Z)-4-acetamido-4-(4-chlorophenyl)-2,2-dimethylbut-3-enoate (3p)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 4 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ $176.49,169.77,138.25,133.97,132.88,132.50,129.06,127.93,61.17,43.58,27.05$, 23.43, 14.84.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 332.1029$, found: 332.1032

Ethyl (Z)-4-acetamido-4-(4-bromophenyl)-2,2-dimethylbut-3-enoate (3q)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H})$,
$1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) δ 176.48, 169.77, 138.65, 134.06, 132.51, 131.97, 128.27, 121.43, 61.17, 43.59, 27.04, 23.42, 14.84.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$376.0524, found: 376.0526.

Ethyl (Z)-4-acetamido-4-(furan-2-yl)-2,2-dimethylbut-3-enoate (3r)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 7.64$ (dd, $J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 (dd, $J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=3.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}) \delta 176.30,170.07,152.72,143.59,129.90,126.48,112.46,107.73$, 61.22, 43.14, 26.95, 23.42, 14.84 .

HRMS (ESI, m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$288.1212, found: 288.1207

Ethyl (Z)-4-acetamido-2,2-dimethyl-4-(thiophen-2-yl)but-3-enoate (3s)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-$ $6.93(\mathrm{~m}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, $6 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.28,169.85,144.36$, $130.99,129.93,128.46,125.91,124.64,61.22,43.49,26.97,23.39,14.86$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NSO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 304.0983$, found: 304.0982

Ethyl (Z)-4-acetamido-2,2-dimethyl-4-(naphthalen-2-yl)but-3-enoate (3t)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}$,
$6 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 176.64,169.88,136.75$, 134.91, 133.77, 133.34, 132.62, 128.99, 128.55, 128.29, 127.21, 126.88, 124.77, 124.62, 61.18, 43.68, 27.19, 23.54, 14.88.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$348.1576, found: 348.1577.

Diethyl 2-(3-acetamido-1H-inden-2-yl)malonate (4a)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.24$ (m, 3H), $4.83(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{tq}, J=7.1,3.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 169.34,168.35,142.37,142.00$, $137.05,127.39,126.86,126.28,124.63,120.47,62.20,52.53,37.80,23.82,14.85$. HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 354.1317$, found: 354.1318 .

N -(2-(2-methyl-3-oxobutan-2-yl)-1H-inden-3-yl)acetamide (4b)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (ddd, J $=15.7,7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.06$ $(\mathrm{s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 210.51,169.98$, $144.58,143.98,141.31,134.19,126.75,125.43,124.38,119.81,50.12,37.77,26.33$, 25.15, 23.34.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$280.1313, found: 280.1316 .

Methyl 2-(3-acetamido-1H-inden-2-yl)propanoate (4c)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.16$ $(\mathrm{m}, 3 \mathrm{H}), 3.85(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=22.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=$
$22.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ $174.73,169.38,143.01,141.83,136.65,134.45,126.77,125.57,124.51,120.12$, 52.66, 38.94, 36.39, 23.71, 17.74.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$282.1106, found: 280.1110 .

Tert-butyl 2-(3-acetamido-1H-inden-2-yl)-2-methylpropanoate (4d)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=$ $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) δ 175.43, 169.62, 144.21, 143.67, 140.95, 133.45, 126.68, 125.30, 124.28, 119.88, 80.71, 45.16, 37.96, 28.39, 26.42, 23.67.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 338.1732$, found: 338.1735 .

Benzyl 2-(3-acetamido-1 \boldsymbol{H}-inden-2-yl)-2-methylpropanoate (4e)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{td}, J=7.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 176.09$, $169.81,144.09,143.97,140.93,137.23,133.70,129.28,128.77,128.59,126.77$, $125.45,124.33,119.73,66.71,44.28,37.63,26.23,23.46$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 372.1576$, found: 372.1578 .

Benzyl (Z)-4-acetamido-2,2-dimethyl-4-phenylbut-3-enoate (4f)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.09-5.97(\mathrm{~m}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 176.39,169.90,139.23,137.41,135.07,131.81,129.29,129.11,128.74,128.53$, 128.48, 126.15, 66.59, 43.68, 27.02, 23.49.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 360.1576$, found: 360.1579 .

(Z)-N-(3,3-dimethyl-4-oxo-1-phenylpent-1-en-1-yl) acetamide (4g)

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}$) $\delta 8.91$ ($\mathrm{s}, 1 \mathrm{H}$), $7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 210.78,170.00,139.30,135.78,132.31,129.10$, 128.50, 126.23, 49.48, 26.50, 26.12, 23.30.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$268.1313, found: 268.1314 .

Ethyl 2-methyl-2-(1-oxo-2,3-dihydro-1H-inden-2-yl) propanoate (5a)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.72$ (ddd, $J=7.6,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (td, J $=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (qd, $J=7.2,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}$, $J=17.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.36,176.77,152.90,137.68,134.71,127.51$, 126.41, 123.82, 60.89, 53.73, 44.83, 30.42, 23.45, 22.66, 14.15.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 269.1154$, found: 269.1154.

Ethyl 2,2-dimethyl-4-oxo-4-phenylbutanoate (5b)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.96-7.91$ (m, 2H), $7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.48$ $-7.41(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.77, 177.42, 137.24, 133.15, 128.66, 128.04, 60.63, 48.58, 40.21, 25.89, 14.22.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 257.1154$, found: 257.1153

2-(1-acetamido-2,3-dihydro-1H-inden-2-yl)-2-methylpropanoic acid (5c)

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.29$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24-7.14$ (m, 3H), $6.37(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=16.0,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J=9.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.36$ $(\mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.85,170.33,143.01,142.60$, $128.44,127.16,125.00,124.75,54.59,51.93,42.74,32.85,25.94,25.65,23.10$. HRMS (ESI, m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 284.1263$, found: 284.1269

4-Acetamido-2,2-dimethyl-4-phenylbutanoic acid (5d)

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.29$ (d, $J=5.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.23 (dd, $J=6.2,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.48$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (ddd, $J=11.1,8.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=$ $14.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dd}, J=14.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.85,170.33,142.96,128.77,127.48,126.40$, 50.66, 46.45, 41.24, 28.46, 23.17, 23.07.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 272.1263$, found: 272.1269

Ethyl 2-(1-acetamido-2,3-dihydro-1H-inden-2-yl)-2-methylpropanoate (5e)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.38-7.31$ (m, 1H), $7.24-7.15$ (m, 3H), 6.19 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=9.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.02$ (m, 2H), 3.46 (dd, $J=$ $15.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (dd, $J=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.63(\mathrm{dt}, J=9.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90$ $(\mathrm{s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 178.68$, $169.08,143.69,142.45,128.23,127.08,124.95,124.68,60.80,54.39,51.95,42.90$, 33.03, 26.45, 25.47, 23.59, 14.26.

HRMS (ESI, m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 312.1576$, found: 312.1574 .

Ethyl 4-acetamido-2, 2-dimethyl-4-phenylbutanoate (5f)

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.36-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.09 (ddd, $J=10.9,8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dd}, J=14.5,10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{dd}, J=14.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.87,169.01,143.18,128.72,127.39,126.44,60.92$, $50.78,45.94,41.31,28.36,23.45,23.39,14.27$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 300.1576$, found: 300.1575

N-(2-(1-hydroxy-2-methylpropan-2-yl)-2,3-dihydro-1H-inden-1-yl)acetamide (5g)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.43-7.39$ (m, 1H), $7.24-7.14$ (m, 3H), 6.69 $(\mathrm{s}, 1 \mathrm{H}), 5.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{dd}, J=15.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=11.4$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
169.40, 144.61, 142.62, 128.08, 127.08, 125.32, 124.69, 70.89, 54.88, 50.93, 36.86, 32.01, 24.79, 24.74, 23.92, 23.76.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 270.1470$, found: 270.1476

N-(4-hydroxy-3,3-dimethyl-1-phenylbutyl)acetamide (5h)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.36$ - 7.21 (m, 6H), 6.44 (s, 1H), 4.91 (q, $J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (d, $J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98$ (dd, $J=14.7$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{q}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.82, 143.69, 128.89, 127.52, 126.84, $70.40,51.43,44.52,35.44,27.03,23.99,23.41$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 258.1470$, found: 258.1475

3, 3-Dimethyl-3, 3a, 4, 8b-tetrahydroindeno[1,2-b]pyrrol-2(1H)-one (5i)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.34-7.15$ (m, 4H), 6.39 (s, 1H), $4.90(\mathrm{~d}, \mathrm{~J}=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.88(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 182.15,143.97,141.47,128.77,127.06,125.01,124.78,60.04$, 51.25, 43.09, 33.13, 26.81, 20.69.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$224.1051, found: 224.1051.

3,3-Dimethyl-5-phenylpyrrolidin-2-one (5j)

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.40-7.28$ (m, 5H), $5.88(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=$ $8.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=12.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$
$(\mathrm{s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.92,142.44,129.03,128.03$, $125.89,54.88,47.50,41.05,25.23,24.65$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+} 212.1051$, found: 212.1050

NMR spectra

 $1 / 11$
s

～ท	\bigcirc
\bigcirc	ますがomへ

$\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -20 \\ \text { f1 } & (\mathrm{ppm})\end{array}$

3h

-176.23
-170.33
-154.48

133.93
129.79
126.21
124.18
123.61
122.07
116.02

\qquad

$\begin{array}{llllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \underset{(10)}{90} & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

3j

 $\begin{array}{llllllllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & \underset{\mathrm{f} 1(\mathrm{ppm})}{6} & 5 & 4 & 3 & 2 & 1 & 0 & -1 & -2 & -3 & -\end{array}$

-176.73
-168.93

$\left[\begin{array}{l}140.78 \\ 136.18 \\ 134.98 \\ 132.74 \\ 130.90 \\ 129.59 \\ 127.97 \\ 126.12\end{array}\right.$

\cdots N	

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{lllllllll}100 & 90 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

すか が

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \text { f1 }(\mathrm{ppm})\end{array}$

-210.51
-169.98
$\left[\begin{array}{l}144.58 \\ 143.98 \\ 141.31 \\ -134.19 \\ 126.75 \\ 125.43 \\ 124.38 \\ 119.81\end{array}\right.$

[^0]

$\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ \text { f1 (ppm) }\end{array}$

4d

ๆ	
\cdots	
－	ーフーフーブ

$4 f$

$\stackrel{\circ}{\circ}$	$\stackrel{8}{\circ}$		
$\stackrel{\circ}{\sim}$			

[^1]

[^2]

$\stackrel{\substack{\text { N }}}{\stackrel{\text { N }}{\star}}$

$\left.\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

5g

5h

[^0]: $\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0$ f1 (ppm)

[^1]: $210200190180170160150140130120110100 \quad 90$
 f1 (ppm)

[^2]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

