Two dimensional porous 3d-4f heterometallic coordination polymers constructed from pyridine-2,3-dicarboxylic acid

Ting-Hai Yang, *a,c Ana Rosa Silva c and Fa-Nian Shi*b,c

^a School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 23001, P R China. Fax: +86-

519-86953269; Tel: +86-519-86953269; E-mail: tinghai_yang@hotmail.com, fshi@ua.pt.

^b School of Science, Shenyang University of Technology, 110870, Shenyang, P R China.

^c Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

Supporting Information

Contents

Fig. S1: The hydrogen bonding between neighbor layers in compound 1

Fig.S2: IR of 1

Fig. S3: IR of 2

Fig. S4: IR of 3

Fig. S5: IR of 4

Fig. S6: EDS of 1

Fig. S7: EDS of 2

Fig. S8: EDS of **3**

Fig. S9: EDS of 4

Fig. S10: Pawley fitting of powder sample of 1.

Fig. S11: Pawley fitting of powder sample of **2**.

Fig. S12: Pawley fitting of powder sample of 3.

Fig. S13: Pawley fitting of powder sample of 4.

Table S1. Hydrogen bonds

Table S2. Hydrogen bonds Cell parameters of **1-4** were obtained by Pawley fitting on the powder X-ray diffraction pattern using *Topas* 4.2 program.

Fig. S1 The hydrogen bonding between neighbor layers in compound 1

Fig. S9 EDS of 4

Fig. S10 Pawley fitting of powder sample of 1 using *Topas* 4.2 program.

Fig. S11 Pawley fitting of powder sample of 2 using Topas 4.2 program.

Fig. S13 Pawley fitting of powder sample of 4 using *Topas* 4.2 program.

d(D-H)	d(HA)	d(DA)	<(DHA)
0.85	2.08	2.815(5)	143.9
0.85	2.20	2.709(5)	118.6
	d(D-H) 0.85 0.85	d(D-H) d(HA) 0.85 2.08 0.85 2.20	d(D-H)d(HA)d(DA)0.852.082.815(5)0.852.202.709(5)

Symmetry transformations used to generate equivalent atoms: #1 -x+y+1,-x+1,z #2 -y+1,x-y,z #3 -y+2,x-y+1,z #4 -x+y+1,-x+2,z #5 -x+y+1,-x+1,z+1

Table S2. Cell parameters of 1-4 were obtained by Pawley fitting on the powder X-ray diffraction pattern using *Topas* 4.2 program.

Compound	Dy	Ho	Er	Tm
Space group	P3	P3	P3	P3
$a = b(\mathbf{A})$	13.143	13.139	13.103	13.087
<i>c</i> (Å)	5.899	5.898	5.879	5.867
$\alpha = \beta(\circ)$	90	90	90	90
γ (°)	120	120	120	120
$V(Å^3)$	882.380	881.806	874.111	870.191
Rwp	6.48%	7.18%	8.91%	7.73%