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1 Additional results
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Figure S1: The distribution of differences in relative lattice energy.
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Figure S2: The distribution of lattice energy differences for structures with hydrogen bonding.
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Figure S3: The distribution of lattice energy differences for structures without hydrogen
bonding.
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Figure S4: The distribution of free energy differences for structures with hydrogen bonding.
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Figure S5: The distribution of free energy differences for structures without hydrogen bonding.
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Figure S6: The distribution of entropy differences for structures with hydrogen bonding.
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Figure S7: The distribution of entropy differences for structures without hydrogen bonding.
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Figure S8: The distribution of heat capacity differences for structures with hydrogen bonding.
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Figure S9: The distribution of heat capacity differences for structures without hydrogen
bonding.
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Figure S10: The distribution of density differences for structures with hydrogen bonding.
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Figure S11: The distribution of density differences for structures without hydrogen bonding.

Since we have not studied conformational polymorphs, we expect the in-
tramolecular energy differences to be small, see Figure S12. A few polymorphs
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Figure S12: The distribution of intramolecular energies.

do however exhibit different inter- and intramolecular hydrogen bonding motifs,
so that intramolecular energy differences can be as large as 19.4 kJ/mol. The
CSD structure codes of the outliers, and their calculated intramolecular en-
ergy differences, are: HDXMOR/HDXMOR01 (∆Eintra = 14.4 kJ/mol); LEZ-
JAB/LEZJAB01 (∆Eintra = 15.6 kJ/mol); DMANTL01/DMANTL07 (∆Eintra =
15.7 kJ/mol) and IFOVOO/IFOVOO01 (∆Eintra = 19.4 kJ/mol).

The next highest ∆Eintra are: BOHZOO/BOHZOO01 (∆Eintra = 13.3 kJ/mol);
FUGJUM/FUGJUM01 (∆Eintra = 11.9 kJ/mol); PABZAM/PABZAM01 (∆Eintra =
11.4 kJ/mol) and FEGWAP/FEGWAP01 (∆Eintra = 11.2 kJ/mol).
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2 Selected polymorph pairs

An alphabetically sorted list of CSD reference codes for all polymorphs included
in this study can be found in polymorphs.txt

3 Distribution of molecular RMSD in polymorphs

The molecular conformations tends to be very similar in polymorphs. Con-
formational polymorphism was studied by Cruz-Cabeza and Bernstein 1. We

Figure S13: Molecular RMSD between 1397 single-component polymorph pairs.

observe the same distribution of molecular RMSD as did Cruz-Cabeza and
Bernstein1. We have used a limit of 0.25 Å to remove conformational poly-
morphs.
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4 Co-prime splitting of linear supercells.

The crystal unit cell is expanded into linear supercells (1x1xn) where n is the
number necessary to reach the target k-point distance. If n < 5 the lattice
dynamic calculations is performed on the supercell as is. For n > 5 the supercell
is split into several smaller supercells (1x1xk, 1x1x`, 1x1xm ...) such that
k, `,m... are all mutually co-prime and k + ` + m... > n. The long linear
supercells are split into 2, 3 or 4 co-prime supercells according to the scheme in
Table S1. Note that this is by no means the only possible choice, and we make no
claim that this is the best or computationally most efficient splitting. Splitting
the supercells means that the sampled k-points will no longer be equidistantly
placed along the reciprocal axes, but this should have a negligible effect on
the results. Unfortunately though, it also means that the convergence will not
be monotonic with respect to the target k-point sampling distance, making
convergence testing difficult.
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Table S1: Linear supercells were split into 2, 3 or 4 smaller supercells with mutually co-prime
expansion coefficients in this way.

2 → 2
3 → 3
4 → 4
5 → 2, 3
6 → 3, 4
7 → 3, 4
8 → 3, 5
9 → 2, 3, 5
10 → 2, 3, 5
11 → 3, 4, 5
12 → 3, 4, 5
13 → 3, 4, 7
14 → 3, 4, 7
15 → 3, 5, 7
16 → 4, 5, 7
17 → 2, 3, 5, 7
18 → 5, 6, 7
19 → 3, 4, 5, 7
20 → 4, 7, 9
21 → 5, 7, 9
22 → 5, 8, 9
23 → 2, 5, 7, 9
24 → 7, 8, 9
25 → 5, 9, 11
26 → 7, 9, 10
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5 Revised Williams99 parameters

All parameters describing interactions between C, N, O and H atoms are de-
scribed using Williams’ original Williams99 forcefield parameters, apart from
hydrogen bond H...A interactions, which were reparameterised to work more
effectively with the atomic multipole electrostatic model. For H...A interac-
tions, the pre-exponential parameter of the exp-6 model was modified from the
Williams99 value. The parameters are given in the following table.

Table S2: Revised H...A parameters in the exp-6 intermolecular model used. C = 0 for all
interactions.

hydrogen acceptor A (eV)
H2 N1 149
H2 N2 166
H2 N3 163
H2 O1 129
H2 O2 105
H3 N1 70
H3 N2 118
H3 O1 127
H3 O2 133
H4 N1 141
H4 N2 77
H4 N3 56
H4 N4 112
H4 O1 34
H4 O2 198
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6 Model potential parameters for halogens

Halogen atoms tend to have an anisotropic van der Waals radius2. To account
for this, intermolecular potentials with an anisotropic repulsion term has been
developed3,4. A local unit vector ez is defined at each anisotropic site, parallel
to the covalent bond joining the halogen to its bonded atom, pointing away from
the bond. A second unit vector, eik, is the vector between the interacting atoms.
DMACRYS describes repulsion anisotropy using a modified exp-6 potential of
the form:

V = G exp (−Bικ(rij − ρικ(Ωik)))− Cικ/r6, (1)

where ρικ(Ωik) describes the anisotropy of repulsion, and is defined as:

ρικ(Ωik) = ρικ0 +ρι1(e
i
z ·eik)+ρκ1(−ekz ·eik)+ρι2(3[eiz ·eik]2−1)/2+ρκ2(3[ekz ·eik]2−1)/2

(2)
ρ0 describes the isotropic repulsion, ρ1 parameters describe a shift of the

centre of repulsion and ρ2 parameters describe a quadrupolar distortion of the
atom. Parameters for Cl and F were taken from Day’s specifically developed
potential for molecule XIII in the 4th blind test of crystal structure prediction5.
Halogen parameters were empirically fitted to reproduce the crystal structures
of a set of halogenated aromatic molecules. Details are available in the ESI to
the 4th blind test paper. The parameters, in input format for DMACRYS are
provided below:

BUCK F_01 F_01

3761.006673 0.240385 7.144500 0.0 70.0

ANIS F_01 F_01

0 0 2 0 2 -0.035000

0 0 0 2 2 -0.035000

ENDS

BUCK Cl01 Cl01

5903.747391 0.299155 86.716330 0.0 70.0

ANIS Cl01 Cl01

0 0 2 0 2 -0.093860

0 0 0 2 2 -0.093860

ENDS
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7 Additional convergence plots

Convergence of free energy, heat capacity, zero point energy and entropy with
respect to k-point sampling and the number of k-points was studied. Since we
in this article are only interested in the difference between crystal structures,
we do not show results for the convergence of the “absolute” quantities, but
such convergence tests have been made previously6. Here we show two typical
results from our convergence testing.
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Figure S14: Convergence of the entropy for a crystal structure of theophylline with respect to
the number of sampled k-points. Plot reproduced from Nyman 6
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Figure S15: The same data as in the diagram above, but now over the k-point distance. Plot
reproduced from Nyman 6

To make the “absolute” thermodynamic quantities converge is difficult and
require a careful k-point sampling. With our co-prime split linear supercell
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sampling, the convergence is no longer monotonic. However, the difference in
entropy, vibrational energy etc between polymorphs converges slightly faster.
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Figure S16: Convergence of ∆A for a set of theophylline (Roman numerals), maleic hydrazide,
and 3,4-cyclobutylfuran polymorphs with respect to k-point distance.

We have estimated the error in ∆S at 300 K due to the k-point sampling
to ±1 J/mol·K at a k-point distance of 0.12 Å. The error in Helmholtz energy
caused by the incomplete k-point sampling at the same temperature is about
1 kJ/mol, probably smaller than the error in lattice energy. The zero point
energy and heat capacity converges much more rapidly. The errors for these
quantities are negligible.

Errors arise both because of the finite sampling, and the selective way of
sampling along only three directions. The error caused by neglecting the “diag-
onal” k-vectors is however small and likely systematic, not affecting the delta-
quantities significantly.

The thermodynamic properties are functions of the phonon density of states,
and an alternative way to judge the convergence is to compare phonon DOS
calculated at different k-point samplings. In the article, we show the phonon
density of states for two theophylline and two maleic hydrazide polymorphs
calculated at a k-point sampling of 0.12 Å−1. Below, we show the density of
states of the same structures, but at a denser target k-point distance of 0.08
Å−1. The density of states calculated at 0.12 and 0.08 Å−1 are very similar and
well converged at these samplings.
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Figure S17: Phonon density of states for theophyline polymorphs I and II calculated with a
target k-point distance of 0.08 Å−1.
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Figure S18: Phonon density of states for two maleic hydrazide polymorphs calculated with a
target k-point distance of 0.08 Å−1.
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