Supporting information

N-H··· π induced configurational isomerism and the role of temperature in the *Z* to *E* isomerization of 2-fluoro- \hat{N} -(3-fluorophenyl) benzimidamide

Dhananjay Dey^a and Deepak Chopra*^a

^a Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore By-Pass Road, Bhauri, Bhopal-462066, Madya Pradesh, India. Fax: +91-755-6692392

Figure S1: ¹H-NMR spectra of the synthesized compound in CDCl₃ (500 MHz).

FTIR (KBr pellet, cm⁻¹):- Bulk: 3323, 3175 (NH₂), 1667 (C=N), 1595 (C=C) in cm⁻¹, **E1:** 3434, 3287, 3138 (NH₂), 1643 (C=N), 1597 (C=C) in cm⁻¹, **E2:** 3320, 3165 (NH₂), 1666 (C=N), 1597 (C=C) in cm⁻¹, **Z:** 3305, 3169 (NH₂), 1665 (C=N), 1595 (C=C) in cm⁻¹. ¹H-**NMR (CDCl₃, 500 MHz):** δ 8.12 (s, 1H), 7.41 (s, 1H), 7.26 (m, 2H), 7.11 (t, *J* = 10.07 Hz, 1H), 6.62 (m, 3H), 5.21 (s, 2H).

Figure S2: Hot-stage polarizing microscopic (HSM) pictures of the polymorphs (**E2** and **E1**) at different temperatures on heating from 25°C to 90°C @ 0.5°C/min, distinguish both the forms.

Figure S3: Hot-stage polarizing microscopic (HSM) pictures of the E/Z-isomers (E2 and Z) at different temperatures on heating from 25°C to 81°C @ 0.5°C/min, distinguish both the forms.

Figure S4: Molecular pairs of E1 with decreasing interaction energies.

Figure S5: Molecular pairs of E2 with decreasing interaction energies.

Figure S6: Molecular pairs of Z with decreasing interaction energies.

Figure S7: Hirshfeld surface fingerprint plots of the two polymorphs (E1 and E2) and Zisomer, plotted with different atom[…]atom contacts.

Figure S8 (a): Modes of vibrations of the $-NH_2$ group calculated for the isolated molecule in the crystal geometry (E1).

Figure S8 (b): Vibrational frequencies plot for the isolated molecule in the crystal geometry **(E1)**.

Figure S9 (a): Modes of vibrations of the $-NH_2$ group calculated for the molecular pair interacting *via* N-H^{...}N and N-H^{...} π in the crystal geometry (E1).

Figure S9 (b): Vibrational frequencies plot for the molecular pair in the crystal geometry (E1).

Figure S10 (a): Modes of vibrations of the $-NH_2$ group calculated for a model system where one N-H proton of the molecule is interacted with phenyl ring and the other N-H proton is interacted with the N atom of N-methylenemethanamine *via* N-H^{...} π and N-H^{...}N respectively (atomic coordinates were extracted from the E1).

Figure S10 (b): Vibrational frequencies plot for the model system.

Figure S11: Difference Fourier map through the $N(1)=C(13)-N(2)H_2$ plane for **E1**, **E2** and **Z**. Positive counters are in solid blue and negative ones in broken red lines, at intervals of 0.05 eÅ⁻³.