Supporting Information

A single precursor approach for ZIFs synthesis: Transformation of a new 1D [Zn(Im)(HIm)₂(OAc)] structure to 3D Zn(Im)₂ frameworks

Qi Shi,^a Fei Wang,^a Xiaozhen Kang,^a Jun Xu,^b Yining Huang,^{*b} Jinping Li^a and Jinxiang Dong^{*a}

 ^aResearch Institute of Special Chemicals, Taiyuan University of Technology Taiyuan, 030024, Shanxi, P.R.China. Fax: +86 351 611178; Tel: +86 351 6010550; E-mail: <u>dongjinxiangwork@hotmail.com</u>
^bDepartment of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 (Canada); E-mail: <u>yhuang@uwo.ca</u>

Compound	Zn(Im)(HIm) ₂ (OAc)
Formula	$C_{11}H_{14}N_6O_2Zn$
Formula weight	327.65
Crystal system	Monoclinic
Space group	P2(1)/c
Cell parameters	a = 10.9252(9) Å
	<i>b</i> = 9.3337(6) Å
	c = 14.2595(3) Å
	alpha = 90 deg.
	<i>beta</i> = 98.0093(10) <i>deg</i> .
	gamma = 90 deg.
Cell volume	1439.89(16) Å ³
Z	4
Calculated density	1.511 g/cm ³
Temperature	293(2) K
Absorption coefficient	1.716 mm ⁻¹
Crystal size	0.21 x 0.12 x 0.07 mm
Reflections collected/unique	6203
GOF	1.066
Final R indices [I > 2sigma (I)] R indices (all data)	$R_1 = 0.0560,$
	$wR_2 = 0.1271$
	$R_1 = 0.1112,$
	$wR_2 = 0.1726$

Table S1 Crystallographic data and structure refinement summary for C₁₁H₁₄N₆O₂Zn (CCDC 1044169)

 $Zn(OAc)_2(s) + 3HIm(s) \longrightarrow [Zn(Im)(HIm)_2(OAc)](s) + HOAc(g/l)$

 $[Zn(Im)(HIm)_2(OAc)](s) \longrightarrow [Zn(Im)_2](s) + HIm(l/s) + HOAc(g/l)$

Scheme S1 Reaction equation for synthesis of [Zn(Im)(HIm)₂(OAc)] (1) (above) and coi (3) (below) (Im=imidazolate, HIm=imidazole, OAc=carboxylate, HOAc= acetic acid)

Figure S1. PXRD patterns of the products using a solvent-free synthesis at 50 °C (left) and 100 °C (right) for 24 h with different molar ratios of $Zn(OAc)_2$ -HIm mixtures: 1:2, 1:3 and 1:6.

Figure S2. Experimental XRD pattern for the sample and the XRD pattern simulated from the crystal structure data for Zn(Im)(HIm)₂(OAc) (1) (CCDC 1044169).

Figure S3. FT-IR spectrum of Zn(Im)(HIm)₂(OAc) (1)

Figure S4. TG-DSC curves for Zn(Im)(HIm)₂(OAc) (1).

Figure S5. SEM images illustrating the crystallization process of [Zn(Im)(Him)2OAc] (1) at 100 °C (heated to the reaction temperatures at a rate of 5 °C min⁻¹) as a function of reaction time: (a) 1 h; (b) 3 h; (c) 6 h; (d) 12 h; (e) 24 h.

Figure S6. (left) $Zn(Im)(HIm)_2(OAc)$ (1) heated in air at a heating rate of 5 °C min⁻¹ to a set temperature (100–450 °C) and maintained at this temperature for 24 h; (right) TG curves for zni (2) obtained at 350 °C.

Figure S7. (left) $Zn(Im)(HIm)_2(OAc)$ (1) was sealed in a Teflon-lined stainless steel autoclave, heated at a heating rate of 5 °C min⁻¹ to a set temperature (100–220 °C) and maintained at this temperature for 24 h; (right) TG curves for coi (3) obtained at 180 °C.

Figure S8. (left) FT-IR spectrum of zni (2) obtained at 150 °C; (right) FT-IR spectrum of coi (3) obtained at 150 °C.

Figure S9. SEM images of (1) after heat treatment in open atmosphere as a function of temperature which was increased at a rate of 5 °C min⁻¹: (a) 100 °C; (b) 125 °C; (c) 150 °C; (d) 200 °C; (e) 250 °C; (f) 300 °C; (g) 350 °C

Figure S10. SEM images of (1) after heat treatment in a closed vessel at 150 °C (heated to the reaction temperatures at a rate of 5 °C min⁻¹) as a function of reaction time, the reaction times were: (a) 0 h; (b) 0.5 h; (c) 1.5 h; (d) 3 h; (e) 6 h; (f) 12 h; (c) 24 h.

Figure S11. coi (3) (a) transforms into zni (b) when heated in air at a heating rate of 5 °C min⁻¹ to 375 °C.