Electronic Supplementary Information

Formation of Rh frame nanorods by using Au nanorods as sacrificial template

Masaharu Tsuji,*^{*a,b,c*} Yukinori Nakashima,^{*b*} Atsuhiko Yajima^{*c*} and Masashi Hattori^{*a*}

^a Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan.

- ^b Department of Applied Science for Electronics and Materials, Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
- ^c Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, Kasuga, 816-8580, Japan

Fig. S1. Au@Rh NRs and Rh nanoframes obtained at an ascorbic acid concentration of 2.3 mM.

Fig. S2. Au@Rh NRs and Rh nanoframes obtained at a CTAB concentration of 3M.

Fig. S3. High-resolution TEM image of Rh nanoframe obtained after 12 h.

Fig. S4. Time evolution of plasmom resonance band of Au NRs in the presence of CTAB after the addition of HCI.

Fig. S6. Time evolution of plasmom resonance band of decahedral Au nanoparticles in the presence of CTAB after the addition of HCI.

Fig. S7. XRD patterns of decahedral Au@Rh particles. Red lines shows standard positions of Rh peaks.