Electronic Supplementary Information (ESI)

Alkyl linker effects on the coordination topology of ditopic di(2-pyridylmethyl)amine carboxylate ligands with Zn^{II} and Cu^{II} perchlorates: polymers *vs* macrocycles

Kiattipoom Rodpun,^a Allan G. Blackman,^{b,c} Michael G. Gardiner,^d Eng Wui Tan,^b Carla J. Meledandri^a and Nigel T. Lucas^{*a}

^aMacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

E-mail: nlucas@chemistry.otago.ac.nz

^bDepartment of Chemistry, University of Otago, Dunedin 9054, New Zealand, P.O. Box 56, Dunedin 9054, New Zealand.

^cSchool of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.

^dSchool of Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia.

 Table S1
 Mass spectrometry data of M^{2+} : CnCOOH solutions with different ratios of metal ion to ligand. Assigned elemental formulas for complexes are shown alongside measured and (calculated) m/z values.

Ligand	C3COOH	C4COOH	C5COOH	C7COOH	C10COOH	C11COOH
M ²⁺	(C ₁₆ H ₁₉ N ₃ O ₂)	(C ₁₇ H ₂₁ N ₃ O ₂)	(C ₁₈ H ₂₃ N ₃ O ₂)	(C ₂₀ H ₂₇ N ₃ O ₂)	(C ₂₃ H ₃₃ N ₃ O ₂)	(C ₂₄ H ₃₅ N ₃ O ₂)
Zn ²⁺	[Zn(C3COO)] ⁺	[Zn(C4COO)] ⁺	[Zn(C5COO)] ⁺	[Zn(C7COO)] ⁺	[Zn(C10COO)] ⁺	[Zn(C11COO)] ⁺
	348.0672	362.0813	376.0961	404.1275	446.1765	460.1955
	(348.0690)	(362.0847)	(376.1003)	(404.1316)	(446.1786)	(460.1942)
Cu ²⁺	[Cu(C3COO)] ⁺	[Cu(C4COO)] ⁺	[Cu(C5COO)] ⁺	[Cu(C7COO)] ⁺	[Cu(C10COO)] ⁺	[Cu(C11COO)] ⁺
	347.0764	361.0867	375.1088	403.1387	445.1835	459.1957
	(347.0795)	(361.0952)	(375.1108)	(403.1421)	(445.1891)	(459.2047)

Ratios of M²⁺:CnCOOH in solutions = 1:2

Ratios of M²⁺:CnCOOH in solutions = 1:1

Ligand	C3COOH	C4COOH	С5СООН	С7СООН	C10COOH	C11COOH
M ²⁺	(C ₁₆ H ₁₉ N ₃ O ₂)	(C ₁₇ H ₂₁ N ₃ O ₂)	(С ₁₈ Н ₂₃ N ₃ O ₂)	(С ₂₀ Н ₂₇ N ₃ O ₂)	(C ₂₃ H ₃₃ N ₃ O ₂)	(C ₂₄ H ₃₅ N ₃ O ₂)
Zn ²⁺	[Zn(C3COO)] ⁺	[Zn(C4COO)] ⁺	[Zn(C5COO)] ⁺	$[Zn(C7COO)]^+$	[Zn(C10COO)] ⁺	[Zn(C11COO)] ⁺
	348.0678	362.0827	376.0971	404.1288	446.1795	460.1923
	(348.0690)	(362.0847)	(376.1003)	(404.1316)	(446.1786)	(460.1942)
Cu ²⁺	[Cu(C3COO)] ⁺	[Cu(C4COO)] ⁺	[Cu(C5COO)] ⁺	[Cu(C7COO)] ⁺	[Cu(C10COO)] ⁺	[Cu(C11COO)] ⁺
	347.0774	361.0828	375.1052	403.1396	445.1828	459.1918
	(347.0795)	(361.0952)	(375.1108)	(403.1421)	(445.1891)	(459.2047)

Ratios of M²⁺:CnCOOH in solutions = 2:1

Ligand	СЗСООН	С4СООН	С5СООН	С7СООН	С10СООН	С11СООН
	$(C_{16}H_{19}N_3O_2)$	$(C_{17}H_{21}N_3O_2)$	$(C_{18}H_{23}N_{3}O_{2})$	$(C_{20}H_{27}N_3O_2)$	$(C_{23}H_{33}N_3O_2)$	$(C_{24}H_{35}N_3O_2)$
M^{2+}						
Zn^{2+}	$[Zn(C3COO)]^+$	$[Zn(C4COO)]^+$	$[Zn(C5COO)]^+$	$[Zn(C7COO)]^+$	$[Zn(C10COO)]^+$	$[Zn(C11COO)]^+$
	348.0657	362.0820	376.0979	404.1274	446.1743	460.1935
	(348.0690)	(362.0847)	(376.1003)	(404.1316)	(446.1786)	(460.1942)
Cu ²⁺	$[Cu(C3COO)]^+$	$[Cu(C4COO)]^+$	$[Cu(C5COO)]^+$	$[Cu(C7COO)]^+$	$[Cu(C10COO)]^+$	$[Cu(C11COO)]^+$
	347.0741	361.0824	375.1081	403.1386	445.1862	459.1924
	(347.0795)	(361.0952)	(375.1108)	(403.1421)	(445.1891)	(459.2047)

a) M²⁺ and CnCOO⁻ are used as abbreviations for a metal ion and deprotonated ion of CnCOOH respectively.
 b) M²⁺ was added as a perchlorate salt.

 Table S2
 Volumes of the solutions used for the Job plots.

Solution	Mole fraction of CnCOOH	Volume of 0.010 M $CnCOOH / \mu L$	Volume of 0.010 M Cu(ClO ₄) ₂ $^{\circ}$ 6H ₂ O / μ L
1	0.1	300	2700
2	0.2	600	2400
3	0.3	900	2100
4	0.4	1200	1800
5	0.5	1500	1500
6	0.6	1800	1200
7	0.7	2100	900
8	0.8	2400	600
9	0.9	2700	300

Figure S1 Job plots at 650 nm for Cu^{II} complexes of CnCOOH: (A) the plot of C3COOH, (B) the plot of C4COOH, (C) the plot of C5COOH, (D) the plot of C7COOH, (E) the plot of C10COOH and (F) the plot of C11COOH.

X-ray crystal structure determinations

Special conditions/variations to the general procedure are given below:

1: The perchlorate anion is disordered and has been modelled over three orientations refining to the occupancies 0.55/0.23/0.22. A region adjacent to the perchlorate contains disordered solvent which was modelled as 3.5 water molecules at four sites; the water was modelled at three positions at two sites, and in two positions at the remaining two sites. The water oxygen occupancies were chosen based on potential H-bonded pathways involving the perchlorate anions and also equalisation of U_{iso} values. The hydrogen atoms of the lattice water molecules could not be located from the difference Fourier map and have been omitted from the model. Restraints were applied to the disordered perchlorate to ensure similar bond lengths, angles and displacement parameters.

2: The asymmetric unit contains a Zn coordination polymer tetramer, along with four perchlorate anions and two lattice water molecules. One of the C₄-alkyl chains and associated carboxylate are disordered and have been modelled over two positions refining to 0.55/0.45 occupancies. Restraints ensured the two alkyl chain conformations had similar and sensible geometrical parameters. Two of the perchlorate anions are disordered and were modelled over two orientations, refining to equal occupancies; restraints were utilised in the refinement. One of the two lattice water molecules refined to half occupancy. The hydrogen atoms of the aqua ligands (one per Zn) and latter water could not be clearly located from the difference Fourier map and were omitted from the model.

4: The perchlorate anion appeared to be rotationally disordered and was modelled over two orientations at a single site, refining to 0.77/0.23 occupancies. The lattice also contains a disordered molecule of methanol which was modelled over two orientations, refining to 0.55/0.45 occupancies. Restraints were applied to the disordered perchlorate and methanol moieties.

5: One of the perchlorate anions is disordered and was modelled over two sites, refining to equal occupancies; restraints were applied across the two components. The hydrogen atoms of the lattice water molecules could not be located from the difference Fourier map and have been omitted from the model.

6: The hydrogen atoms of the lattice water molecules could not be located from the difference Fourier map and have been omitted from the model.

7: The asymmetric unit contains one cationic Zn-carboxylate complex at a two-fold axis generating the Zn_2L_2 macrocycle. The C_7 alkyl chain linking the amine and carboxylate is disordered and was modelled over three orientations refining to 0.35/0.35/0.3 occupancies and was a restrained refinement. The perchlorate anion is disordered and was modelled over two sites, refining to equal occupancies; the perchlorate is rotationally disordered at one site and was modelled with two equal orientations with the use of restraints.

8: All crystals investigated diffracted weakly and only low resolution data could be collected. Additionally, the crystals slowly lost crystallinity due to solvent loss. One perchlorate anion is well ordered, however, the remaining three perchlorate anions are disordered with only two half occupancy anions being located at a further two sites. The contents of the remaining voids between the complexes could not be effectively modelled and have been treated as a diffuse contribution to the overall scattering using SQUEEZE/PLATON (A. L. Spek). Restraints were applied across the pyridyl rings, the alkyl chains and perchlorate anions. The hydrogen atoms of the aqua ligands could not be located from the difference Fourier map and have been omitted from the model.

9: A low data completio operating under rotation data collection with a fixed detector and affects some high angle data. One perchlorate anion is rotationally disordered and was modelled over two orientations, refining to equal occupancies. Restraints were applied to the disordered perchlorate to ensure similar bond lengths, angles and displacement parameters. The hydrogen atoms of the lattice water molecules could not be located from the difference Fourier map and have been omitted from the model.n ratio is due to the limitations of the instrument available at the Australian Synchrotron.

Figure S2 Powder X-ray diffraction measured from 1.

Figure S3 Powder X-ray diffraction measured from 3.

Figure S4 Powder X-ray diffraction measured from 4.

Figure S5 Powder X-ray diffraction measured from 6.

Complexes	$\label{eq:c3COO} \begin{split} &\{[Zn(C3COO)(H_2O)](ClO_4)^{-}3.5H_2O\} \\ &_n(1) \end{split}$	${[Zn(C4COO)(H_2O)](ClO_4) 1.5H_2O}_n(2)$		${[Zn(C5COO)(H_2O)](ClO_4)}_n(3)$
CCDC No	1037287	1037288		1037289
Bonds Zn–N pyridine	Zn1-N1 2.112(3) Zn1-N2 2.109(3)	Zn1–N11 2.122(5) Zn1–N12 2.117(5) Zn2–N21 2.095(5)	Zn3–N31 2.086(5) Zn3–N32 2.055(5) Zn4–N41 2.102(4)	Zn1–N1 2.0795(14) Zn1–N2 2.0847(14)
Zn-N tertiary	Zn1-N3 2.170(3)	Zn2–N22 2.122(5) Zn1–N13 2.163(4) Zn2–N23 2.183(5)	Zn4–N42 2.118(5) Zn3–N33 2.190(4) Zn4–N43 2.205(4)	Zn1-N3 2.1939(14)
Zn–O carboxylate	Zn1-O1* 2.001(3)	Zn1-O21 2.067(13) Zn1-O22 2.090(9) Zn2-O31 2.115(4) Zn2-O32 2.221(4)	Zn3-O41 2.111(4) Zn3-O42 2.241(4) Zn4-O11* 2.144(3) Zn4-O12* 2.184(4)	Zn1-O1* 2.0968(12) Zn1-O2* 2.2714(12)
Zn–O aqua	Zn1-O3 2.022(2)	Zn1-O13 2.114(4) Zn2-O23 2.139(4)	Zn3–O33 2.110(4) Zn4–O43 2.131(4)	Zn1-O3 2.1159(12)
H-Bonds	H31…O2 1.86(3)	-		-
Angles N pyridine–Zn–N tertiary	N1–Zn1–N3 79.09(11) N2–Zn1–N3 79.19(11)	N11–Zn1–N13 78.51(17) N12–Zn1–N13 79.55(17) N21–Zn2–N23 78.87(19) N22–Zn2–N23 78.66(19)	N31–Zn3–N33 79.88(88) N32–Zn3–N33 79.16(17) N41–Zn4–N43 77.61(16) N42–Zn4–N43 78 55(17)	N1–Zn1–N3 80.87(5) N2–Zn1–N3 79.63 (5)
N pyridine–Zn–N pyridine	N1-Zn1-N2 156.85(12)	N11–Zn1–N12 158.04(18) N21–Zn2–N22 157.35(18)	N31–Zn3–N32 158.65(18) N41–Zn4–N42 156.02(16)	N1-Zn1-N2 159.12(5)
O carboxylate–Zn–O carboxylate		O21–Zn1–O22 64.0(3) O31–Zn2–O32 60.93(14)	O41–Zn3–O42 60.37(15) O11*–Zn4–O12* 60.88(14)	O1*-Zn1-O2* 60.02(4)
O carboxylate–Zn–O aqua	O1–Zn1–O3 99.16(10)	O21–Zn1–O13 95.7(3) O22–Zn1–O13 159.6(2) O31–Zn2–O23 93.60(15) O32–Zn2–O23 154.52(14)	O41–Zn3–O33 99.46(15) O42–Zn3–O33 159.81(14) O11–Zn4–O43 91.90(14) O12–Zn4–O43 152.76(13)	O1*-Zn1-O3 98.62(5) O2*-Zn1-O3 157.70(5)
Geometries	Zn1: distorted square pyramid $(\tau = 0.10)$	Zn1: distorted octahedron	Zn3: distorted octahedron	Zn1: distorted octahedron
		Zn2: distorted octahedron	Zn4: distorted octahedron	

*symmetry equivalent atom (see text and figures for details)

Table S4 Selected bond lengths (Å)	angles (°) and geometries for	Cu ^{II} coordination polymers of 4, 5 ar	nd 6

Complexes	${[Cu(C3COO)](ClO_4)MeOH}_n(4)$	${[Cu(C4COO)(H_2O)](ClO_4) 2H_2O_n(5)}$	${[Cu(C5COO)(H_2O)](ClO4) 2H_2O}_n$ (6)	
CCDC No	1037290	1037291	1037292	
Bonds Cu–N pyridine	Cu1–N1 1.977(3) Cu1–N2 1.985(3)	Cu1–N11 1.986(5) Cu1–N12 1.987(5)	Cu1–N1 1.971(3) Cu1–N2 1.987(3)	
		Cu2–N21 1.991(4) Cu2–N22 1.981(4)		
Cu-N tertiary	Cu1-N3 2.042(3)	Cu1-N13 2.013(5)	Cu1–N3 2.027(4)	
		Cu2-N23 2.038(4)		
Cu–O carboxylate	Cu1–O1* 1.982(3) Cu1–O2 2.181(3) Cu1–O2* 2.622(2)	Cu1-O11* 1.956(4) Cu1-O12* 2.649(5)	Cu1-O1* 1.956(3) Cu1-O2* 2.714(3)	
	(-)	Cu2-O21* 1.983(4) Cu2-O22* 2.485(4)		
Cu–O aqua	_	Cu1-O13 2.338(3)	Cu1-O3 2.269(3)	
		Cu2-O23 2.391(3)		
Angles N pyridine–Cu–N tertiary	N1–Cu1–N3 83.86(13) N2–Cu1–N3 82.98(13)	N11–Cu1–N13 82.85(19) N12–Cu1–N13 84.01(19)	N1–Cu1–N3 83.96(16) N2–Cu1–N3 82.85(19)	
		N21–Cu2–N23 82.80(18) N22–Cu2–N23 83.15(18)		
N pyridine–Cu–N pyridine	N1-Cu1-N2 162.94(14)	N11-Cu1-N12 166.82(19)	N1-Cu1-N2 166.8(2)	
		N21-Cu2-N22 165.88(19)		
O carboxylate-Cu-O carboxylate	O1*-Cu1-O2* 55.13(9)	O11*-Cu1-O12* 55.3(2)	O1*-Cu1-O2* 53.5(1)	
	01*-Cu1-02 89.42(10)	O21*-Cu2-O22* 57.5(1)		
O carboxylate-Cu-O aqua	-	O11*-Cu1-O13 96.33(15) O12*-Cu1-O13 151.2(1)	O1*-Cu1-O3 105.06(13) O2*-Cu1-O3 158.0(1)	
		O21*-Cu2-O23 93.58(13) O22*-Cu2-O23 151.1(1)		
Geometries	Cu1: distorted octahedron	Cu1: distorted octahedron	Cu1: distorted octahedron	
		Cu2: distorted octahedron		

*symmetry equivalent atom (see text and figures for details)

Table S5 Selected bond lengths (Å), angles (°) and geometries for Zn ^{II} macrocycles of 7,	, 8 and 9 .
--	---------------------------

Complexes	${[Zn(C7COO)(H_2O)](ClO_4)}_2$ (7)	$\{[Zn_2(\textbf{C10COO})_2(H_2O)_2]$	$(ClO_4)_2 3H_2O MeOH_4$ (8)	${[Zn_2(C11COO)_2(H_2O)_2](ClO_4)}$	$_{n})_{2}[Zn_{2}(C11COO)_{2}](ClO_{4})_{2}H_{2}O\}_{n}$ (9)
CCDC No	1037293	1037294		1037295	
Bonds Zn–N pyridine	Zn1-N1 2.093(4) Zn1-N2 2.055(4)	Zn1–N11 2.069(13) Zn1–N12 2.139(15)	Zn3–N31 2.060(12) Zn3–N32 2.118(13)	Zn1-N11 2.057(4) Zn1-N12 2.098(4)	Zn3-N31 2.062(4) Zn3-N32 2.094(4)
				Zn2–N21 2.121(4) Zn2–N22 2.100(4)	Zn4–N41 2.067(4) Zn4–N42 2.047(4)
Zn-N tertiary	Zn1-N3 2.230(6)	Zn2–N21 2.084(13) Zn2–N22 2.083(13)	Zn4–N41 2.072(13) Zn4–N42 2.084(12)	Zn1-N13 2.172(4)	Zn3-N33 2.219(4)
				Zn2-N23 2.174(4)	Zn4–N43 2.235(4)
Zn–O carboxylate	Zn1-O1* 1.978(4)	Zn1–N13 2.235(16) Zn2–N23 2.252(17)	Zn3–N33 2.224(14) Zn4–N43 2.227(16)	Zn1-O11 2.158(3) Zn1-O12 2.199(4)	Zn3-O31* 2.054(3) Zn3-O32 2.016(3)
				Zn2-O21 2.191(3) Zn2-O22 2.150(3)	Zn4-O41* 2.057(3) Zn4-O42 2.009(3)
Zn–O aqua	Zn1-O3 2.067(5)	Zn1–O11* 2.178(13) Zn1–O12* 2.195(12)	Zn3–O31* 2.161(12) Zn3–O32* 2.273(13)	Zn1-O13 2.121(3)	
				Zn2-O23 2.112(3)	
Angles		Zn2-O21 1.985(12)	Zn4–O41* 1.966(12) Zn4–O42* 2.564(12)		
N pyridine–Zn–N tertiary	N1–Zn1–N3 78.87(19) N2–Zn1–N3 78.9(2)	Zn1–O13 2.118(14) Zn2–O23 2.146(12)	Zn3–O33 2.047(11) Zn4–O43 2.136(11)	N11–Zn1–N13 81.37(17) N12–Zn1–N13 79.86(16)	N31–Zn3–N33 79.63(14) N32–Zn3–N33 79.27(14)
				N21–Zn2–N23 79.27(14) N22–Zn2–N23 80.21(15)	N41–Zn4–N43 79.28(13) N42–Zn4–N43 80.61(14)
N pyridine–Zn–N pyridine	N2-Zn1-N1 114.84(18)	N11–Zn1–N13 78.4(6) N12–Zn1–N13 77.3(6)	N31–Zn3–N33 80.8(5) N32–Zn3–N33 76.9(6)	N11-Zn1-N12 160.70(18)	N31-Zn3-N32 148.06(14)
pjitalle				N21-Zn2-N22 158.82(15)	N42-Zn4-N41 147.81(15)
O carboxylate–Zn–O carboxylate	-	N21–Zn2–N23 81.6(6) N22–Zn2–N23 80.2(6)	N41–Zn4–N43 78.0(6) N42–Zn4–N43 79.2(5)	O11–Zn1–O12 60.36(12)	O31*–Zn3–O32 97.28(12)
caroonylate				O21-Zn2-O22 60.55(12)	O41*-Zn4-O42 96.41(12)
O carboxylate–Zn–O aqua	O1*–Zn1–O3 96.97(18)	N11–Zn1–N12 111.7(6) N21–Zn2–N22 111.5(6)	N31–Zn3–N32 110.4(5) N41–Zn4–N42 110.9(6)	O11–Zn1–O13 103.11(13) O12–Zn1–O13 163.41(13)	
				O21–Zn2–O23 101.73(12) O22–Zn2–O23 162.28(12)	
Geometries	Zn1: distorted trigonal bipyrimid	Zn1: distorted octahedron	Zn3: distorted octahedron	Zn1: distorted octahedron	Zn3: distorted square pyramid $(\tau = 0.21)$
	(τ = 0.63)	Zn2: distorted square pyramid (τ = 0.49)	Zn4: distorted square pyramid $(\tau = 0.44)$	Zn2: distorted octahedron	Zn4: distorted square pyramid $(\tau = 0.24)$

*symmetry equivalent atom (see text and figures for details)