Supplementary Information

Effects of the dissolution alkalinity and self-assembly on ZSM-5-based micro-/mesoporous composites: a study for relationship between porosity, acidity, and catalytic performance

Peng Peng,^{*a*} Youhe Wang,^{*a,b*} Mark J Rood,^{*a c*} Zhanquan Zhang,^{*a*} Fazle Subhan,^{*a,d*} Zifeng Yan,^{**a*} Lihong Qin,^{*e*} Zhihua Zhang,^{*e*} Zhongdong Zhang,^{*e*} and Xionghou Gao^{*e*}

^{*a*} State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China. Tel: (+) 86 532 86981296; E-mail: <u>zfyancat@upc.edu.cn</u>

^b School of Science, China University of Petroleum, Qingdao 266580, China

^c Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, IL 61801, USA

^d Department of Chemistry, Abdul Wali Khan University Mardan, K.P.K, Pakistan

^e Petrochemical Research Institute, China National Petroleum Company, Beijing 100195, China

Synthesis method for conventional Al-MCM-41

Conventional Al-MCM-41 was synthesized by a hydrothermal method. Sodium metasilicate nonahydrate (Na₂SiO₃·9H₂O, Sinopharm Chemical Reagent Co. Ltd), and sodium aluminate (NaAlO₂, Sinopharm Chemical Reagent Co. Ltd), and served as silicon and aluminum source, respectively.

In a typical experiment, 22.8 g Na₂SiO₃·9H₂O, 0.23 g NaAlO₂ together with 150 mL 1.0 mol/L NaOH aqueous solution were mixed and stirred at 353 K for 1 hour. The pH was then adjusted to 10.5 by titration with 2.0 mol/L H₂SO₄. The slurry was then transferred to a Teflon-lined stainless steel autoclave and treated at 110 °C for 24 h for self-assembly of the samples. Finally, the slurry was filtered and washed with deionized water, dried in an oven at 383 K, and subsequently calcined at 823 K for 6 h.

Al-MCM-41 was ion-exchanged with 0.5 mol/L ammonium chloride at 353K for 1h and such treatment was repeated three times. The samples were then calcined at 823 K for 4 h.

Synthesis method for Al-MCM-41-like mesostructures

Al-MCM-41-like mesostructures were synthesized by a hydrothermal method. The parent zeolite was commercial H form ZSM-5 with SiO₂/Al₂O₃ mass ratio = 28 (Nankai Catalyst Company). Typically, (5.000 ± 0.005) g ZSM-5 was first mixed with a series of aqueous solutions containing select concentrations of NaOH ($C_{NaOH} = 0.4, 0.6, \text{ and } 1.0 \text{ mol/L}$). Vigorous agitation of the solution occurred at 353 K for 1 h and then the liquid in the slurry was filtered. (4.500 ± 0.005) g CTAB that was dissolved in 60 mL of deionized H₂O and then added to the dissolution system. The pH was then adjusted to 10.5 by addition of 2.0 mol/L sulphuric acid solution. The slurry was then transferred into a Teflon-lined stainless steel autoclave for self-assembly at 383 K for 24 h. The solid product was filtered and washed with excess deionized water, dried in an oven at 383 K, and subsequently calcined at 823 K for 6 h.

Al-MCM-41-like mesostructures were ion-exchanged with 0.5 mol/L ammonium chloride at 353K for 1h and such treatment was repeated three times. The samples were then calcined at 823 K for 4 h.

Synthesis method for desilicated ZSM-5

Desilicated ZSM-5 was synthesized by alkali dissolution. In a typical experiment, (5.000 ± 0.005) g commercial ZSM-5 (SiO₂/Al₂O₃ = 28), and 150 mL 1.0 mol/L NaOH aqueous solution was mixed and stirred at 353 K for 1 hour. The solid in the slurry was filtered and washed with deionized water, and subsequently dried in an oven at 383 K. This sample was denoted as AT-0.4.

Al-MCM-41 was ion-exchanged with 0.5 mol/L ammonium chloride at 353K for 1h and such treatment was repeated three times. The samples were then calcined at 823 K for 4 h.

Tests of silica-alumina ratio in the Al-MCM-41-like mesostructures

In order to detect the silica-to-alumina ratio (SiO_2/Al_2O_3) in the Al-MCM-41-like mesostructures, Al-MCM-41-like mesostructures and conventional Al-MCM-41 mesoporous material were characterized by an X-ray fluorescence (XRF) analyzer. (PAN analytical Axios-Petro)

Figures Captions:

Figure S1 Nitrogen adsorption-desorption isotherm (a) and pore width distribution calculated from the BJH desorption branch (b) of Al-MCM-41

Figure S2 SEM (A) and TEM (B) images of Al-MCM-41

Figure S1 Nitrogen adsorption-desorption isotherm (a) and pore width distribution calculated from the BJH desorption branch (b) of Al-MCM-41

Figure S2 SEM (A) and TEM (B) images of Al-MCM-41

Table Captions:

Table S Elemental analysis of parent ZSM-5 and MCM-41 samples synthesized from the filtrate after alkali dissolution

Sample	n(SiO ₂):n(Al ₂ O ₃) / -
ZSM-5	28
MMZ-0.4	133
MMZ-0.6	122
MMZ-1.0	71

 Table S Elemental analysis of parent ZSM-5 and MCM-41 samples synthesized from the filtrate after alkali dissolution