Electronic Supplementary Information (ESI)

Size-tunable tavorite LiFe(PO₄)(OH) microspheres with a

core-shell structure

Min-Young Cho, a.c Young Soo Lim, b Sun-Min Park, Kwang-Bum Kim, c and Kwang Chul Roh*a

^a Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering

& Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea.

^b Energy Conversion Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 660-031, Republic of Korea.

^c Department of Materials Science & Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.

Fig. S1 (a) XRD pattern and (b) FE-SEM image of a sample by a hydrothermal process (distilled water was used as the reaction medium, but all other conditions of reaction were the same as the solvothermal process)

Fig. S2 (a) High magnification image of the shell region of C3-LFP(OH) shown in (b). (d) Selected-area electron diffraction (SAED) pattern of the region shown in (c).

Fig. S3 FE-SEM image of a cracked C3-LFP(OH) particle after being reacted at 160 °C for 48 h.

Fig. S4 (a) Charge/discharge curves for (a) C0-LFP(OH), (b) C1-LFP(OH), (c) C2- LFP(OH), and (d) C3-LFP(OH) in the ranges 3.0–4.35 V vs. Li/Li⁺ at various C-rates.