Supporting information for:

Flux method growth of bulk MoS₂ single crystals and application as a saturable absorber

Xixia zhang,¹Fei Lou,¹Chunlong Li,¹Xiang Zhang,¹ Ning Jia,¹Tongtong Yu,¹ Jingliang

He,^{1,2}Baitao Zhang,^{1,2}Haibing Xia,^{1,29}Shanpeng Wang,^{1,2}*and Xutang Tao^{1,2}*

¹State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Chi

na

²Key Laboratory of Functional Crystal Materials and Device (Shandong University,

Ministry of Education), Jinan, 250100, China

Corresponding Author

Xutang Tao: txt@sdu.edu.cn; Shanpeng Wang: wshp@sdu.edu.cn.

The captions for the supporting information:

Figure S1 the crystal grown at the ratio of starting materials;

Figure S2 the EDS images of MoS₂ crystal;

Figure S3 (a) the photos of ultrathin MoS_2 exfoliated by the liquid-phase exfoliation method in ethyl alcohol, (b) the supernatant of the centrifuge tube in (a) after centrifugation.

gure S1 the crystal grown at the ratio of starting materials (a) Mo:S:Sn=1:2:5, (b) Mo:S:Sn=1:2:10, (c) Mo:S:Sn=1:2:15, (d) Mo:S:Sn=1:2:20

Figure S2 the EDS images of MoS2 crystal

Figure S3 (a) the photo of ultrathin MoS_2 exfoliated by the liquid-phase exfoliation method in ethyl alcohol, (b) the supernatant of the centrifuge tube in (a) after centrifugation.