Supporting Information for

Atomic structure of defects and interfaces in TiO₂-B and Ca:TiO₂-B (CaTi₅O₁₁) films grown on SrTiO₃

Sung Joo Kim,^a Kui Zhang,^a Michael B. Katz,^a Baihai Li,^a George W. Graham,^a and Xiaoqing

Pan*b

^aDepartment of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI 48109, USA

^bDepartment of Chemical Engineering and Materials Science and Department of Physics and Astronomy, University of California - Irvine, 816 F Engineering Tower, Irvine, CA 92697, USA E-mail: xiaoqing.pan@uci.edu

Fig. s1 Misfit strain analysis of TiO₂-B and Ca:TiO₂-B using geometric phase analysis. (a) An actual HR-STEM image, (b) a strain (ϵ_{xx}) map of an image, and (c) a strain profile from the line-scan A.

Fig. s2 (a) Schematic illustration of a surface step terrace (= 0.5 unit cell (u.c.)), or SST, at the interface between STO and Ca:TiO₂-B. Unit cells of Ca:TiO₂-B cannot fulfill epitaxy everywhere along the surface where there are gaps (equivalent of Δd_1 and Δd_2 in the diagram) due to the step. However, during growth, each gap is filled with another vertical row of atoms.

Fig. s3 (a) Schematic of sequential growth of TiO_2 -B + Ca:TiO_2-B mixture phase and another titania polymorph, anatase, grown on (110) STO, (b) high-resolution STEM images showing the presence of CaTiO_3 layer for tilted growth of the mixture phase. (c) an interphase boundary formed between anatase and TiO_2-B grains.

Fig. s4 Comparison of atomic configuration between (100) planes of CaTiO₃ and TiO₂-B.

Fig. s5 (a) High-resolution STEM images of defects at the interface between TiO_2 -B and Ca:TiO_2-B with two missing Ca-modified layers that generate the two adjacent TiO_2-B grains oriented same direction. (b) This generates the long-range boundary condition throughout the boundary with possible occupancy sites for Ti atoms from either left or right-side TiO_2-B grain.