Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2015

Supplementary materials

In situ high temperature X-ray diffraction, transmission electron microscopy and theoretical modeling for the formation of WO₃ crystallites

Suman Pokhrel¹, Johannes Birkenstock,² Arezoo Dianat^{3,4}, Janina Zimmermann^{3,5}, Marco

Schowalter⁶, Andreas Rosenauer^{6,7}, L. Colombi Ciacchi^{3,7}, L. Mädler^{1,7*}

¹Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany

²Central Laboratory for Crystallography and Applied Materials, University of Bremen, Germany ³Hybrid Materials Interfaces Group, Department of Production Engineering and Bremen Center for Computational Materials Science, University of Bremen, Germany ⁴Institute for Materials Science, University of Dresden, Germany ⁵Fraunhofer Society Headquarter, Munich, Germany ⁶Institute of Solid State Physics, University of Bremen, Germany ⁷MAPEX Center for Materials and Processes, University of Bremen, Germany

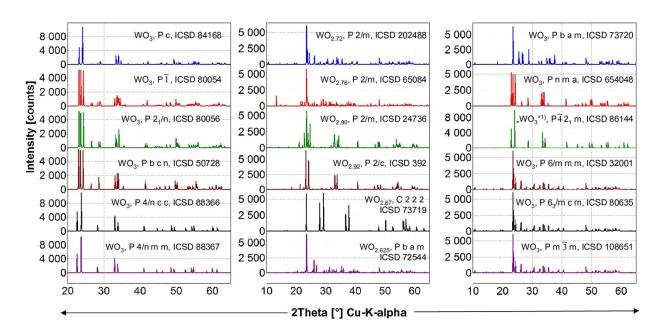


Fig. S1: Calculated XRD patterns for all structurally unique WO_{3-x} found in the ICSD (inorganic crystal structure database, FIZ Karlsruhe) together with respective composition and number of the applied ICSD entry. (a) temperature dependent series of stable phases of non deficient WO_3 including the three phases found in the present study, (b) oxygen-deficient phases WO_{3-x} (c) other

nominal WO₃ phases. Among the latter, it was recognized that ICSD entry 86144 is nominally entered as non deficient WO₃, while it was clearly characterized as oxygen-deficient WO_{2.9} in the related paper of Locherer et al. (1999). The intensities of all patterns are calculated from the ICSD entries referenced in the figure. They are on the same scale and thus represent the proportions they would have in any mixture with equal fractions of this phases¹⁻⁴.

References

- 1 A. Aird, E. K. H. Salje, J. Phys: Condensed matter, 1998, 10, L377.
- 2 A. Aird, M. C. Domeneghetti , F. Mazzi, V. Tazzoli, E. K. H. Salje, J. Phys: Condensed matter, 1998, 10, L569.
- 3 K. R. Locherer, I. P. Swainson, E. K. H. Salje, J. Phys.: Cond. Matter, 1999, 11, 4143.
- 4 K. R. Locherer, I. P. Swainson, E. K. H. Salje, J. Phys.: Cond. Matter, 1999, 11, 6737.