Electronic Supplementary Information

Rapid surfactant-free synthesis of Mg(OH)₂ nanoplates and pseudomorphic dehydration to MgO.

James M. Hanlon,^{*a*} Laura Bravo Diaz,^{*a,b*} Giulia Balducci,^{*a*} Blane A. Stobbs,^{*a*} Marek Bielewski,^{*b*} Peter Chung ^{*c*} and Duncan H. Gregory.^{*a**}

^a WestChem, School of Chemistry, University of Glasgow, Glasgow, G12 88QQ, United Kingdom

^b European Commission, Joint Research Centre (JRC) Institute for Energy and Transport, Westerduinweg 3, 1755 LE Petten, The Netherlands

^c School of Geographical and Earth Sciences, Gregory Building, Lilybank Gardens, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.

E-mail: Duncan.Gregory@glasgow.ac.uk

Fig. S1: Experimental set-up for the synthesis of MgO (4) in the MMC.

Fig. S2: SEM micrograph illustrating the morphology of the as-received MgO

Fig S3: Representative EDX for commercial MgO

hkl and Peak widths (FWHM) / °									
MgO (t=0)	111	200	220	311	222				
	0.1584	0.1980	0.1584	0.1980	0.1584				

 Table S1: Selected Peak Widths (FWHM) for commercial MgO

Fig S4: PXD pattern for commercial MgO used in the synthesis

Fig. S5 SEM micrograph illustrating the morphology of a typical $Mg(OH)_2/MgO$ product (1) obtained at intermediate reaction times at 750 W with 5 mins heating.

Fig S6: SEM micrograph illustrating the morphology of a typical $Mg(OH)_2/MgO$ product obtained at 800 W with 1 minute of heating

Fig S7: SEM micrograph illustrating the morphology of a typical $Mg(OH)_2$ product obtained at 800 W with 2 minutes heating

Mass Mg used / g	Autoclave vol. / mL	MgO: H ₂ O molar ratio	ReactionAppliedtime /power /minW		Mg(OH) ₂ phase fraction / wt%	Mg:O ratio for nanoplates / at%
0.4	23	0.39	3	750	1	38:62
0.4	23	0.39	4	750	86	37:63
0.4	23	0.39	5	750	91	38:62
0.4	23	0.39	6	750	100	39:61
0.8	45	0.66	4	750	98	37:63
0.8	45	0.66	6	750	100	
0.8	45	0.66	1	800	99	35:65
0.8	45	0.66	2	800	100	38:62
0.8	45	0.66	3	800	100	39:61
0.8	45	0.66	4	800	100	37:63

Table S2: Dependence of $Mg(OH)_2$ phase fraction (vs. MgO) on MW synthesis parameters.

 Table S3: Crystallographic data for sample 2

Chemical Formula	Mg(OH) ₂
Crystal System	Trigonal
Space Group	<i>P</i> ³ <i>m</i> 1
<i>a</i> / Å	3.150(4)
<i>c</i> / Å	4.774(9)
Volume / Å ³	41.0
Z	1
Formula Weight / g mol ⁻¹	58.319
Calculated density, ρ / g cm ⁻³	2.360
No. of data	9573
No. of parameters	31
$\mathbf{R}_{\mathbf{wp}}$	0.0931
R _p	0.0361
$\chi^{\hat{2}}$	4.428

 Table S4: Atomic parameters for 2 from Rietveld refinement.

Atom	Wyckoff	X	у	Ζ	U _{iso}	Site
Туре	symbol					Occupancy
Mg	1a	0	0	0	3.39(4)	1
0	2d	0.33	0.66	0.220(24)	3.73(7)	1
Н	2d	0.33	0.66	0.434	4.10(6)	1

Table S5: Selected atomic distances (Å) and angles (°) for 2 from Rietveld Refinement

Mg-O1/ Á	2 x 2.0993 (6) 4 x 2.0995 (6)
Mg-H1/ Á	2 x 2.7568 (3) 2 x 2.7570 (3)
O-H1/ Å O1-Mg-O1 / º	2 x 1.0231 (12) 1 x 97.21 (4) 2 x 97.22 (4)
O1-Mg-H1/ °	2 x 119.97 (3) 1 x 119.98 (3)

Fig. S8: Observed, Calculated and Difference plot for the refinement of sample 2. Black tickmarks are reflections from $Mg(OH)_2$

Fig. S9: Representative EDX spectrum for $Mg(OH)_2$ sample 2

Chemical Formula	MgO
Crystal System	_ Cubic
Space Group	$Fm\overline{3}m$
<i>a</i> / Å	4.220(3)
Volume / Å ³	75.14(2)
Z	1
Formula Weight / g mol ⁻¹	161.216
Calculated density, ρ / g cm ⁻³	3.563
No. of data	3889
No. of parameters	26
$\mathbf{R}_{\mathbf{wp}}$	0.0520
R _p	0.0386
χ^2	2.147

 Table S6: Crystallographic data for sample 3

 Table S7: Atomic parameters for 3 from Rietveld refinement.

Atom Type	Wyckoff symbol	X	У	Z	U _{iso}	Site Occupancy
Mg	4a	0	0	0	4.24(6)	1
Ο	4b	0.5	0.5	0.5	2.28(6)	1

Fig. S10: OCD (Observed, Calculated, Difference) plot for the Rietveld Refinement for for MgO (sample 3)

Fig. S11: Representative EDX for MgO (sample 3)

Chemical Formula	MgO
Crystal System	Cubic
Space Group	Fm3m
<i>a</i> / Å	4.220(3)
Volume / Å ³	75.07(1)
Z	1
Formula Weight / g mol ⁻¹	161.216
Calculated density, $\rho / g \text{ cm}^{-3}$	3.566
No. of data	3888
No. of parameters	23
$\mathbf{R}_{\mathbf{wp}}$	0.0642
R _p	0.0552
χ^2	3.086

Table S8: Crystallographic data for sample 4

 Table S9: Atomic parameters for 4 from Rietveld refinement.

Atom Type	Wyckoff symbol	X	У	Z	U _{iso}	Site Occupancy
Mg	4a	0	0	0	2.63(4)	1
0	4b	0.5	0.5	0.5	1.59(4)	1

Fig. S12: OCD (Observed, Calculated, Difference) plot for the Rietveld Refinement for MgO (sample 4)

Fig S13: SEM micrograph illustrating the morphology of sample 4

Fig S14: BJH desorption plots for 800 W samples: (a) 1 minute heating (Single Point Pore Volume = $0.196 \text{ cm}^3\text{g}^{-1}$, BJH pore volume= $0.201 \text{ cm}^3\text{g}^{-1}$) (b) 2 minutes heating (Single Point Pore Volume = $0.066 \text{ cm}^3\text{g}^{-1}$, BJH pore volume= $0.069 \text{ cm}^3\text{g}^{-1}$) (c) 3 minutes heating (Single Point Pore Volume = $0.128 \text{ cm}^3\text{g}^{-1}$, BJH pore volume= $0.137 \text{ cm}^3\text{g}^{-1}$) and (d) 4 minutes heating (Single Point Pore Volume = $0.112 \text{ cm}^3\text{g}^{-1}$, BJH pore volume= $0.066 \text{ cm}^3\text{g}^{-1}$)

Fig S15: BJH desorption plot for sample **3** (MgO; Single Point Pore Volume = 0.134 cm³ g⁻¹, BJH pore volume= 0.073 cm³ g⁻¹).

 Table S8: Selected Peak Widths (FWHM) for 800 W synthesised samples

hkl and Peak Widths (FWHM)													
Irradiation	001	100	002	102	012	110	111	103	200	201	004	022	202
time / min													
1	0.1248	0.1536	0.0480	0.0960	0.0960	0.0864	0.2304	0.0960	0.1920	0.2304	0.1920	0.0960	0.0960
2	0.2856	0.1632	0.2856	0.3468	0.3468	0.2244	0.2856	0.1020	0.1224	0.1836	0.3264	0.1020	0.1020
3	0.0576	0.1536	0.1920	0.0864	0.0864	0.1056	0.2496	0.2880	0.1536	0.2112	0.2688	0.1920	0.1920
4	0.2304	0.1728	0.2112	0.2688	0.2688	0.1920	0.1344	0.3840	0.2304	0.3072	0.3072	0.4224	0.4224

Fig S16: Plot of linewidths vs irradiation time for samples prepared at 800 W. Lines serve only as a guide to the eye.