Supporting information for

Enantiomeric Poly(D-lactide) with a Higher Melting Point Served as Significant Nucleating Agent for Poly(L-lactide)

Hai-Yan Yin^a, Xin-Feng Wei^a, Rui-Ying Bao^{a*}, Quan-Xiao Dong^b, Zheng-Ying Liu^a, Wei Yang^{a*}, B ang-Hu Xie^a, Ming-Bo Yang^a

^{a.} College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065 Sichuan, China

^{b.} Beijing Engineering Research Center of Architectural Functional Macromolecular Materials,

Beijing Building Construction Research Institute, Beijing, People's Republic of China 100039

*Corresponding authors. Tel/Fax: + 86 28 8546 0130. E-mail address: weiyang@scu.edu.cn (W. Yang) and baoruiying2005@126.com (RY Bao).

Fig. S1 Final morphologies of (a) *h*PDLA-0.1 (b) *h*PDLA-0.3 (c) *h*PDLA-0.5 (d) *h*PDLA-1.0 (e) *h*PDLA-3.0 (f) *h*PDLA-5.0 at T_c of 130 °C. The scale bar in panel (a) applies to all the micrographs.

Fig. S2. Avrami plots of $\ln[-\ln(1 - X_t)]$ versus $\ln t$ for neat PLLA and the blends at T_c of (a) 120 °C and (b) 130 °C.

Based on the DSC data in Fig. 6, the isothermal crystallization kinetics of PLLA in the blends crystallized at 120 and 130 °C were analyzed by the Avrami equation as follows:^{1, 2}

$$1 - X_t = exp[-k(T)t^n] \tag{1}$$

where *n* is the Avrami index and K(T) is the overall rate constant. The linear form of eq 1 can be stated as:

$$ln[-ln(1 - X_t)] = lnk(T) + nlnt$$
(2)

k(T) and *n* can be estimated from the linear fitting of ln $[-\ln(1 - X_t)]$ vs ln *t*. To ensure the accuracy of the Avrami analysis, the data in a limited conversion range (3 - 30%) was employed for fitting. The obtained data were shown in Fig.S2.

Fig. S3. The spherulite radius as a function of time for neat PLLA at T_c of (a) 120 °C and (b) 130 °C, the sample was first melting at 180 °C for 3 min and then cooled to T_c at 40 °C/min.

References

- 1. M. Avrami, *The Journal of Chemical Physics*, 1939, 7, 1103-1112.
- 2. M. Avrami, The Journal of Chemical Physics, 1940, 8, 212-224.