Influence of chiral ligand on the gel formation of a Mg(II) coordination polymer

Wei Lee Leong,^a Sudip K. Batabyal,^a Stefan Kasapis^b and Jagadese J. Vittal^{a*}

^aDepartment of Chemistry, National University of Singapore, Singapore 117543. ^bSchool of Applied Sciences, RMIT University, City Campus, Melbourne, Victoria 3001, Australia.

Supporting information

S1 Instrumentation

All starting materials were obtained commercially and used as received. The elemental analyses were performed in the microanalytical laboratory, Department of Chemistry, National University of Singapore. ¹H NMR spectra were recorded on a Bruker ACF 300 spectrometer operating in the quadrature mode at 300 MHz. The infrared spectra (KBr pellet) were recorded using an FTS165 Bio-Rad FTIR spectrophotometer in the range of 400–4000 cm⁻¹. Electrospray Ionization (ESI) mass spectra were recorded on a Finnigan MAT LCQ mass spectrometer using syringe pump method. High resolution ESI mass spectra were obtained on a Shimadzu LCMS-IT-TOF spectrometer including an SPD-M20A prominence PDA detector, CBM-20A prominence communication bus module, CTO-20A prominence column oven, SIL-20AC prominence auto sampler, DGU-20A3 prominence degasser and LC-20AD prominence liquid chromatograph. Shimadzu Formula Predictor Software was used to process the data. MS and HRMS were reported in units of mass of charge ratio (m/z). Solvent present in the compounds was determined using an SDT 2960 TGA thermal analyzer with a heating rate of 5°C min⁻¹ from room temperature to 600°C. Scanning electron microscopy (SEM) images were taken using a Jeol JSM-6700F field emission scanning electron microscope operated at 5 kV and 10 µA. The fluorescence spectra were obtained from Perkin-Elmer LS 55 luminescence spectrometer. Dynamic oscillation strain and frequency sweeps were carried out on freshly prepared samples using a controlled stress rheometer (AR-1000N, TA Instruments Ltd., New Castle, DE, USA). Parallel plate geometry of 40 mm diameter and 1.5 mm gap was employed throughout. Following loading, the exposed edges of samples were covered with a silicone fluid from BDH (100 cs) to prevent water loss.

S2 Synthesis and characterization

Synthesis of ligands: A warm solution of 4-methylumbelliferrone (0.881 g, 5 mmol) in ethanol (30 mL) was treated with *D*- or *DL*-alanine (0.445 g, 5 mmol) in water (20 mL) and formaldehyde (37%, 370 μ L, 5 mmol). The reaction mixture was heated at 90°C for 8 hours. The resulting precipitate was filtered off and recrystallized using 1:1 water:ethanol solution. Synthesis and characterization of *N*-(7-hydroxy-4-methyl-8-

coumarinyl)-*L*-alanine, *L*-H₂muala (**1a**) and hydrogel $[Mg(L-muala)(H_2O)_2] \cdot nH_2O$ (**2**) can be found in our previous studies.¹

N-(7-hydroxy-4-methyl-8-coumarinyl)-D-alanine, D-H₂muala

Yield: 0.76 g, (55 %). Anal. Calcd. for $C_{14}H_{15}NO_5$ (277.28): C, 60.64; H, 5.45; N, 5.05; found: C, 60.36; H, 5.37; N, 5.07. ¹H NMR (D₂O, ppm): δ 7.48 (d, 1H, Ar), 6.71 (d, 1H, Ar), 5.85 (s, 1H, Ar), 3.84 (q, 2H, -CH₂N), 3.24 (q, 1H, -CH-Me), 2.40 (s, 3H, -ArCH₃), 1.25 (d, 3H, -CH₃).

N-(7-hydroxy-4-methyl-8-coumarinyl)-DL-alanine, DL-H₂muala

Yield: 0.87 g, (63 %). Anal. Calcd. for $C_{14}H_{15}NO_5$ (277.28): C, 60.64; H, 5.45; N, 5.05; found: C, 60.23; H, 5.40; N, 5.06. ¹H NMR (D₂O, ppm): δ 7.44 (d, 1H, Ar), 6.64 (d, 1H, Ar), 5.90 (s, 1H, Ar), 3.81 (s, 2H, -CH₂NH), 3.20 (q, 1H, -CH-Me), 2.36 (s, 3H, -ArCH₃), 1.22 (d, 3H, -CH₃).

Synthesis of fiber [Mg(*D*-muala)(H₂O)₂]·*n*H₂O (1)

To a solution of D-H₂muala (27.7 mg, 0.1 mmol) in LiOH (4.8 mg, 0.2 mmol) in H₂O (1 mL), Mg(CH₃COO)₂·4H₂O (21.4 mg, 0.1 mmol) in H₂O (1 mL) was added. The yellow clear solution was obtained initially. Upon standing undisturbed at ambient temperature, aggregation of fiber occurred. The resulting fibrous membrane was collected after 2 weeks and air dried.

The solid powder was obtained by slow evaporation from methanolic solution of *D*- H_2 muala (27.7 mg, 0.1 mmol) in LiOH (4.8 mg, 0.2 mmol) in MeOH (2 mL) and Mg(CH₃COO)₂·4H₂O (21.4 mg, 0.1 mmol) in MeOH (2 mL). The precipitate is washed with MeOH and Et₂O then dried under vacuum. [Mg(*D*-muala)(H₂O)₂], Yield: 26 mg (77%). Anal. Calcd. For MgC₁₄H₁₇NO₇ (335.6): calcd. C 50.11, H 5.11, N 4.17; found C 51.40, H 5.37, N 4.17. ¹H NMR (D₂O, 300 MHz, ppm): δ = 7.46 (d, 1H, Ar), 6.65 (d, 1H, Ar), 5.86 (s, 1H, Ar), 4.17 (d, 2H, -CH₂NH), 3.51 (q, 1H, -CH-Me), 2.31 (s, 3H, -ArCH₃), 1.52 (d, 3H, -CH₃). ESI-MS: 276.1 [*D*-muala]⁻, 398.1 [Mg(*D*-muala)(H₂O)₂(CH₃OH)₂]⁻,

615.1 $[Mg_2(D-muala)_2(H_2O)]^-$. Weight loss as per TGA: 9.6% (calculated for 2 H₂O: 10.7%).

Synthesis of hydrogel $[Mg(D-muala)(H_2O)_2] \cdot nH_2O$ (2)

To a solution of *D*-H₂muala (27.7 mg, 0.1 mmol) in LiOH (7.2 mg, 0.3 mmol) in H₂O (1 mL), $Mg(CH_3COO)_2 \cdot 4H_2O$ (21.4 mg, 0.1 mmol) in H₂O (1 mL) was added. The opaque hydrogel was formed instantly.

The solid powder was obtained by slow evaporation from methanolic solution of D-H₂muala (27.7 mg, 0.1 mmol) in LiOH (7.2 mg, 0.3 mmol) in MeOH (2 mL) and Mg(CH₃COO)₂·4H₂O (21.4 mg, 0.1 mmol) in MeOH (2 mL). The precipitate is washed with MeOH and Et₂O then dried under vacuum. [Mg(D-muala)(H₂O)₂], Yield: 22 mg (66%). Anal. Calcd. For MgC₁₄H₁₇NO₇ (335.6): calcd. C 50.11, H 5.11, N 4.17; found C 49.83, H 5.42, N 3.80. ESI-MS: 276.1 [D-muala]⁻, 398.1 [Mg(D-muala)(H₂O)₂(CH₃OH)₂]⁻, 615.1 [Mg₂(D-muala)₂(H₂O)]⁻. Weight loss as per TGA: 9.9% (calculated for 2 H₂O: 10.7%).

** Elemental and thermal analysis were performed on dried powder obtained from methanol solution while FTIR and ESI-MS studies were performed on dried sample thread 1 and hydrogel 2.

Synthesis of [Mg(*DL*-muala)(H₂O)₂] (3)

To a solution of *DL*-H₂muala (27.7 mg, 0.1 mmol) in LiOH (4.8 mg, 0.2 mmol) in LiOH (4.8 mg, 0.2 mmol) in MeOH (2 mL) and Mg(CH₃COO)₂·4H₂O (21.4 mg, 0.1 mmol) in MeOH (2 mL). The precipitate is washed with MeOH and Et₂O then dried under vacuum. [Mg(*DL*-muala)(H₂O)₂], Yield: 23 mg (69%). Anal. Calcd. For MgC₁₄H₁₇NO₇ (335.6): calcd. C 50.11, H 5.11, N 4.17; found C 51.27, H 5.68, N 4.21. ESI-MS: 276.2 [*DL*-muala]⁻, 398.2 [Mg(*DL*-muala)(H₂O)₂(CH₃OH)₂]⁻, 615.1 [Mg₂(*DL*-muala)₂(H₂O)]⁻. Weight loss as per TGA: 11.5% (calculated for 2 H₂O: 10.7%).

Figure S1. ¹H NMR spectra of ligands *L*-H₂muala (top) , *D*-H₂muala (middle) and *DL*-H₂muala (bottom) in D₂O solution.

Figure S2. FTIR spectra of 1 and 2.

Figure S3. ESI-MS of nanofibre,1 and hydrogel, 2.

Figure S4. SEM images of nanofibres, 1 at different magnifications showing the fibrous network comprised of aligned nanofibers.

Figure S5. SEM image of compound 3.

Figure S6. XRPD of nanofibres 1 and hydrogel 2.

Figure S7. Small angle XRPD of nanofibres 1 and hydrogel 2.

Figure S8. A portion of polymeric chain in [Zn(*L*-muala)(H₂O)]·0.5H₂O.²

(b)

Figure S9. (a) Self-assembly of Mg²⁺ with *L*-H₂-muala (**1a**) and *D*-H₂-muala (**1b**) in different solvent systems. The photograph shows the appearance of reaction mixtures while the SEM images illustrate the microscopic morphology of the products; (b) SEM images of the products obtained from the reaction mixtures from (a).

Microscopic morphology tuning of nanofibers by changing the chirality of ligands and solvents. Reactions of Mg^{2+} with *L*-H₂-muala afforded gelatin-like appearance and random cross-linked network regardless the amount of EtOH while the presence of EtOH in minor amount resulted in the formation of aligned and random nanofibers and gelatin-like appearance in the solution of Mg^{2+} with *D*-H₂-muala.

Figure S10. Photograph showing the solution mixture of Mg^{2+} with H_2 muala with different chirality at equivalent molar ratio in aquoues solution for 14 days. The molar fractions of ligand *L*- H_2 muala and *D*- H_2 muala) used were varied from 100:0, 95:5, 50:50, 5:95, 0:100

(b)

Figure S11. (a) UV-vis absorption and (b) fluorescence spectra of H_2D -muala ([H_2D -muala] = 1 x 10⁻⁴ M) in the presence of two equivalent of LiOH and one equivalent of Mg(II) in aqueous solution.

Figure S12. Fluorescence spectra of Mg(II) hydrogels obtained from *L*- and *D*-muala ligands upon excitation at $\lambda = 360$ nm.

Figure S13. Fluorescence spectra of *D*-H₂muala and Mg(*D*-muala) hydrogel, **2** upon excitation at $\lambda = 360$ nm.

Figure S14. Dynamic frequency sweep measurements of G' and G'' for a solution containing thread 1 at a strain of 2% and 25°C.

Frequency sweep of solution (pH 10, aging for 2 weeks) containing fibre 1 is shown in Fig. 4a. At lower frequencies the loss modulus G'' is higher than the storage modulus G' exhibiting a more viscous than elastic response of the system. A crossover frequency at which G' and G'' become equal was noticed about 50 rad s⁻¹. Exceeding this frequency the former viscous feature transforms into a more elastic one. These findings reflect that the solution of fibre is viscous and entangled network.

References:

- 1. W. L. Leong, S. K. Batabyal, S. Kasapis and J. J. Vittal, *Chem. Eur. J.*, 2008, 14, 8822
- 2. W. L. Leong, A. Y.-Y. Tam, S. K. Batabyal, L. W. Koh, S. Kasapis, V. W.-W. Yam and J. J. Vittal, *Chem. Commun.*, 2008, 3628-3630