Electronic Supplementary Information

Manuscript ID CE-ART-04-2015-000712

A facile one-step fabrication of novel WO₃/Fe₂(WO₄)₃!10.7H₂O porous microplates with remarkable photocatalytic activities

S 1.1 Synthesis of WO₃:

We fabricated bare WO₃ on the same experimental conditions as that of WO₃-Fe₂(WO₄)₃!10.7H₂O i.e., Take 3 mmol of sodium tungstate dihydrate (Na₂WO₄.2H₂O) in 20 ml of deionized water and magnetically stirred the solution for half an hour. During the stirring, 3 mL of 3 M HCl were added drop-wise to the above solution and finally a greenish solution was transferred into a stainless- steel autoclave of 40 mL capacity. The reaction vessel was sealed and heated at 200 °C for 24 hours. The autoclave was then allowed to cool at room temperature and the obtained product was several times washed and centrifuged with distilled water and ethanol and then dried at 80 °C for 12 hours. The prepared WO₃ have circular round plate-like structure; the morphology, XRD pattern and UV-absorption along with band gap calculation of the sample are shown in Fig. S1below.

Fig. S1 (a, b) SEM images, (c) XRD pattern and (d) UV- band gap calculation, of WO₃ circular plates

And then we fabricated WO₃-Fe₂(WO₄)₃!10.7H₂O by taking 3 mmol of Na₂WO₄.2H₂O and 1 mmlo FeCl₂.4H₂O which has pentagonal type plates-like structure. So, it can be proposed that in the synthesis of WO₃-Fe₂(WO₄)₃!10.7H₂O, first WO₃ plates formed and then Fe₂(WO₄)₃ deposited on these plates. That is the reason we labeled Fig. 3b by mentioning WO₃ plate below and Fe₂(WO₄)₃ above that plate.

S 2.1 TG Analysis:

To determine the content of $Fe_2(WO_4)_3!10.7H_2O$ in the final product thermogravimetric analysis (TGA) was performed in the temperature range 25 °C to 1000 °C at a heating rate of 10 °C min⁻¹ under air conditions. Fig. S2 indicates that there appear two weight losses in the whole process; the first weight loss starts from 185 °C and finished at 480 °C while the second weight loss starts from 540 °C and ends at 640 °C. Since for WO₃, there appears almost no weight loss from room temperature range to 1000 °C [1], so the TGA suggests that $Fe_2(WO_4)_3!10.7H_2O$ presents the weight loss in the temperature range 25 °C to 1000 °C which about 6.5 % indicating the weight proportion of iron tungsten oxide hydrate ($Fe_2(WO_4)_3!10.7H_2O$) in the heterostructure system $WO_3/Fe_2(WO_4)_3!10.7H_2O$, and the rest is WO_3 .

Fig. S2. TG thermograms for heating the $WO_3/Fe_2(WO_4)_3!10.7H_2O$ composite from 25 °C to 1000 °C at a heating rate of 10 °C min⁻¹

S 3.1 Synthesis of $Fe_2(WO_4)_3$:

Took 1 mmol of (Na₂WO₄.2H₂O), 1 mmol FeCl₂.4H₂O and 1 mmol of NaCl in 22 ml of deionized water in a glass beaker and magnetically stirred the solution for half an hour. During the stirring, added 3 mL of 3 M HCl drop wise to the above solution and again magnetically stirred the solution for half an hour. Finally a thick off white solution was sealed into a stainless-steel autoclave of 40 mL capacity and heated at 200 °C for 24 hours. The autoclave was then allowed to cool naturally and the obtained product was several times washed and centrifuged with distilled water and ethanol and then dried at 80 °C for 12 hours. Consequently, a yellow color powder was obtained which was preserved for examinations. The XRD pattern and XPS spectrum of the as-synthesized material is given in Fig. S3 (a, b). The morphological structure and UV-absorption along with band gap calculation can be seen in Fig. S3 (c and d).

Fig. S3 (a, b) XRD (JCPDS# 23-0309 iron tungsten oxide hydrate, and JCPDS# 38-0200 iron tungsten oxide) pattern and XPS spectrum

Fig. S3 (c) SEM image and (d) UV-absorption with band gap calculation of $Fe_2(WO_4)_3$

S 3.2 The proposed mechanism for the separation process of photocarriers:

The band gap of the as-prepared materials $Fe_2(WO_4)_3$ and WO_3 was estimated as 2.36 eV and 2.70 eV. The conduction band (CB) edge and valence band (VB) edge were calculated by the following equations [2, 3]:

$$E_{VB} = \chi - E^e + \frac{1}{2}E_g$$
(1)
$$E_{CB} = E_{VB} - E_g$$
(2)

where E_{VB} and E_{CB} are the valence band and conduction band edge potentials respectively, χ is the electronegativity of the semiconductor, which is the geometric mean of the electronegativity of the constituent atoms. The values of χ for Fe₂(WO₄)₃ and WO₃ have been calculated as 6.37 eV and 6.59 eV according to literature [4]. E^e is the energy of free electrons on the hydrogen scale (4.5 eV) and E_g is the band gap energy of the semiconductor. On the basis of band gap positions, the band edge potentials of VB and CB for WO₃ are 3.44 eV and 0.74 eV while for Fe₂(WO₄)₃ are 3.05 eV and 0.69 eV respectively. The band alignment of the as prepared WO₃/Fe₂(WO₄)₃!10.7H₂O sample with the reference of potential *vs* NHE has been discussed in Fig. S3 (e). Since the CB edge potential (0.69 eV) of Fe₂(WO₄)₃ is more active (or at lower potential) than that of WO₃ (0.74 eV); hence, the photogenerated electrons from Fe₂(WO₄)₃ may easily transfer to the CB of WO₃ via interface. Similarly, the VB edge potential of WO₃ (3.44 eV) is more positive (or at higher potential) than that of Fe₂(WO₄)₃ (i.e., 3.05 eV), therefore, photogenerated holes migrate from the VB of WO₃ surface to the VB of Fe₂(WO₄)₃. As a result, a large number of electrons gather on the conduction band of WO₃ surface and holes on the valence band of Fe₂(WO₄)₃ surface, which increase the lifetime of charge carriers (or slow down the recombination of photoinduced electron-hole pairs) and enhance the interfacial charge transfer, and finally results in high photocatalytic activity of the WO₃/Fe₂(WO₄)₃!10.7H₂O photocatalyst.

Fig. S3 (e) The proposed mechanism of WO₃/Fe₂(WO₄)₃!10.7H₂O for the photogenerated charge carriers under visible-light irradiation.

References:

- V. Hariharan, S. Radhakrishnan, M. Parthibavarman, R. Dhilipkumar and C. Sekar, *Talanta*, 2011, 85, 2166–2174.
- M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, R. Abe and W. Ueda, J. Mater. Chem., 2010, 20, 1811-1818.
- 3. C. Feng, S. Wang and B. Geng, Nanoscale, 2011, 3, 3695-3699.
- 4. R. G. Pearson, Inorg. Chem., 1988, 27, 734-740.