Supplementary Information Facile synthesis of morphology- and size-controlled zirconium metal-organic framework UiO-66: the role of hydrofluoric acid in crystallization

Yitong Han^a, Min Liu^a, Keyan Li^a, Yi Zuo^a, Yingxu Wei^b, Shutao Xu^b, Guoliang

Zhang^c, Chunshan Song^{ad}, Zongchao Zhang^b and Xinwen Guo^{a*}

^a State key laboratory of fine chemicals, PSU-DUT Joint Center for Energy Research,

School of Chemical Engineering, Dalian University of Technology, Dalian 116024,

PR China

^b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China

^c College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China

^d EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA

* Corresponding author,E-mail: guoxw@dlut.edu.cn; Fax: +86 0411 84986134; Tel: +86 0411 84986133

SEM image of UiO-66 produced by non-modulated solvothermal

method

Fig. S1. SEM image of fluorine-free UiO-66.

The specific amounts of reactants and hydrofluoric acid modulator in the synthesis

DMF (mL)	Concentration of reactants (mM)	ZrCl ₄ (g)	H ₂ BDC (g)	Eq of HF	HF (mL)
50	13.6	0.159	0.113	1	0.029
50	13.6	0.159	0.113	2	0.058
50	13.6	0.159	0.113	3	0.087
50	18.2	0.212	0.151	1	0.039
50	18.2	0.212	0.151	2	0.078
50	18.2	0.212	0.151	3	0.117
50	27.2	0.317	0.226	1	0.059
50	27.2	0.317	0.226	2	0.118
50	27.2	0.317	0.226	3	0.177

Table S1 The amounts of reactants and HF modulator in the synthesis.

The element analysis of fluorine-free UiO-66 and 3F-UiO-66 (UiO-66 with 3 eq HF)

Floment	Weight percentage	Atomic percentage	
Element	(wt %)	(%)	
С	51.31	67.09	
0	30.16	29.61	
Cl	0.40	0.18	
Zr	18.13	3.12	
Total	100	100	

Table S2 The elemental composition of fluorine-free UiO-66.

Fig. S2. EDS spectrum of fluorine-free UiO-66.

Flowert	Weight percentage	Atomic percentage	
Element	(wt %)	(%)	
С	44.75	63.17	
0	25.43	26.95	
F	6.14	5.48	
Zr	23.68	4.40	
Total	100	100	

Table S3 The elemental composition of 3F-UiO-66 (C=18.2 mM).

Fig. S3. EDS spectrum of 3F-UiO-66 (C=18.2 mM).

The half-peak widths analysis

Five characteristic diffraction peaks at $2\theta = 7.3^{\circ}$, 8.5° , 17.1° , 25.8° and 30.8° were chosen to measure the half-peak widths. The results are shown in Table S4.

Fig. S4. XRD patterns of UiO-66 obtained with different additive amounts of hydrofluoric acid (C=18.2 mM).

Table S4 The half-peak widths of the XRD patterns of UiO-66 obtained with different additive amounts of HF (C=18.2 mM).

	Eq of HF			
20(*)	0	1	2	3
7.3	0.193	0.155	0.121	0.111
8.5	0.182	0.129	0.105	0.090
17.1	0.177	0.125	0.105	0.098
25.8	0.163	0.120	0.103	0.096
30.8	0.157	0.117	0.096	0.091

The weight-loss values (%) of fluorine-free UiO-66 and fluorineinvolved UiO-66

Table S5 Comparison of weight-loss values (%) of the fluorine-free UiO-66 and fluorine-involved UiO-66 at different temperature interval.

Samples	Weight-loss temperature interval (°C) Measured				Stoichiometric ^a
-	20-100	100-200	200-350	350-750	350–750 °C
0 F	5.52	12.80	11.30	26.92	54.6%
1 F	4.54	13.46	7.91	27.20	_
2 F	4.60	15.05	6.74	29.24	_
3 F	6.26	13.39	6.18	27.46	_

^a stoichiometrically perfect framework

The porosity data of fluorine-free UiO-66

Crystal	Crystal size	$\mathbf{S}_{\mathrm{BET}}$	V _{micro}	V _{total}	Pore size
morphology	(µm)	$(m^2 \cdot g^{-1})$	$(cm^3 \cdot g^{-1})$	$(cm^3 \cdot g^{-1})$	(nm)
Small cube	~ 0.17	867	0.26	0.53	0.7, 0.9

Table S6 Sorption data of fluorine-free UiO-66.

Fig. S5. Ar sorption isotherms (a) and pore size distribution (b) of fluorine-free UiO-

