Supporting information

Figure 1 Final Rietveld plot of TCI ACN solvate showing the measured data (red line), calculated data (black line) and difference curve (blue line). Calculated Bragg positions are shown by vertical bars (top row: TCI, bottom row: TCI ACN).

Figure 2 Final Rietveld plot of TCI DMF solvate showing the measured data (red line), calculated data (black line) and difference curve (blue line). Calculated Bragg positions are shown by vertical bars (top row: TCl, bottom row: TCl DMF).

Figure 3 Final Rietveld plot of TCl propionitrile solvate showing the measured data (red line), calculated data (black line) and difference curve (blue line). Calculated Bragg positions are shown by vertical bars (top row: TCl, bottom row: TCl propionitrile).

Figure 4 Final Rietveld plot of TCI MeOH solvate showing the measured data (red line), calculated data (black line) and difference curve (blue line). Calculated Bragg positions are shown by vertical bars (top row: TCl, bottom row: TCl MeOH).

Figure 5 Final Rietveld plot of TCl dihydrate showing the measured data (red line), calculated data (black line) and difference curve (blue line). Calculated Bragg positions are shown by vertical bars.

Figure 6. Final Rietveld plot of TCl nitromethane solvate showing the measured data (red line), calculated data (line) and difference curve (blue line). Calculated Bragg positions are shown by vertical bars.

Solvent	Dilution of saturated solution	Lambda max (nm)	%RSD (q _{0.95})	Solubility (mg/mL)
ACN	1.667x	257.6	3.70	0.94
DMF	2.5x	264.2	3.10	1.85
PRN	312.5x	221.0	n.a.	0.17
WA	1000x	257.2	0.75	606

Table 1. UV-Vis solubility measurement in detail. Solubility is expressed within relative deviation.

Figure 7. Example from crystal packing similarity calculation for the construction of a tree diagram. For TCl DMF (gray) and ACN (green) solvates, all 15 molecules of trospium in the clusters fit to each other.

Figure 8. The dynamic vapor sorption curves of trospium chloride polymorf I. The bulk was not hygroscopic and increased its weight up till 0.1 wt. %.

Figure 9. The dynamic vapor sorption curves of trospium chloride dihydrate (8). The bulk was hygroscopic above 70 % of RH and increased its weight up till 13 wt. %, the crystalline material partly dissolved.

Figure 10. Layers in red branch protic x aprotic demonstrated on TCI ACN and TCI MeNO₂.

The C(ar)–H···X interaction is aprotic part of red branch.

Figure 12. TCl PRN

Table 2. Table of hydrogen bonds of solvates with ACN, DMF and *i*PrOH

solvate	D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (°)
	O3–H1o3…Cl1	0.820 (16)	2.242 (14)	3.0579 (14)	173.6 (19)
	C10–H1c10…N1s ⁱ	0.96	2.84	3.739 (4)	157
	C12–H1c12…N1s	0.96	2.71	3.502 (3)	140
	C16–H1c16…O3 ⁱⁱ	0.96	2.66	3.618 (2)	173
	C17–H1c17…O2 ⁱⁱⁱ	0.96	2.49	3.259 (2)	138
	C18–H1c18…Cl1 ⁱⁱⁱ	0.96	2.81	3.6532 (18)	147
ACN	C20–H1c20····Cl1 ^{iv}	0.96	2.99	3.7742 (16)	140
	C21–H1c21…N1s ⁱ	0.96	2.71	3.454 (4)	134
	C21–H2c21···Cl1 ⁱⁱ	0.96	2.94	3.7157 (19)	139
	C22–H1c22····Cl1 ^{iv}	0.96	2.95	3.7827 (17)	146
	C22–H2c22···Cl1 ⁱⁱ	0.96	2.93	3.7612 (19)	146
	C25–H2c25…Cl1 ^{iv}	0.96	2.86	3.7031 (19)	148
	03–H1o3…Cl1	0.820 (10)	2.285 (11)	3.1009 (12)	173.1 (18)
	C4–H1c4…O1s ⁱ	0.96	2.53	3.417 (2)	154
	C6–H1c6…O1s ⁱⁱ	0.96	2.42	3.371 (3)	173
	C16–H1c16…O1s ⁱ	0.96	2.43	3.162 (2)	133
	C17–H1c17…Cl1 ⁱⁱⁱ	0.96	2.94	3.7485 (12)	143
	C19–H2c19…Cl1 ^{iv}	0.96	2.94	3.8048 (12)	150
	C20–H1c20…O2 ^{iv}	0.96	2.48	3.2629 (18)	138
	C21–H1c21…Cl1	0.96	2.86	3.7918 (11)	164
	C22–H1c22···Cl1 ⁱⁱⁱ	0.96	3.03	3.8574 (13)	146
	C25–H2c25…Cl1 ⁱⁱⁱ	0.96	2.88	3.7426 (15)	150
<i>i</i> PrOH	03–H1o3…Cl1 ⁱ	0.820 (19)	2.264 (18)	3.0768 (14)	170.8 (18)
	O1sa–H1o1sa…Cl1 ⁱⁱ	0.89 (3)	2.28 (3)	3.127 (2)	161 (3)
	O1sb–H1o1sb…Cl1 ⁱⁱ	0.89 (4)	2.38 (4)	3.20 (2)	154 (5)
	C17–H1c17…Cl1	0.96	2.92	3.7839 (17)	151
	C19–H2c19…Cl1 ^{III}	0.96	2.84	3.764 (2)	163

	C20–H1c20…O2	0.96	2.45	3.307 (2)	148
	C21–H1c21···Cl1 ⁱ	0.96	2.89	3.8363 (17)	169
	C22–H1c22····Cl1 ⁱⁱ	0.96	2.82	3.6870 (19)	151
	C24–H1c24…O1sa ⁱⁱⁱ	0.96	2.62	3.212 (3)	120
	C24–H1c24…O1sb ⁱⁱⁱ	0.96	2.49	3.20 (2)	130
	C24–H2c24…O2 ^{iv}	0.96	2.50	3.379 (3)	153
	C25–H1c25…Cl1	0.96	2.96	3.854 (2)	156
	C25–H2c25…Cl1 ^{III}	0.96	2.97	3.914 (2)	168

Symmetry codes: ACN: (i) -*x*+3/2, *y*-1/2, -*z*+1/2 (ii) -*x*+1/2,*y*-1/2,-*z*+1/2 (iii) -*x*+1/2,*y*+1/2,-*z*+1/2 (iv) *x*+1/2,-*y*+1/2,*z*+1/2 DMF: (i) -*x*+1,*y*-1/2,-*z*+1/2 (ii) *x*,-*y*+3/2,*z*+1/2 (iii) -*x*+2,*y*+1/2,-*z*+1/2 iPrOH: (i) *x*-1,*y*,*z* (ii) -*x*+3/2,*y*+1/2,-*z*+1/2 (iii) -*x*+3/2,*y*-1/2,-*z*+1/2 (iv) -*x*+1/2,*y*-1/2,-*z*+1/2

Table 3. Table of hydrogen bonds of solvates with MeOH, $MeNO_2$ and PRN

solvate	D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (°)
	03–H1o3…Cl1	0.820 (15)	2.297 (15)	3.1136 (16)	174 (2)
MeOH	O1s-H1o1s…Cl1	0.820 (14)	2.405 (16)	3.131 (4)	148.0 (12)
	O1s'-H1o1s…Cl1	0.82 (2)	2.405 (16)	3.087 (14)	141.1 (15)
	C5–H1c5…O2 ⁱ	0.96	2.68	3.630 (3)	169
	C8–H1c8…Cl1	0.96	2.74	3.648 (2)	158
	C12–H1c12…O1s ⁱⁱ	0.96	2.70	3.405 (4)	130
	C16–H1c16…Cl1	0.96	2.91	3.8442 (18)	166
	C17–H1c17…O2 ^{III}	0.96	2.62	3.334 (2)	131
	C18–H1c18…O2 ^{III}	0.96	2.71	3.373 (3)	127
	C20–H1c20…Cl1 ^{iv}	0.96	2.95	3.7705 (19)	144
	C22–H1c22…Cl1 ^{iv}	0.96	3.04	3.883 (2)	147
	C22–H2c22…Cl1 ^v	0.96	2.93	3.763 (2)	146
	C25–H2c25…Cl1 ^{iv}	0.96	2.96	3.813 (2)	148
	03–H1o3…Cl1 ⁱ	0.820 (17)	2.246 (16)	3.0642 (14)	175.7 (18)
	C16–H1c16…Cl1 ⁱ	0.96	2.95	3.8941 (19)	168
	C17–H1c17…O2 ⁱⁱ	0.96	2.43	3.228 (2)	140
	C18–H1c18…Cl1 ⁱⁱⁱ	0.96	2.77	3.6424 (18)	152
	C20–H1c20…Cl1	0.96	3.02	3.8109 (19)	141
MeNO ₂	C21–H1c21…Cl1 ^{iv}	0.96	2.94	3.7107 (19)	138
	C22–H2c22····Cl1 ^{iv}	0.96	2.93	3.7844 (19)	149
	C23–H1c23···O2s ⁱⁱⁱ	0.96	2.63	3.463 (4)	145
	C25–H2c25…Cl1	0.96	2.74	3.631 (2)	155
	C1s–H1c1s…O2	0.96	2.66	3.511 (3)	148
	C1s–H3c1s…Cl1 ^{vi}	0.96	2.75	3.678 (3)	164
	03–H1o3…Cl1	0.820 (10)	2.249 (11)	3.0614 (12)	171.0 (19)
	C6–H1c6…N1sa ⁱ	0.96	2.59	3.420 (5)	145
	C6–H1c6…N1sb ⁱ	0.96	2.57	3.408 (14)	146
PRN	C16–H2c16…N1sa ⁱⁱ	0.96	2.63	3.411 (7)	138
	C16–H2c16…N1sb ⁱⁱ	0.96	2.62	3.418 (18)	141
	C17–H1c17…Cl1 ⁱⁱⁱ	0.96	2.94	3.7438 (14)	141
	C19–H2c19…Cl1 ^{iv}	0.96	2.88	3.7319 (15)	149
	C20–H1c20…O2 ^{iv}	0.96	2.51	3.266 (2)	135
	C22–H1c22····Cl1 ⁱⁱ	0.96	2.90	3.7526 (15)	148
	C22–H2c22····Cl1 ⁱⁱⁱ	0.96	2.94	3.7805 (15)	147
	C25–H1c25…Cl1 ⁱⁱⁱ	0.96	2.89	3.7351 (16)	148

Symmetry codes: MeOH: (i) -*x*+2,-*y*+1,-*z* (ii) *x*+1,*y*,*z* (iii) -*x*+3/2,*y*+1/2,-*z*+1/2 (iv) *x*+1/2,-*y*+3/2,*z*+1/2 (v) -*x*+3/2,*y*-1/2,-*z*+1/2 MeNO₂: (i) *x*-1,*y*,*z* (ii) -*x*+1/2,*y*+1/2,-*z*+1/2 (iii) -*x*+3/2,*y*+1/2,-*z*+1/2 (iv) -*x*+3/2,*y*-1/2,-*z*+1/2 PRN: (i) *x*+1,*y*,*z* (ii) -*x*+3/2,*y*+1/2,-*z*+1/2 (iii) *x*+1/2,-*y*+1/2,*z*+1/2 (iv) -*x*+3/2,*y*-1/2,-*z*+1/2 PRN: (i) *x*+1,*y*,*z* (ii) -*x*+3/2,*y*+1/2,-*z*+1/2 (iii) *x*+1/2,-*y*+1/2,*z*+1/2 (iv) -*x*+3/2,*y*-1/2,-*z*+1/2 PRN: (i) *x*+1,*y*,*z* (ii) -*x*+3/2,*y*+1/2,-*z*+1/2 (iii) *x*+1/2,-*y*+1/2,*z*+1/2 (iv) -*x*+3/2,*y*-1/2,-*z*+1/2 (iv) -*x*+3/2,-*y*-1/2,-*z*+1/2 (iv) -*x*-

solvate	D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (°)
	O3a–H1o3a…Cl1a	0.820 (8)	2.255 (7)	3.0706 (11)	172.7 (19)
	O3b–H1o3b…Cl1b ⁱ	0.820 (9)	2.217 (8)	3.0323 (11)	172 (2)
	O1w–H1o1w…Cl1b	0.820 (18)	2.299 (18)	3.1129 (14)	172 (2)
	O1w–H2o1w…O2b	0.820 (19)	2.118 (19)	2.9317 (19)	171 (2)
	O2w–H1o2w…Cl1a	0.82 (2)	2.34 (2)	3.1502 (15)	172 (2)
	O2w–H2o2w…O2a	0.820 (18)	2.134 (19)	2.9420 (18)	168 (2)
	O3w–H1o3w…O1w	0.820 (16)	2.152 (16)	2.939 (2)	161 (3)
	O3w–H2o3w…Cl1a	1.04 (4)	2.22 (4)	3.214 (2)	160 (2)
	C18a–H2c18a…O2a ⁱⁱ	0.96	2.63	3.5525 (18)	162
	C19a–H1c19a…O2w ⁱⁱⁱ	0.96	2.65	3.473 (2)	144
sesHyd	C20a–H1c20a…O3w	0.96	2.49	3.190 (2)	130
	C22a–H1c22a…O2w ⁱⁱ	0.96	2.55	3.371 (2)	143
	C25a–H1c25a…O2w	0.96	2.57	3.464 (2)	154
	C25a–H2c25a…Cl1a	0.96	2.81	3.5919 (15)	139
	C15b–H1c15b…Cl1b	0.96	2.86	3.5768 (15)	133
	C16b–H1c16b…Cl1b ⁱ	0.96	2.91	3.7641 (14)	149
	C18b–H2c18b…O1w ⁱⁱⁱ	0.96	2.65	3.501 (2)	149
	C19b–H1c19b…O2b ⁱⁱⁱ	0.96	2.60	3.5413 (19)	168
	C22b–H2c22b…O1w ⁱⁱ	0.96	2.52	3.391 (2)	150
	C25b–H1c25b…Cl1b ⁱⁱ	0.96	2.85	3.6412 (15)	141
	C25b–H2c25b…O1w ⁱⁱⁱ	0.96	2.67	3.576 (2)	158
	03–H1o3…O2w	0.860 (15)	1.816 (15)	2.668 (2)	170.8 (17)
	O1w–H1o1w…Cl1	0.860 (10)	2.315 (12)	3.1645 (12)	169.7 (17)
	O1w–H2o1w…Cl1 ⁱ	0.860 (19)	2.326 (19)	3.1842 (13)	175.8 (16)
diHyd	O2w–H1o2w…Cl1 ⁱ	0.860 (17)	2.255 (17)	3.1134 (14)	176 (2)
	O2w–H2o2w…Cl1	0.86 (2)	2.35 (2)	3.2030 (17)	172 (2)
	C7–H1c7…O3 ⁱⁱ	0.96	2.58	3.475 (2)	156
	C15–H1c15…O1w ⁱⁱⁱ	0.96	2.54	3.1822 (19)	124
	C17–H1c17…O2 ^{iv}	0.96	2.38	3.2161 (18)	145
	C20–H1c20····Cl1 ⁱⁱ	0.96	2.75	3.6590 (16)	158
	C21–H1c21···Cl1	0.96	2.82	3.6778 (15)	149
	C22–H1c22…O3 ^v	0.96	2.64	3.3752 (19)	134
	C22–H2c22…O2 ^v	0.96	2.51	3.1208 (18)	121
	C25–H1c25…O1w ⁱⁱⁱ	0.96	2.46	3.3428 (19)	152
	C25–H2c25…O1w ^{vi}	0.96	2.67	3.433 (2)	137

Table 4. Table of hydrogen bonds of TCl sesquihydrate and TCl dihydrate

Symmetry codes: sesHyd: (i) *x*,*y*+1,*z* (ii) *x*,-*y*+1/2,*z*+1/2 (iii) *x*,-*y*+3/2,*z*+1/2 diHyd: (i) *x*,-*y*-1/2,*z*+1/2 (ii) *x*,-*y*-1/2,*z*-1/2 (iii) –*x*+2,*y*,*z*+1/2,*z*+1/2 (iii) –*x*+2,-*y*,*z*+1

Figure 14. ORTEP of TCI ACN solvate (1).

Figure 15. ORTEP of TCI DMF solvate (2).

Figure 16. ORTEP of TCl *i*PrOH solvate (**3**).

Figure 17. ORTEP of TCI MeOH solvate (4).

Figure 18. ORTEP of TCI MeNO₂ solvate (5).

Figure 19. ORTEP of TCI PRN solvate (6).

Figure 20. ORTEP of TCl sesquihydrate (7).

Figure 21. ORTEP of TCl dihydrate (8).