Syntheses, Structures and Properties of Nine *d*¹⁰ or *p*-Block Coordination Polymers Based on Ligand Containing Both Terpyridyl and Sulfo Groups

Li Zhang, Jia-Dan Zheng, Yi-Ting Chen, Sheng-Run Zheng,* Jun Fan, Wei-Guang Zhang *

Supporting information

	Ľ		
Complex 1			
Zn(1)-N(3)	2.114(6)	Zn(1)-O(2W)	2.138(5)
Zn(1)-N(3)#1	2.114(6)	Zn(1)-O(1W)	2.153(4)
Zn(1)-O(2W)#1	2.138(5)	Zn(1)-O(1W)#1	2.153(4)
N(3)-Zn(1)-N(3)#1	180.00	O(2W)#1-Zn(1)-O(1W)	88.1(2)
N(3)-Zn(1)-O(2W)#1	92.1(2)	O(2W)-Zn(1)-O(1W)	91.9(2)
N(3)#1-Zn(1)-O(2W)#1	87.9(3)	N(3)-Zn(1)-O(1W)#1	88.84(19)
N(3)-Zn(1)-O(2W)	87.9(3)	N(3)#1-Zn(1)-O(1W)#1	91.16(19)
N(3)#1-Zn(1)-O(2W)	92.1(2)	O(2W)#1-Zn(1)-O(1W)#1	91.9(2)
O(2W)#1-Zn(1)-O(2W)	180.000	O(2W)-Zn(1)-O(1W)#1	88.1(2)
N(3)-Zn(1)-O(1W)	91.16(19)	O(1W)-Zn(1)-O(1W)#1	180.000
N(3)#1-Zn(1)-O(1W)	88.84(19)		
Complex 2			
Cd(1)-N(3)#1	2.317(3)	Cd(1)-O(2W)	2.353(3)
Cd(1)-N(1)#2	2.322(3)	Cd(1)-O(6)#3	2.415(3)
Cd(1)-O(3)	2.331(2)	Cd(1)-O(1W)	2.432(3)
N(3)#1-Cd(1)-N(1)#2	108.12(11)	O(3)-Cd(1)-O(6)#3	86.85(9)
N(3)#1-Cd(1)-O(3)	85.16(10)	O(2W)-Cd(1)-O(6)#3	78.71(11)
N(1)#2-Cd(1)-O(3)	166.48(10)	N(3)#1-Cd(1)-O(1W)	77.50(11)
N(3)#1-Cd(1)-O(2W)	147.53(11)	N(1)#2-Cd(1)-O(1W)	84.24(11)
N(1)#2-Cd(1)-O(2W)	89.04(11)	O(3)-Cd(1)-O(1W)	101.55(9)
O(3)-Cd(1)-O(2W)	80.50(10)	O(2W)-Cd(1)-O(1W)	77.08(11)
N(3)#1-Cd(1)-O(6)#3	129.57(11)	O(6)#3-Cd(1)-O(1W)	152.60(11)
N(1)#2-Cd(1)-O(6)#3	82.71(11)		
Complex 3			
Ag(1)-N(1)	2.103(13)	Ag(2)-N(3)	2.144(13)
Ag(1)-N(1)#1	2.103(13)	Ag(2)-N(3)#2	2.144(13)
N(1)-Ag(1)-N(1)#1	180.0	N(3)-Ag(2)-N(3)#2	180.0
Complex 4			
Ag(1)-N(3)	2.196(8)	N(3)-Ag(1)-O(1W)	155.3(3)

Table S1 Selected bond lengths [Å] and angles[°] for the compounds.^a

Ag(1)-O(1W)	2.218(7)			
Complex 5				
Ag(1)-N(1)#1	2.127(7)	Ag(2)-O(3)#3	2.537(6)	
Ag(1)-N(1)	2.127(7)	Ag(2)-O(3)#4	2.599(7)	
Ag(2)-N(3)	2.192(7)	Ag(3)-O(1)#7	2.387(7)	
Ag(2)-O(5)#2	2.205(7)	Ag(3)-Ag(3)#8	2.451(4)	
N(1)#1-Ag(1)-N(1)	180.000	N(3)-Ag(2)-O(3)#4	97.6(3)	
N(3)-Ag(2)-O(5)#2	154.2(3)	O(5)#2-Ag(2)-O(3)#4	96.8(3)	
N(3)-Ag(2)-O(3)#3	93.7(3)	O(3)#3-Ag(2)-O(3)#4	82.7(2)	
O(5)#2-Ag(2)-O(3)#3	109.3(3)	O(2)-S(1)-O(1)	111.8(5)	
Complex 6				
Ag(3)-N(1)	2.131(5)	Ag(2)-N(3)#3	2.193(6)	
Ag(3)-N(6)	2.134(5)	Ag(2)-O(3)#4	2.468(5)	
Ag(1)-O(5)#1	2.272(5)	Ag(2)-O(6)	2.551(6)	
Ag(1)-O(2W)	2.294(6)	Ag(4)-N(4)	2.195(6)	
Ag(1)-O(3)#2	2.361(5)	Ag(4)-O(1W)	2.228(8)	
Ag(1)-O(1)	2.518(5)			
N(1)-Ag(3)-N(6)	172.4(2)	O(3)#2-Ag(1)-O(1)	91.61(18)	
O(5)#1-Ag(1)-O(2W)	116.4(2)	N(3)#3-Ag(2)-O(3)#4	131.0(2)	
O(5)#1-Ag(1)-O(3)#2	92.99(19)	N(3)#3-Ag(2)-O(6)	126.7(2)	
O(2W)-Ag(1)-O(3)#2	144.3(2)	O(3)#4-Ag(2)-O(6)	100.89(19)	
O(5)#1-Ag(1)-O(1)	120.9(2)	N(4)-Ag(4)-O(1W)	144.4(4)	
O(2W)-Ag(1)-O(1)	90.1(2)			
Complex 7				
Pb(1)-O(3)	2.539(4)	Pb(1)-O(2W)	2.634(5)	
Pb(1)-O(1W)	2.564(6)	Pb(1)-O(5)#3	2.661(4)	
Pb(1)-N(3)#1	2.608(5)	Pb(1)-O(6)#3	2.689(4)	
Pb(1)-N(1)#2	2.635(5)			
O(3)-Pb(1)-O(1W)	79.60(19)	O(1W)-Pb(1)-O(5)#3	80.66(19)	
O(3)-Pb(1)-N(3)#1	86.93(15)	N(3)#1-Pb(1)-O(5)#3	131.06(15)	
O(1W)-Pb(1)-N(3)#1	146.04(19)	N(1)#2-Pb(1)-O(5)#3	77.83(15)	
O(3)-Pb(1)-N(1)#2	168.01(15)	O(2W)-Pb(1)-O(5)#3	151.45(14)	
O(1W)-Pb(1)-N(1)#2	93.5(2)	O(3)-Pb(1)-O(6)#3	75.63(13)	
N(3)#1-Pb(1)-N(1)#2	103.95(17)	O(1W)-Pb(1)-O(6)#3	125.84(18)	
O(3)-Pb(1)-O(2W)	106.02(14)	N(3)#1-Pb(1)-O(6)#3	79.46(13)	
O(1W)-Pb(1)-O(2W)	80.38(19)	N(1)#2-Pb(1)-O(6)#3	101.11(16)	
N(3)#1-Pb(1)-O(2W)	73.59(15)	O(2W)-Pb(1)-O(6)#3	152.80(14)	
N(1)#2-Pb(1)-O(2W)	82.24(17)	O(5)#3-Pb(1)-O(6)#3	52.99(12)	
O(3)-Pb(1)-O(5)#3	91.28(13)			
Complex 8				
Pb(1)-O(3W)	2.462(7)	Pb(1)-N(1)	2.645(9)	
Pb(1)-O(2W)	2.511(9)	Pb(1)-N(3)#1	2.673(9)	

Pb(1)-O(1W)	2.580(8)		
O(3W)-Pb(1)-O(2W)	79.3(3)	O(1W)-Pb(1)-N(1)	156.1(3)
O(3W)-Pb(1)-O(1W)	81.3(3)	O(3W)-Pb(1)-N(3)#1	75.0(3)
O(2W)-Pb(1)-O(1W)	81.1(3)	O(2W)-Pb(1)-N(3)#1	152.4(3)
O(3W)-Pb(1)-N(1)	81.2(3)	O(1W)-Pb(1)-N(3)#1	85.2(3)
O(2W)-Pb(1)-N(1)	79.7(3)	N(1)-Pb(1)-N(3)#1	105.8(3)
Complex 9			
Pb(1)-N(1)	2.536(10)	K(1)-O(3W)	2.13(4)
Pb(1)-O(1W)	2.557(15)	K(1)-N(3)	2.390(15)
Pb(1)-O(3)#1	2.580(10)	K(1)-O(2)#3	2.651(13)
Pb(1)-O(7)	2.64(2)	K(1)-O(2W)	3.27(3)
Pb(1)-O(5)#2	2.667(16)		
N(1)-Pb(1)-O(1W)	78.7(5)	O(3)#1-Pb(1)-O(5)#2	143.4(4)
N(1)-Pb(1)-O(3)#1	78.2(3)	O(7)-Pb(1)-O(5)#2	116.9(7)
O(1W)-Pb(1)-O(3)#1	75.2(4)	O(3W)-K(1)-N(3)	80.2(7)
N(1)-Pb(1)-O(7)	80.1(6)	O(3W)-K(1)-O(2)#3	67.2(5)
O(1W)-Pb(1)-O(7)	156.6(6)	N(3)-K(1)-O(2)#3	147.2(6)
O(3)#1-Pb(1)-O(7)	90.9(6)	O(3W)-K(1)-O(2W)	160.7(9)
N(1)-Pb(1)-O(5)#2	83.3(4)	N(3)-K(1)-O(2W)	84.9(4)
O(1W)-Pb(1)-O(5)#2	70.3(5)	O(2)#3-K(1)-O(2W)	127.8(3)

^aSymmetry transformations used to generate equivalentatoms: #1 –x + 1/2, -y + 3/2, -z + 1 for complex **1**; #1 x, y - 1, z, #2 x - 1, y - 1, z - 1, #3 x - 1, y, z, #4 x + 1, y, z, #5 x + 1, y + 1, z + 1, #6 x, y + 1, z for complex **2**; #1 -x, -y, -z - 1, #2 –x + 1/2, -y - 1/2, -z + 1 for complex **3**; #1 –x + 3, -y + 3, -z + 2, #2 –x + 2, -y + 1, -z + 2, #3 x, y, z + 1, #4 –x + 3, -y + 1, -z + 2, #5 x + 1, y, z, #6 x, y, z - 1, #7 x - 1, y, z, #8 –x + 1, -y + 2, -z + 1 for complex **5**; #1 x + 1, y, z, #2 -x, -y, -z - 1 #3 x - 1, y - 1, z, #4 –x - 1, -y, -z - 1, #5 x + 1, y + 1, z, #6 x - 1, y, z for complex **6**; #1 x, y + 1, z, #2 x + 1, y + 1, z + 1, #3 x + 1, y, z, #4 x - 1, y - 1, z - 1, #5 x - 1, y, z, #6 x, y - 1, z for complex **7**; #1 x, y, z - 1, #2 x, y, z + 1 for complex **8**; #1 x, y + 1/2, -z + 2, #2 y + 1/4, -x + 5/4, z + 1/4, #3 x + 1, y, z, #4 x - 1, y, z, #5 x, y - 1/2, -z + 2, #6 –y + 5/4, x - 1/4, z-1/4 for complex **9**.

Figure S1. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 1 (lower) and for as-synthesized 1(upper).

Figure S2. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 2 (lower) and for as-synthesized 2(upper).

Figure S3. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 3 (lower) and for as-synthesized 3(upper).

Figure S4. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 4 (lower) and for as-synthesized 4(upper).

Figure S5. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 5 (lower) and for as-synthesized 5(upper).

Figure S6. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 6 (lower) and for as-synthesized 6(upper).

Figure S7. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 7 (lower) and for as-synthesized 7(upper).

Figure S8. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 8 (lower) and for as-synthesized 8(upper).

Figure S9. PXRD patterns of simulated based on the X-ray single-crystal diffraction data of 9 (lower) and for as-synthesized 9(upper).

Figure S12. TG curve for 4.

Figure S15. TG curve for 7.

