Subtly tuning one N site of benzyl-1H-triazole ligands to build

mono-nuclear subunits and tri-nuclear clusters to modify

polyoxometalates

Ai-xiang Tian,* Ya-li Ning, Jun Ying,Guo-Cheng Liu, Xue Hou, Tian-jiao Li, Xiu-li Wang*

Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000, P. R. China

4 1 3 1 1	(compound I	0 100(5)
Agl-NI	2.150(5)	Agl-N6	2.180(5)
Ag1-06	2.698(4)	Ag1-013	2.824(5)
Ag2-N4	2.144(5)	Ag2-N2	2.165(5)
N1-Ag1-N6	172.2(2)	N4-Ag2-N2	171.1(2)
	(Compound 2	
Ag1-N4	2.143(15)	Ag1-N3	2.207(14)
Ag1-O20	2.639(12)	Ag1-O13	2.898(11)
Ag2-N1	2.133(15)	Ag2-N5	2.202(16)
N4-Ag1-N3	169.7(6)	N1-Ag2-N5	170.4(7)
	(Compound 3	
Ag1-N10	2.125(14)	Ag1-N13	2.119(13)
Ag1-O19	2.662(9)	Ag2-N9	2.234(13)
Ag2-N11	2.243(13)	O34-Ag2	2.413(10)
O10-Ag2	2.666(10)	Ag4-N4	2.163(14)
Ag3-N7	2.115(13)	Ag5-N1	2.145(13)
Ag4-O18	2.568(12)	Ag5-O9	2.655(11)
Ag5-N5	2.154(11)	N14-K1	2.204(13)
Ag5-O21	2.828(10)	K1-O23	2.451(12)
N9-Ag2-N11	145.9(5)	N10-Ag1-N13	175.7(6)
N11-Ag2-O34	90.6(4)	N9-Ag2-O34	122.6(5)
N4-Ag4-N4	180	N7-Ag3-N7	180
N4-Ag4-O18	89.0(4)	N4-Ag4-O18	91.0(4)
O18-Ag4-O18	180	N1-Ag5-N5	171.1(5)
	(Compound 4	
Cu1-N1	1.971(9)	Cu1-N7	1.986(9)
Cu1-N4	2.003(9)	Cu1-N10	2.011(9)

Table. S1. Selected Bond Lengths (Å) and Bond Angles (°) for Compounds 1–6.

* Corresponding author. Tel.: +86-416-3400158

E-mail address: tian@bhu.edu.cn (A.-X. Tian); wangxiuli@bhu.edu.cn (X.-L. Wang)

Cu1-O20	2.543(6)	Cu1-O23	2.584(6)	
Cu2-N16	2.000(7)	Cu2-N13	2.013(8)	
Cu2-O43	2.509(7)	Cu3-N28	1.990(8)	
Cu3-N22	1.995(8)	Cu3-N19	2.003(9)	
Cu3-N25	2.021(8)	Cu3-O51	2.496(6)	
Cu3-O44	2.687(8)	Cu4-N40	1.979(9)	
Cu4-N31	1.993(9)	Cu4-N34	2.007(8)	
Cu4-N37	2.063(8)	Cu4-O12	2.534(8)	
Cu4-O27	2.455(7)	Cu5-O24	2.505(8)	
Cu5-N48	2.009(9)	Cu5-N44	1.996(8)	
N7-Cu1-N10	85.7(3)	N1-Cu1-N7	170.3(4)	
N16-Cu2-N16	180	N16-Cu2-N13	91.9(3)	
N28-Cu3-N22	178.8(3)	N28-Cu3-N19	90.4(3)	
N40-Cu4-N31	91.0(4)	N40-Cu4-N34	176.5(3)	
N44-Cu5-N44	180	N44-Cu5-N48	91.6(3)	
	C	Compound 5		
O1W-Cu1	2.080(4)	Cu1-N2	1.976(4)	
Cu1-N5	1.993(4)	Cu1-N8	2.112(4)	
Cu1-N10	2.174(4)	O2W-Cu1	2.580(4)	
Cu2-N7	2.021(4)	Cu2-N7	2.021(4)	
Cu2-N11	2.082(5)	Cu2-N11	2.082(5)	
Cu2-N4	2.354(5)	Cu2-N4	2.354(5)	
N2-Cu1-N5	170.57(18)	N2-Cu1-O1W	85.34(17)	
N7-Cu2-N7	180	N7-Cu2-N11	89.98(16)	
	C	Compound 6		
Cu1-N8	1.982(8)	Cu1-N2	2.000(8)	
Cu1-N11	2.041(8)	Cu1-N6	2.037(8)	
Cu1-O63	2.287(6)	O2W-Cu1	2.346(8)	
Cu2-O63	1.962(6)	Cu2-N17	1.987(8)	
Cu2-N1	1.998(8)	O1W-Cu2	1.984(6)	
O13-Cu2	2.414(7)	Cu2-N7	2.528(7)	
Cu3-O63	1.929(6)	Cu3-N14	1.977(7)	
Cu3-N16	2.016(8)	Cu3-N10	2.041(8)	
O19-Cu3	2.184(7)	O27-Cu4	2.337(6)	
Cu4-N20	2.007(9)	Cu4-N22	2.047(8)	
O63-Cu1-O2W	173.7(3)	N8-Cu1-N11	89.7(3)	
O63-Cu2-O1W	173.5(3)	N17-Cu2-N1	174.9(4)	
O63-Cu3-N16	87.4(3)	N14-Cu3-N10	91.1(3)	
N20-Cu4-N20	180	N20-Cu4-N22	91.9(4)	

Fig. S1. ORTEP drawing of 1 with thermal ellipsoids at 50% probability. The H atoms have been omitted for clarity.

Fig. S2. The 1D metal-organic chain in compound 1 with a channel constructed by the twisted ligands.

Fig. S3. The edge-to-face aromatic π ... π stacking interactions of 1 between 2-btz molecules in adjacent Ag-(2-btz) chains (C9...C11 = 3.269 Å).

Fig. S4. ORTEP drawing of 2 with thermal ellipsoids at 50% probability. The H atoms have been omitted for clarity.

Fig. S5. ORTEP drawing of 3 with thermal ellipsoids at 50% probability. The H atoms have been omitted for clarity.

Fig. S6. Two types of Ag-(2-btz) subunits in compound 3 (Symmetry code #i: -x+1, -y+2,

-z+1).

Fig. S7. Two SiW₁₂ anions fused by Ag-(2-btz) subunits to construct an anion dimmer of 3 (Symmetry code #i: -x+1, -y+2, -z+1).

Fig. S8. ORTEP drawing of 4 with thermal ellipsoids at 50% probability. The H atoms have been omitted for clarity.

Fig. S9. The abundant aromatic $\pi \dots \pi$ stacking interactions between 2-btz ligands to further stability the structure of compound 4.

Fig. S10. ORTEP drawing of 5 with thermal ellipsoids at 50% probability. The H atoms have been omitted for clarity.

Fig. S11. The 2D supramolecular layer linked by aromatic $\pi \dots \pi$ stacking interactions of compound 5 with anions (green) embedding in the grids.

Fig. S12. ORTEP drawing of 6 with thermal ellipsoids at 50% probability. The H atoms have been omitted for clarity.

Fig. S13. The aromatic $\pi \dots \pi$ stacking interactions (green dotted line) between dimers for stabilizing the structure of compound 6.

Fig. S14. The IR spectra of compounds 1–6.

Fig. S15. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for compounds **1–6**.

Fig. S16. Absorption spectra of the MB solution during the decomposition reaction under UV

irradiation with the compounds 1–6 as catalyst.

Fig. S17. Absorption spectra of the RhB solution during the decomposition reaction under UV irradiation with the compounds 5 and 6 as catalyst.

Fig. S18. The dependence of anodic peak and cathodic peak currents on scan rates of II-II' for

1- and 4-CPEs, I-I' for 2-CPE and III-III' for 6-CPE.

Fig. S19. Cyclic voltammograms of the 1–, 2–, 4– and 6–CPEs in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution containing 0(b); 2(c); 4(d); 6(e) and 8(f) mM $NaNO_2$ and a bare CPE (a) in a 4.0 mM $NaNO_2 + 0.1$ M $H_2SO_4 + 0.5$ M Na_2SO_4 solution. Scan rate: 200 mV·s⁻¹.

Fig. S20. Cyclic voltammograms of the 1–, 2–, 4– and 6–CPEs in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution containing 0(b); 2(c); 4(d); 6(e) and 8(f) mM H_2O_2 and a bare CPE (a) in a 4.0

mM $H_2O_2 + 0.1$ M $H_2SO_4 + 0.5$ M Na_2SO_4 solution. Scan rate: 200 mV·s⁻¹.

Figure. S21. Cyclic voltammograms of the 1–, 4–and 6–CPEs in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution containing 0(b); 2(c); 4(d); 6(e) and 8(f) mM bromate and a bare CPE (a) in a 4.0 mM bromate + 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 solution. Scan rate: 200 mV·s⁻¹.