Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2015

Figure S1. ¹H NMR (CDCl₃, 270 MHz) spectrum of 4a. *:dichloromethane

COOMe

COOMe

Figure S2. ¹³C NMR (CDCl₃, 67.5 MHz) spectrum of 4a.

Figure S4. ¹³C NMR (CDCl₃, 67.5 MHz) spectrum of 2a-2.

Figure S6. ¹³C NMR (CDCl₃, 150 MHz) spectrum of 4b.

Figure S7. ¹H NMR (CDCl₃, 270 MHz) spectrum of [14]DBA 2b.

Figure S8. ¹³C NMR (CDCl₃, 150 MHz) spectrum of [14]DBA 2b.

	number of π electron	$\Delta \delta^a$
	in the annulenic ring	
1a	12	-0.51 ppm
2a-1	14	+0.06 ppm
2a-2	14	+0.31 ppm
1b	12	-0.49 ppm
2b	14	+0.34 ppm

Table S1. Chemical shift changes upon cyclization to form the annulenic ring

^{*a*} Chemical shift changes of the aromatic proton between the silylethynyl and the methoxycarbonyl groups up on cyclization. Negative value indicates high field shift, while positive dose low field shift.