Supporting Information for

Controlled synthesis and gas sensing properties of porous

Fe₂O₃/NiO hierarchical nanostructures

Xiaoping Shen,*^a Qiang Liu,^a Zhenyuan Ji,^a Guoxing Zhu,^a Hu Zhou^b and

Kangmin Chen^c

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
^b School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
^c School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013,

P. R. China

Fig. S1 TG curve of the precursor of Fe(3-Clpy)₂[Ni(CN)₄].

Fig. S2 HRTEM images of the cuboid-like Fe₂O₃/NiO nanocomposite.

Fig. S3 SAED patterns of the cuboid-like Fe₂O₃/NiO nanocomposite.

Fig. S4 SEM images of the precursor products obtained at different reaction times.

Fig. S5 SEM image of the precursor product obtained at reaction time of 1 min in the presence of PEG.

Fig. S6 SEM images of the precursor products obtained with different amounts of $K_2[Ni(CN)_4]$ in the presence of PEG (the molar ratios of $K_2[Ni(CN)_4]$ /3-Clpy / Fe(BF₄)₂·6H₂O / PEG = 1:2:1:10).

Fig. S7 SEM images of the precursor products obtained with different amounts of $K_2[Ni(CN)_4]$ without PEG (the molar ratios of $K_2[Ni(CN)_4] / 3$ -Clpy / Fe(BF₄)₂·6H₂O = 1:2:1).

Fig. S8 SEM image of the precursor product synthesized with the same condition as the flower-like precursor except for using PVP (5 mmol) instead of PEG as the surfactant.